
Turbulent and financial time series 
analysis

Abstract: Some of the characteristics of turbulence are its randomness, nonlinearity, diffusivity,
and dissipation, just to name few. But couldn’t we characterize financial data in the same way? The
answer is no, not exactly. Some of the extra descriptions for financial data, which makes it
different than the steady experimental turbulence, are its Markovity and non-stationarity.

Turbulent signals:
Fig.(1) shows a non-trended noncompressible stationary turbulent velocity signal,
measured in an airtank experiment in Oldenburg university. The spectrum of turbulent
signals was shown by Kolmogorov to be equal to :
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Financial signals:
Financial time series are non-stationary, i.e. the moments are a function of time. This is
evident from fig.(12a), which is for the DAX index for the period from 16.2 till
31.12.2001. In (b) the autocorrelation
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where E(k) is the spectrum as a fuction of the wavenumber, C is Kolmogorov‘s
constant, ε is the dissipation rate, and K is the wavenumber. We see clearly that the
slope of the spectrum represented by the blue color in fig. (2) is equal to -5/3, while the
green color represents the dissipation spectrum and its slope equals 1/3, which
confirms the theory. In addition to that, the energy spectrum shows three distinct
regions, namely, the large scales, the inertial range, the dissipation range and the
random region. Taking a look at figs (3) and (4) we see that the same same three
regions are more or less represented. First comes the Taylor microscale (λ) which is the
curvature of the autocorrelation which is approximately equal for both data sets. Fig(3)
data set is the same as in fig.(1) above and in fig.(4) we show another data set with a
higher Reynolds number (Re=UL/ν) . We notice that in both cases the autocorrelation
is finite and the zero crossing is the beginning of the random region. Fig.(3) shows the
phase diagram or the bivariate probability density function of the high Reynolds
number data and we notice the Gaussian mexican hat upon reaching the zero crossing
point.

Fig.3 Fig.4 Fig.5

Auseful tool in studying turbulence is the structure function or the increment and is
equal to δu=|u(x+r)- u(x)|, where u is the velocity at position x, and r is the lag. The
higher order structure functions which equals:

describes the cascading of the energy from large scales to small scales. This
cascading follows a power law as is shown in the following figures.
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In fig.(6) the structure functions till the exponent p=15 were calculated and in
fig.(7) we see the scaling of these structure functions according to

In fig.(7) we have used the extended self-similarity to show the power law scaling of
the structure functions. We see also that the best fit is Kolmogorov‘s lognormal scaling
model which is

In fig.(8) the dissipation was fitted with the lognormal and by tunning the parameter µ
one could find the best fit which is 0.24.
The question now i whether the above tools are suitable for non-stationary time series
like the global warming temperatures. In figs. (9), (10), and (11) we show the
temperature time seriese, the detrended temperature and the incremented temperature.
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function which shows a long memory.
In (c) we see the spectrum which
scales as -2 and not -5/3 as in the
turbulent, while the probability
density functions (PDFs) show
anomalous scaling first and by
increasing the lag they reach probably,
one could say, a uniform distribution
form upon reaching the zero crossing
point.
Non-stationary time series are
modelled by aWiener process:

where x is a stochastic variable, µ is
the mean (trend) of the process,σ is the
variance (volatility), η is random noise,
and t is the time. In fig.(13a) we show
such a time series, in (b) its
autocorrelation, in (c) the spectrum
with two slopes -2 and -5/3 and in (d)
the PDFs.
An important result from the above is
that the tools that were used to analyze
stationary turbulence are not helpful in
analyzing non-stationary data, were
this is evident from the plunge of the
DAX data on 11.9.2001 and the
spectra of both processes still show a
(-2) slope.
An important tool to see the content of
the spectrum of a signal in time and
Fourier space is the spectrogram. In
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fig. (14) we see the spectrum of a sinusoid signal with two frequencies entrupted by a
random band in two places, but the spectrum shows only the two frequencies. In fig.
(15) we used a spectrogram to show the frequencies on the y-axis and the x-axis shows
the interuption bands. Another tool is theWigner–Ville spectrum
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which again shows both domains the frequency on the y-axis
and time on the x-axis. Here we have used a noisy sinusoid
interupted by two bands of noise. The need for other tools
arises because the structure functions (the return) gives simply
a random process.

Fig.17
At last we show in figs.(17) and (18) a wavelet analysis for the signals that appeared in
figs. (9) and (12a) respectively.
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