U.S Department of Energy Fuel Cell Technologies Office Overview

Energy Efficiency & Renewable Energy

IEA Electrolysis Meeting

Herten, Germany

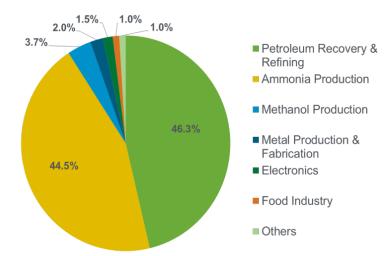
April 21-22, 2015

Bryan Pivovar

National Renewable Energy Lab

Hydrogen Current Status

 U.S. DEPARTMENT OF
 Energy Efficiency &


 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 2

- ~10 million tonnes H₂ from NG reforming for petroleum refining, ammonia production, etc. today
- NG can provide near-term costcompetitive H₂ at scale:
 - <\$2/gge produced (\$4.50/gge delivered)
- >1,500 miles of H₂ pipeline
- ~ 50 H₂ stations (10 public)
- Plans for H₂ stations:
 - 100 in CA; 100 each in Germany, Japan (1,000 each by 2025)
- Growing demand for electrolyzers for renewable H₂ at scale:
 - >\$5/gge produced (\$7.50/gge delivered)

Existing centralized hydrogen production facilities

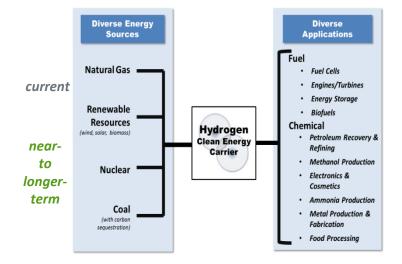
2010 hydrogen consumption market share by application

Hydrogen Challenges and Opportunities

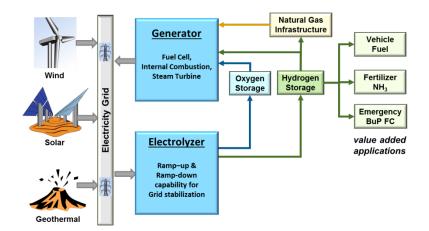
ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 3

Major challenges:

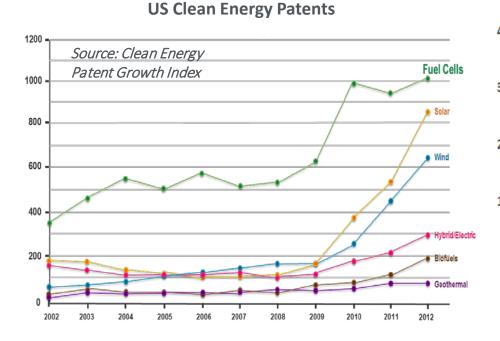

Reduce the cost of producing and delivering H_2 from renewable/low-carbon sources for FCEV and other uses (capex, O&M, feedstock, infrastructure, safety, permitting, codes/standards)

• Factors driving change in the technologies:


- FCEVs are driving requirements (e.g. high P tanks)
- Need to reduce cost of 700 bar refueling stations for near-term FCEV roll-out

Where the technology R&D needs to go:

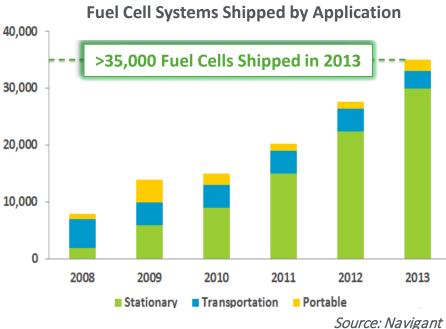
- Materials innovations to improve efficiencies, performance, durability and cost, and address safety (e.g. embrittlement, high pressure issues)
- System-level innovations including renewable integration schemes, tri-generation (co-produce power, heat and H₂), energy storage balance-of-plant improvements, etc.
- Cost reductions in H₂ compression, storage and dispensing components
- Continued resource assessments to identify regional solutions to cost-competitive H₂


H₂ offers important long-term value as a clean energy carrier

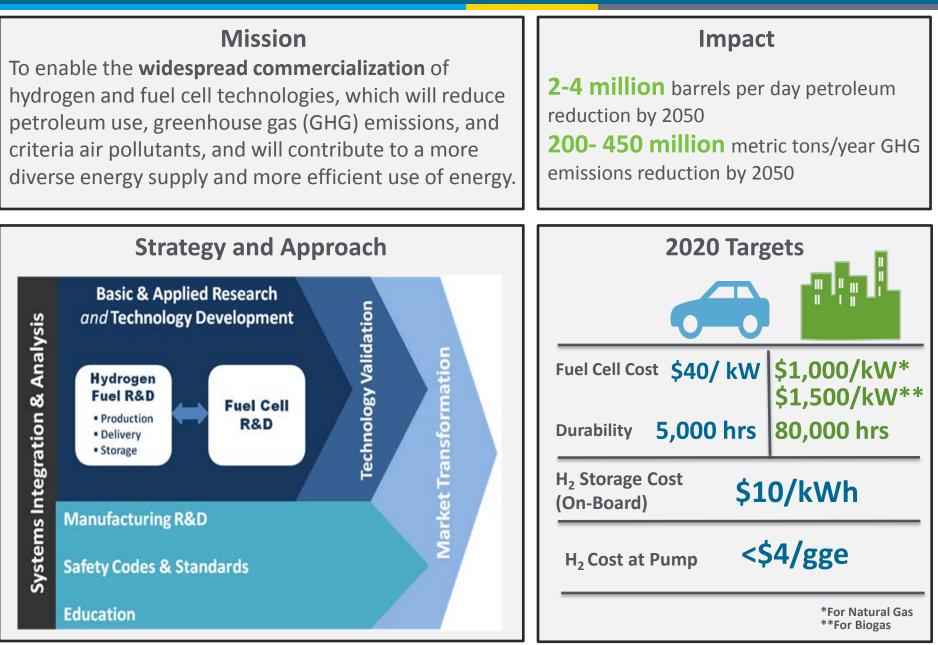
Renewable energy integration options with hydrogen

Fuel Cells- An Emerging Industry

U.S. DEPARTMENT OF ENERGY Efficiency & Renewable Energy Fuel Cell Technologies Office | 4

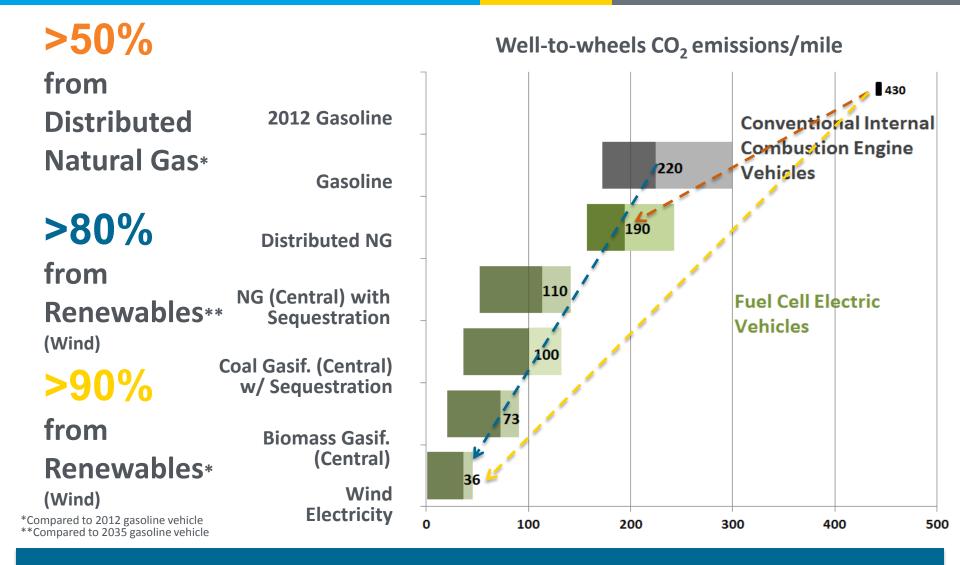


Recent FCEV announcements-2013-2014



- Consistent 30% annual growth since 2010
- Global market potential in 10–20 years:

14 – \$31 billion/yr for stationary power


\$11 billion/yr for portable power

\$18 – \$97 billion/yr for transportation

FCEVs Reduce Greenhouse Gas Emissions

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 6

Substantial GHG reductions with H₂ produced from renewables

DOE Activities Span from R&D to Deployment

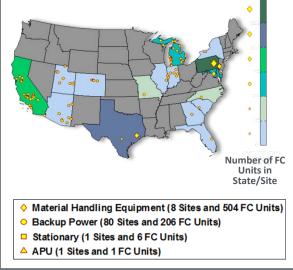
U.S. DEPARTMENT OF Energy Efficiency & ENERGY Renewable Energy Fuel Cell Technologies Office | 7

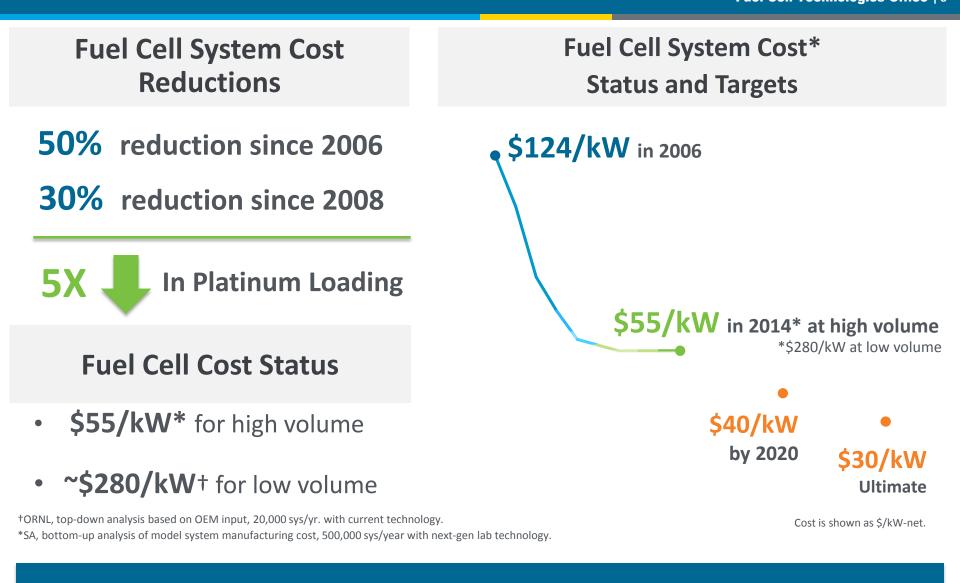
Research & Development

- 50% reduction since 2006
- **80%** electrolyzer cost reduction since 2002

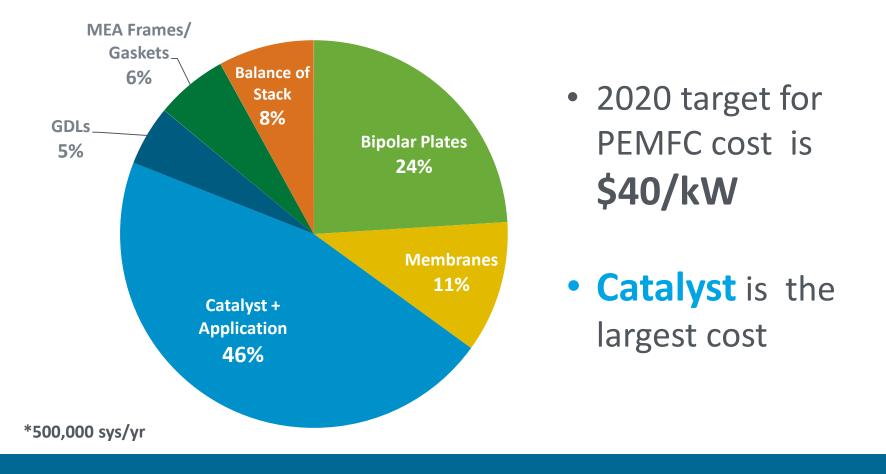
\$124/kW in 2006

Demonstration


- >180 FCEVs
- 25 stations
- 3.6 million miles traveled
- World's first tri-gen station
- Early markets- Airport baggage tractor, back-up power



- **Government Early Adoption** (DoD, California, etc.)
- **DOE Recovery Act &** • **Market Transformation Deployments**
- ~1,600 fuel cells deployed


Fuel Cell Cost Reductions Enabled by R&D

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 8

50% fuel cell system cost reduction through DOE R&D since 2006

Catalyst remains key challenge <u>and</u> opportunity to lower cost

Hydrogen Production Strategies

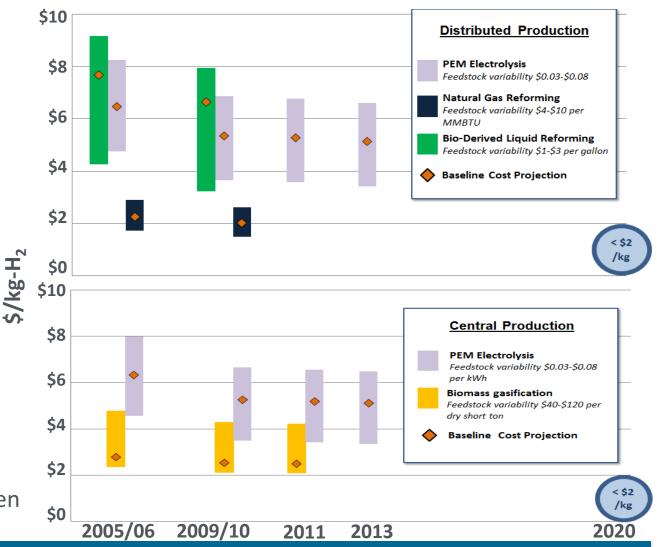
ERGY Renewable Energy

Energy Efficiency &

Fuel Cell Technologies Office | 10

U.S. DEPARTMENT OF

Current Technology


- Natural Gas (D/C)
- Electrolysis (D)

Near to Mid-Term:

- Electrolysis- Wind and Solar Powered (D/C)
- Bio-derived Liquids (D/C)
- Fermentation (D/C)

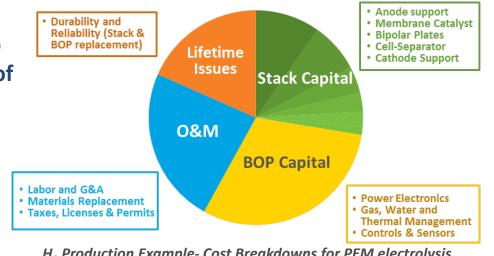
Long-Term (not shown): *Central Renewable* H₂

- Solar-based water splitting
- Photolytic Bio-hydrogen
 D- Distributed C- Central

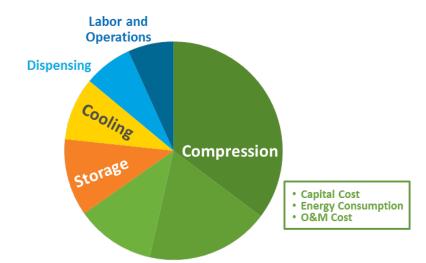
H₂ from NG can be competitive today - renewables is a longer-term focus

Materials durability, efficiency improvements, and capital cost reductions are key challenges for all production and delivery pathways

Challenge	Strategies	RD&D Focus	Key Areas
Reduce the cost of sustainable low- carbon hydrogen production & delivery while meeting safety	Near-term Minimize cost of 700 bar hydrogen at refueling stations	 Technoeconomic analysis Reliability and cost of compression, storage and dispensing Renewable integration 	 Delivery Polymers & composites for delivery technologies Liquefaction technologies Compressor reliability Low cost onsite storage
 and performance requirements Feedstock costs Capital costs O&M costs 	Long-term Improve performance and durability of materials and systems for production from renewable sources	 Advanced materials and systems for H₂ delivery Innovations in materials, devices and reactors for renewable H₂ production Improved balance of plant for P&D systems 	 Production Advanced electrolysis Biomass/biogas conversion Hybrid fossil/renewable approaches Solar water splitting: PEC, STCH, biological


Hydrogen Analysis and Research Goals

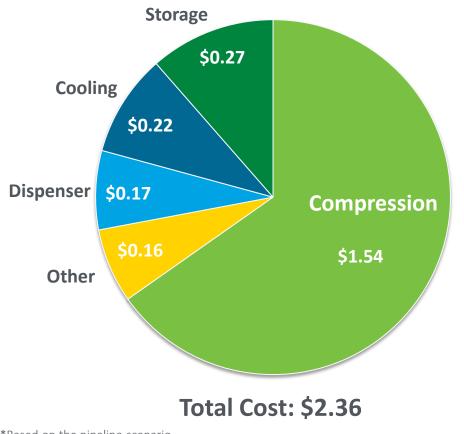
ENERGY Energy Efficiency & Renewable Energy


 Reduce the cost of H₂ from renewable and low-carbon domestic resources to achieve a delivered & dispensed cost of <\$4/gge (Note: 1 kg H₂~1 gge)

Pathways:

- Electrolysis, high temperature thermochemical (solar/nuclear), biomass gasification/bio-derived liquids, coal gasification with CCS, biological & photoelectrochemical
- Need R&D in materials and components to improve efficiency, performance, durability, and reduce capital and operating costs for all pathways
 - For many pathways, feedstock cost is a key driver of H₂ cost
- Need strong techno-economic and regional resource analysis
- Opportunities for energy storage (e.g. curtailed wind for electrolyzing water)

H₂ Production Example- Cost Breakdowns for PEM electrolysis, (excluding electricity feedstock costs)


H₂ Delivery Example- Compression, Storage and Dispensing (CSD) Cost Breakdown for the Pipeline Delivery Scenario

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 13

H₂ Compression, Storage and Dispensing (CSD) Cost Breakdown

- 2020 goal for H₂ cost at the pump is
 <\$4/gge (production and delivery cost included)
- Compression and storage are 75% of the cost of H₂ station dispensing costs.

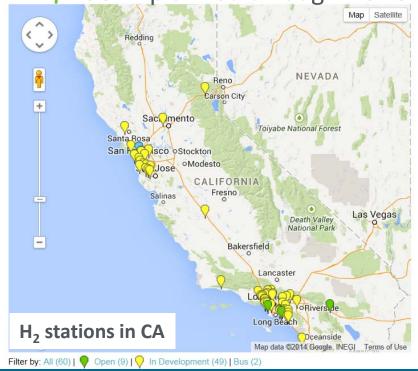
*Based on the pipeline scenario

Compression is a key challenge for the cost of delivering and dispensing H₂

H₂Infrastructure Development and Status

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 14

Nationwide


- **1500 mi.** of H₂ pipeline
- >9M metric tons produced/yr
- ~50 stations (~10 public)

Other States

- 8-State MOU Members: CA, CT, NY, MA, MD, OR, RI and VT
- MA, NY, CT: Preliminary plans for H₂ infrastructure and FCEVs deployment in metro centers in NE states.
- Hawaii: Public access refueling infrastructure on Oahu by 2020

California

- 100 stations Goal
- >~\$70M awarded
- ~\$100M planned through 2023

NE states, California and Hawaii have H₂ infrastructure efforts underway

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 15

- H₂ delivered from central site:
 - <\$1M would be the cost of low-volume* stations
 - **\$7/gge** for H₂
 - Distributed production (e.g. natural gas, electrolysis)
 - H₂ from waste (industrial, wastewater, landfills)
 - *~200-300 kg/day

Electricity Power Natural Gas Heat Natural Gas or Biogas **Fuel Cell** Coproduction of H₂ Excess power generated by the Combined heat, hydroger fuel cell is fed to and power (CHHP) or the grid Trigeneration

Trigeneration

= Power + Heat + H_2

H₂ delivery options present opportunities for expanding H₂ infrastructure

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 16

Cost breakdown for 700-bar H₂ Storage Tank*

*Single tank holding 5.6kg H2 total, cost in 2007\$, 500,000 systems/yr

Carbon fiber cost reductions are critical for 700-bar compressed H₂

- 2020 goal for H₂
 storage is \$10/kWh
- Carbon fiber precursor is the largest single cost contributor

• Continue to promote and strengthen R&D

• Selectively demonstrate strategic, innovative

technologies

• Conduct key analyses to guide RD&D

• Leverage partnerships to maximize impact of efforts

R&D, demonstrations, analysis and partnerships lead the path forward

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov