MEGASTACK: STACK DESIGN FOR A MEGAWATT SCALE PEM ELECTROLYSER

Workshop on cost analysis, targets and reduction strategies: Short summary of Session 1

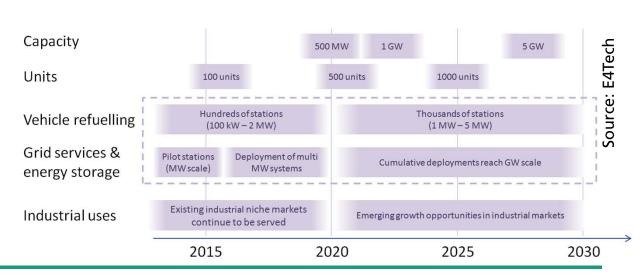
Tom Smolinka¹, Magnus Thomassen²

¹Fraunhofer ISE ²SINTEF

IEA Annex 30 Meeting Herten, April 20-21, 2015

www.ise.fraunhofer.de

Summary of Session 1


Strategic orientation for electrolysis

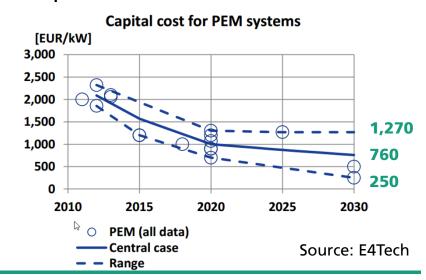
- Japan
 - Renewable hydrogen generation (around 2040+) "Power to X": H2 for variable renewable energy integration
- Korea
 - Distributed power systems: RE hybrid systems, e.g.
 Urban renewable energy power plant
 Stand-alone energy independence system
- United States
 - Renewable hydrogen for mobility
- Europe & Germany
 - Hydrogen for mobility
 - Cross sectorial utilisation as Power to X (Germany)

Summary of Session 1

Market sizes

- Germany (NOW)
 - 2023: 1.5 GW / ~ 500 HRS
- Europe (E4Tech):
 - ~2020: 0.5 GW (500 units)
 - ~2023: 1.0 GW
 - ~2028: 5.0 GW
- USA (DOE)
 - CA: 100 HRS

Summary of Session 1


Cost targets

Hydrogen costs

- US Target 2020
 - 2 USD/gge (production)
 - 4 USD/gge (production and compression/distribution)
- JP Target 2040
 - 2.5 USD/kg (production)
- EU targets 2023
 - 4.5-7 €/kg (production and compression/distribution)

CAPEX

- EU: 1.5 M€ /(t/d) EU (2023)
- JP: 1,600 €/Nm³h⁻¹ (2040)
- DE: 600 €/kW (2025)
- Expected cost reduction :

FCH-JU 2.0 MAWP

Multi-Annual Work Programme

 Techno-economic objectives from the FCH 2 JU programme for the period 2014-2020

		State-of-	2017	2020	2023
		the-art			
KPI 1	H2 production electrolysis, energy consumption (kWh/kg) @ rated power	57-60 @100kg/d	55 @500kg/d	52 @1000+kg/d	50 @1000+kg/d
KPI 2	H2 production electrolysis, CAPEX @ rated power including ancillary equipements and comissioning	8.0 M€/(t/d)	3,7 M€/(t/d)	2.0 M€/(t/d)	1.5 M€/(t/d)
KPI 3	H2 production electrolysis, efficiency degradation @ rated power and considering 8000 H operations / year	2% - 4% / year	2% / year	1,5% / year	<1% / year
KPI 4	H2 production electrolysis, flexibility with a degradation < 2% year (refer to KPI 3)	5% - 100% of nominal power	5% - 150% of nominal power	0% - 200% of nominal power	0% - 300% of nominal power
KPI 5	H2 production electrolysis, hot start from min to max power (refer to KPI 4)	1 minute	10 sec	2 sec	< 1 sec
	H2 production electrolysis, cold start	5 minutes	2 minutes	30 sec	10 sec

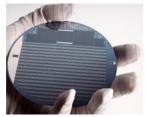
2nd Session: Cost reduction strategies for PEM water electrolysis from the manufacture's prospect

09:00	Tom Smolinka	Fraunhofer ISE / Germany (Moderation and summary of the 1st session)
09:10	Pascal Pewinski	ArevaH2Gen / France
09:30	Everett B. Anderson	Proton OnSite / United States of America
09:50	Manfred Waidhas	Siemens / Germany
10:10	Frederic A L. Marchal	ITM Power / Great Britain
10:30	Discussion	

2nd Session: Cost reduction strategies for PEM water electrolysis from the manufacture's prospect

Topics to be discussed

- What are acceptable cost targets for PEM electrolysers in energy applications?
- What are main bottlenecks to achieve these cost targets?
- What are the most important actions that need to be taken to achieve these targets?
- Review of the KPIs for electrolysis in the FCH JU Multi-Annual Work Programme.


Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Dr .Tom Smolinka

www.ise.fraunhofer.de tom.smolinka@ise.fraunhofer.de