GPUs, Massive Parallelism, and
Compute Abstractions

Andreas Kloeckner

University of lllinois

January 20-22, 2020

X ILLINOIS

Outline

Python and GPUs
Why GPUs?
OpenCL

Outline

Python and GPUs
Why GPUs?

Moore's Law

2,600,000,000
1,000,000,000

100,000,000
10,000,000

1,000,000

Transistor count

100,000

10,000+

2,300-

40048 /RCA 1802

1971

16-Core SPARC TS
Six-Core Core i,
SixGore Xeon "m\\' @10-Core Xeon Westmere-EX

Dual-Core Itanium 2@ £ core POWERT
4" Quad-core

AMD K10, | S=Quad-Core Itanium Tukwila
POWERG®"g O, &-Core Xeon Nehalem-EX
tanium 2 with MB cache ® ™. Six-Core Opteron 2400
AMDK108” “Core 7 (Quad)

ltanium 2@

®Baton gy

curve shows transistor AMD K6

count doubling every $renmoqium it
fwoyears @AMDKS

Pentium

Issue: More transistors =
faster?

Work
O Clock Frequency

x Work/Clock

1980

Dat

OT TTIIrouuCTroTT

Peak Architectural Instructions per Clock: Intel

CPU IPC Year
Pentium 1 1.1 1993
Pentium MMX 1.2 1996
Pentium 3 1.9 1999
Pentium 4 (Willamette) 1.5 2003
Pentium 4 (Northwood) 1.6 2003
Pentium 4 (Prescott) 1.8 2003
Pentium 4 (Gallatin) 1.9 20
Pentium D 2 2005
Pentium M 2.5 2003
Core 2 3 2006
Sandy Bridge. .. 3.5ish 2011

[Charlie Brej http://brej.org/blog/7p=15]
Discuss: How do we get out of this dilemma?

http://brej.org/blog/?p=15

The Performance Dilemma

» |IPC: Brick Wall
» Clock Frequency: Brick Wall

Ideas:

e D

» Make one instruction do more copies of the same thing
(llSIMDl’)

» Use copies of the same processor (“SPMD"/“MPMD")

Question: What is the conceptual difference between those ideas?

N

» SIMD executes multiple program instances in lockstep.

» SPMD has no synchronization assumptions.

The Performance Dilemma: Another Look

» Really: A crisis of the 'starts-at-the-top-ends-at-the-bottom’
prorgramming model

» Tough luck: Most of our codes are written that way

» Even tougher luck: Everybody on the planet is trained to write
codes this way

So:

» Need: Different tools/abstractions to write those codes

GPU Programmability

The ‘nightmare limit":

» “Infinitely” many cores

» “Infinite” vector width

» “Infinite"memory/comm. latency
Further complications:

» Commodity chips

» Compute only one design driver
of many

» Bandwidth only achievable by
homogeneity

» Compute bandwidth > Memory
bandwidth

— Programmability is key.

[flickr.com /oskay @]

Why Python for HPC

» Mature, large and active community

» Emphasizes readability
» Written in widely-portable C

> Easy coupling to C/C++ (pybind11) /
Fortran (f2py)

» A ‘multi-paradigm’ language
» Rich ecosystem of sci-comp related
software

» Great as a ‘glue language’

[Python logo: python.org]

Addressing the Elephant in the Room: Slowness

A

A

Python + GPUs

» GPUs are everything that scripting
languages are not.

> Highly parallel

» Very architecture-sensitive

» Built for maximum FP/memory
throughput

— complement each other

» CPU: largely restricted to control
tasks ~1000/sec

> Scripting fast enough
» Python + OpenCL = PyOpenCL
» Python + CUDA = PyCUDA

[GPU: Nvidia Corp.]

Outline

Python and GPUs
OpenCL

What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and

other processors. [OpenCL 1.1 spec]
» Device-neutral (Nv GPU, AMD GPU, g/‘\
Intel/AMD CPU) ~“
» Vendor-neutral :

» JIT built into the standard
Defines:
» Host-side programming interface (library)

» Device-side programming language (!)

Wrangling the Grid

} Axis 0

Axis 1 ¢——

» get_local_id(axis)?/size(axis)?
» get_group_id(axis)?/num_groups(axis)?

> get_global_id(axis)?/size(axis)?
axis=0,1,2,...

Machine Abstractions
Is OpenCL only for GPUs?

No. Implementations for CPUs exist.

How does OpenCL map onto CPUs?

> Two levels of concurrency, one for cores, one for vector
lanes

» Use the same mapping idea for CPUs

» Realize that you're not programming the hardware:
you're programming an abstract model of the hardware.

. J

What is essential about programming in OpenCL, what is arbitrary?

> Essential: the semantics of the programming model
(what does the program mean?)

» Arbitrary: the spelling of the programm

Demo

[DEMO: intro-01-hello-pyopencl]

To follow along: http://bit.ly/geilogpu20

http://bit.ly/geilogpu20

Programming Approaches

Decisions that determine your approach
to throughput computing:

> AOT vs JIT
» Meta vs not
» In-language vs Hybrid

Outline

Arrays

Why Arrays?

» Parallelism: best if applied in large quantities

» Arrays: The natural data structure to support
large-scale concurrency

» Structured

» Unstructured workloads: See Johannes's talks

» O(1) element access

» Static (i.e. known-from-the-outset) control flow for
traversal

Arrays in Numpy

Core attributes of an array:
» Shape

> dtype (data type)

» Strides

» Pointer

>

(Lifetime relationship)

Demo: Host Arrays

[DEMO: arrays-01-numpy]

Device Arrays

Want: An array object that works just like numpy arrays, but on the
GPU

Issues:
» Which command queue? (Which context?)
» Synchronization?

» When to generate code? For which data types?

Demo: Device Arrays

[DEMO: arrays-02-pyopencl]

Outline

Parallel Patterns

where i € {1,..., N}
Notation:
> Xx;: inputs
> y;: outputs
» f;: (pure) functions (i.e. no side effects)

When does a function have a “side effect’?

In addition to producing a value, it

» modifies non-local state, or

» has an observable interaction with the outside world. I

Map: Graph Representation

HPOeEEEL

Embarrassingly Parallel: Examples

Surprisingly useful:

>

vVvYyyvyy

Element-wise linear algebra:
Addition, scalar multiplication (not inner product)

Image Processing: Shift, rotate, clip, scale, ...
Monte Carlo simulation

(Brute-force) Optimization

Random Number Generation

Encryption, Compression
(after blocking)

Demo

[DEMO: patterns-01-elementwise]

Reduction

y="f(-f(f(x1,x),x3), ...

where N is the input size.
Also known as

» Lisp/Python function reduce (Scheme: fold)
» C++ STL std::accumulate

7XN)

Reduction: Graph

Approach to Reduction

Can we do better?

“Tree” very imbalanced. What property
of f would allow ‘rebalancing’?

F(f(x,y),z) = f(x, f(y, 2))
Looks less improbable if we let
xoy="f(x,y):

xo(yoz))=(xoy)oz

Has a very familiar name: Associativity

Reduction: A Better Graph

Processor allocation?

Mapping Reduction to SIMD/GPU

» Obvious: Want to use tree-based approach.
» Problem: Two scales, Work group and Grid
» to occupy both to make good use of the machine.

» In particular, need synchronization after each tree stage.

» Solution: Use a two-scale algorithm.

2 : : :\ /: ; i: ,i
~ ~ -
\‘\\ S > \ / i e ’,”
~ =3 N \ Vi 7 et -

~ -
~ ’ - -
\\\\\\\ \ 1 AR N
\\\\\ \/ //’/’
> 0N e

In particular: Use multiple grid invocations to achieve
inter-workgroup synchronization.

Demo

[DEMO: patterns-02-reduction]

Scan

Y1 = X1
yo = f(y1, %)

yn = f(yn_1, xn)

where N is the input size. (Think: N large, f(x,y) = x +y)
» Prefix Sum/Cumulative Sum
» Abstract view of: loop-carried dependence

» Also possible: Segmented Scan

Scan: Graph

Again: Need assumptions on f.

@ Associativity, commutativity.

Scan: Implementation

L

Work-efficient?

Scan: Implementation |l

-

Problem:

Trees alone often don’t
provide sufficient
concurrency

Idea:

» Run multiple
scans

» Combine
results (also a
scan)

» Run a final
update

Scan: Examples

Name examples of Prefix Sums/Scans:

vVvyYyyVvyy

vy

Anything with a loop-carried dependence
One row of Gauss-Seidel

One row of triangular solve

Segment numbering if boundaries are known

Low-level building block for many higher-level
algorithms algorithms, e.g. predicate filter, sort

FIR/IIR Filtering

Blelloch ‘93

http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

Demo

[DEMO: patterns-03-scan]

Assignment

Use PyOpenCL scan to

» Generate 10,000,000 uniformly distributed single-precision
random numbers in [0, 1)

» Make a new array that retains only the ones <1/2

Practice

[DEMO: patterns-04-scan-practice]

Outline

GPUs: More Details
GPU Architecture: Philosophy
Communication / Synchronization

Outline

GPUs: More Details
GPU Architecture: Philosophy

“CPU-style” Cores

ALU

(Execute)

— =

Data cache
(A big one)

[Fatahalian ‘08]

Slimming down

(E‘;‘:i) Remove components that
help a single instruction
stream run fast

[Fatahalian ‘08]

More Space: Double the Number of Cores

[Fatahalian ‘08]

Even more

[Fatahalian ‘08]

SIMD

ALV

(Execute)

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

=

[Fatahalian ‘08]

SIMD

ALU1

ALU 2

ALU3

ALU 4

ALU5

ALU 6

ALU7

ALUS8

=

[Fatahalian ‘08]

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

SIMD

ALU1| [ALU2| [ALU3| | ALU4

ALUS5 | [ALU6| | ALU7 | | ALUSB

EEEE

50 B B
_sharedCtxData

[Fatahalian ‘08]

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

Latency Hiding
» Latency (mem, pipe) hurts
non-O0O0 cores
» Do something while waiting

What is the unit in which work
gets scheduled on a GPU?

A SIMD vector
(‘'warp” (Nvidia), 'Wave-
front’” (AMD))

How can we keep busy?

» More vectors
(bigger group)
> ILP

Change in architectural picture?

Before:

After:

GPUs: Core Architecture Ideas

Three core ideas:

7

» Remove things that help with latency in single-thread

» Massive core and SIMD parallelism

» Cover latency with concurrency

> SMT
> ILP

GPU Abstraction: Core Model Ideas

How do these aspects show up in the model?
» View concrete counts as an implementation detail

» SIMD lane
» Core
» Scheduling slot

» Program as if there are infinitely many of them

» Hardware division is expensive
Make nD grids part of the model to avoid it

» Design the model to expose extremely fine-grain concurrency
(e.g. between loop iterations!)

» Draw from the same pool of concurrency to hide latency

‘SIMT" and Branches

. DEOO00O®

(clocks) ALU1 ALU2 ALUS8

<unconditional
shader code>

if (x > @) {

X = 0;

refl = Ka;

J

<resume unconditional
shader code>

[Fatahalian ‘08]

Outline

GPUs: More Details

Communication / Synchronization

Host-Device Concurrency

» Host and Device run
asynchronously

» Host submits to queue:

» Computations
» Memory Transfers
» Sync primitives
> ..
» Host can wait for:

» drained queue
» Individual “events”

» Profiling

Demo: Timing GPU Work

[DEMO: gpu-01-timing-queues]

How do you find the execution time of a GPU kernel?

Do a few ‘warm-up’ calls to the kernel
Drain the queue
Start the timer

vVvyyypy

Run the kernel enough times to get to a few
milliseconds run time

» Drain the queue
» Stop the timer, divide by the number of runs

How do you do this asynchronously?

» Enqueue 'markers’ instead of draining the queue.

» Find timing of 'markers’ after work is complete

Demo: Intra-Group Synchronization

[DEMO: gpu-02-barrier-sync]

‘Conventional’ vs Atomic Memory Update

[Resd - {Tncrement} (W]

Interruptible! Interruptible!

[Read |——{increment | ——{Write]

Fow] [

Atomic Operations: Compare-and-Swap

#include <stdatomic.h>

_Bool atomic _compare exchange strong(
volatile Ax obj,
Cx expected, C desired);

What does volatile mean?

Memory may change at any time, do not keep in register.

What does this do?

» Store (*obj == *expected) 7 desired : *obj
into *obj.

» Return true iff memory contents was as expected.

.

How might you use this to implement atomic FP multiplication?

Read previous, perform operation, try CAS, maybe retry

Memory Ordering

Why is Memory Ordering a Problem?

» Qut-of-order CPUs reorder memory operations

» Compilers reorder memory operations

What are the different memory orders and what do they mean?

> Atomicity itself is unaffected

» Makes sure that 'and then’ is meaningful
Types:

» Sequentially consistent: no reordering

> Acquire: later loads may not reorder across

> Release: earlier writes may not reorder across

> Relaxed: reordering OK

Implementing Locking?

Can we just do locking like we might do on a CPU?

» Indepdendent forward progress of all threads is not
guaranteed.
(true until recently)

» But: Device partitioning can help!

Discussion: Ways to Realize SpMV

What to parallelize over? Advantages/disadvantages?

» Rows of the matrix
» Upside: no write races
» Downsides: load balance? limited concurrency? data
reuse?
> Matrix entries

» Upside: load balance
» Downside: write races?

GPU Communication 'Scopes’

Hardware CL adjective CL noun CUDA

SIMD lane private Work Item Thread
SIMD Vector — Subgroup Warp

Core local Workgroup Thread Block
Processor global NDRange Grid

Machine

GPU: Communication

What forms of communication exist within each scope?

» Subgroup: Shuffles (1)
» Workgroup:
» Scratchpad + barrier
» ocal atomics + mem fence
» Grid: Global atomics
» Machine:

» Global atomics (requires coherence)
> Queues
> Events

Host-Device Data Exchange

Sad fact: Must get data onto device to compute

» Transfers can be a bottleneck

> If possible, overlap with computation

» Pageable memory incurs difficulty in GPU-host transfers, often

entails (another!) CPU side copy
» “Pinned memory”: unpageable, avoids copy
» Various system-defined ways of allocating pinned memory

“Unified memory” (CUDA)/"“Shared Virtual Memory” (OpenCL):

» GPU directly accesses host memory

» Main distinction: Coherence

» “Coarse grain™: Per-buffer fences
» “Fine grain buffer”: Byte-for-byte coherent (device mem)
» “Fine grain system: Byte-for-byte coherent (anywhere)

Outline

Performance: Expectations and Measurement
Performance Models
Memory Systems
GPU Memory Systems
Lowest Accessible Abstraction: Assembly

Outline

Performance: Expectations and Measurement
Performance Models

Performance: Ballpark Numbers?
Bandwidth host/device:

PCle v2: 8 GB/s — PCle v3: 16 GB/s — NVLink: 200 GB/s

Bandwidth on device:

Registers: ~10 TB/s — Scratch: ~10 TB/s — Global: 500
GB/s

Flop throughput?

10 TFLOPS single precision — 3 TFLOPS double precision

Kernel launch overhead?

7~

10 microseconds

.

Good source of details: Wikipedia: List of Nidia GPUs

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

Qualifying Performance

» What is good performance?

» |s speed-up (e.g. GPU vs CPU? C vs Matlab?) a meaningful
way to assess performance?

» How else could one form an understanding of performance?

Modeling: how understanding works in science

Hager et al. ‘17
Hockney et al. ‘89

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf
https://doi.org/10.1016/0167-8191(89)90100-2

A Story of Bottlenecks

Imagine:
» A bank with a few service desks
» A revolving door at the entrance

What situations can arise at steady-state?

» Line inside the bank (good)
» Line at the door (bad)

What numbers do we need to characterize performance of this
system?

> Ppeak: [task/sec] Peak throughput of the service desks
» [: [tasks/customer] Intensity

» b: [customers/sec] Throughput of the revolving door

A Story of Bottlenecks (cont'd)

» Poeak: [task/sec] Peak throughput of the service desks

» [: [tasks/customer] Intensity

» b: [customers/sec] Throughput of the revolving door
What is the aggregate throughput?

Bottleneck is either
» the service desks (good) or
» the revolving door (bad).

P < min(Pyeak, I - b)

\.

Hager et al. ‘17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Application in Computation
Translate the bank analogy to computers:

» Revolving door: typicallly: Memory interface

» Revolving door throughput: Memory bandwidth
[bytes/s]

» Service desks: Functional units (e.g. floating point)

» Pyeak: Peak FU throughput (e.g.: [flops/s])

» Intensity: e.g. [flops/byte]

Which parts of this are task-dependent?

» All of them! This is not a model, it's a guideline for
making models.

» Specifically Pyeak varies substantially by task

P < min(Ppeak, ! - b)

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

A Graphical Representation: ‘Roofline’
Plot (often log-log, but not necessarily):
> X-Axis: Intensity
» Y-Axis: Performance
What does our inequality correspond to graphically?

P < min(PPeak7/'b)

Performance

Intensity

What does the shaded area mean?

[Achievable performance

Hager et al. ‘17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Example: Vector Addition
double r, s, a[N];
for (i=0; i<N; ++i)
ali] =r + s x al[i];}

Find the parameters and make a prediction.

7

Machine model:
» Memory Bandwidth: e.g. b =10 GB/s
» Poeak: €8 4 GF/s
Application model:
» | =2 flops / 16 bytes = 0.125 flops/byte

r

Performance

Intensity

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Demo: Performance Modeling

[DEMO: perf-01-modeling]

Outline

Performance: Expectations and Measurement

Memory Systems

Memory Systems: Bird's Eye View

Processor

DO0..15

A0..15

R/W

CLK

Memory

Somewhere Behind the Interconnect: Memory

Performance characteristics of memory:
» Bandwidth
P> Latency

Flops are cheap
Bandwidth is money
Latency is physics

» M. Hoemmen

Minor addition (but important for us)?

[» Bandwidth is money and code structure

Latency is Physics: Distance

"T/V ‘j ;
i
= l AL AT
4 | 4

[Wikipedia @]

Latency is Physics: Electrical Model

Wy

Latency is Physics: DRAM

Y :ﬂt W:Ein, - .
s . +
T T3 T
T3 TR T3
e e ar LX)
127 ﬁ ﬁ ﬁ
N R R

[Wikipedia @]

Alignment

Alignment describes the process of matching the base address of:
> Single word: double, float
» SIMD vector
» Larger structure

To machine granularities:

» Natural word size
» Vector size
» Cache line

Q: What is the performance impact of misalignment?

Performance Impact of Misalignment

Matched structure

Matched structure

Outline

Performance: Expectations and Measurement

GPU Memory Systems

Parallel Memories

Problem: Memory chips have only one data bus.
So how can multiple threads read multiple data items from memory
simultaneously?

s ™)

Broadly:
> Split a really wide data bus, but have only one address
bus

» Have many 'small memories’ ('banks’) with separate
data and address busses, select by address LSB.

Where does banking show up?

» Scratchpad
» GPU register file

» Global memory

Memory Banking

Fill in the access pattern:

Sanl (S GIROIRAEEIEE

— > Address

Thread
[o]

Memory Banking

Fill in the access pattern:

Sl [

— > Address

local_variable[1id(0)]

Memory Banking

Fill in the access pattern:

Sanl (S GIROIRAEEIEE

Thread

— > Address JFEI

local_variable [BANK_COUNT*1id (0)]

Memory Banking

Fill in the access pattern:

o (GRS | ;
]
-]

— > Address

local_variable [(BANK_COUNT+1)*1id(0)]

Memory Banking

Fill in the access pattern:

P

E Thread

Bank

— > Address JFEI

local_variable [0DD_NUMBER*1id (0)]

Memory Banking

Fill in the access pattern:

Bank

— > Address JFEI

local_variable[2%1id (0)]

Memory Banking

Fill in the access pattern:

Sanl (S GIROIRAEEIEE

Thread

— > Address JFEI

local_variable[f(gid(0))]

GPU Global Memory System

cu cu cu cu cu cu U cu
4x16 PEs | | 4x16PEs| | 4x16 PEs 4x16PEs| ... |4x16PEs| |4x16 PEs 4x16 PEs 4x16 PEs

LDS LDS LDS LDS LDS LDS

Compute Unit <> Memory Channel Xbar

[[+ [

L2 L2 L2
Atomics Atomics Atomics i Atomics =
Memory Channel Memory Channel e Memory Channel Memory Channel
Channel Channel Channel Channel
((Address / 256) % n) == 0 ((Address / 256) % n) == 1 ((Address / 256) % n) == n-2 ((Address / 256) % n) == n-1

GCN Optimization Manual, AMD

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf

GPU Global Memory Channel Map: Example

Byte address decomposition:

Address

Bank

Chnl

Address

31

Implications:

» Transfers between compute unit and channel have granularity

? 11]108 |7

> Reasonable guess: warp/wavefront size x 32bits
» Should strive for good utilization (' Coalescing’)

» Channel count often not a power of two -> complex mapping
» Channel conflicts possible

» Also banked

» Bank conflicts also possible

GPU Global Memory: Performance Observations

Key quantities to observe for GPU global memory access:

» Stride
» Utilization

Are there any guaranteed-good memory access patterns?

[Unit stride, just like on the CPU

» Need to consider access pattern across entire device
» GPU caches: Use for spatial, not for temporal locality
» Switch available: L1/Scratchpad partitioning

» Settable on a per-kernel basis

» Since GPUs have meaningful caches at this point:
Be aware of cache annotations (see later)

Demo: Matrix Transpose

[DEMO: perf-04-transpose]

Performance: Limits to Concurrency

Concurrency is essential to good (memory) latency hiding.
What limits the amount of concurrency exposed to GPU hardware?

| 2

v

vvyyy

Amount of register space
Important: Size of (per-lane) register file is variable

Amount of scratchpad space
Size of (per-group) scratchpad space is variable

Workgroup size
Available ILP
Number of scheduler (warp/group) slots (not really)

Synchronization

Outline

Performance: Expectations and Measurement

Lowest Accessible Abstraction: Assembly

A Basic Processor: Closer to the Truth

Memory Interface
Address ALU =) Address Bus
€=> Data Bus
Register File
Flags

I I

Internal Bus

s 4 1

fetch PC Data ALU
Control Unit

» loosely based on Intel 8086
» What's a bus?

http://en.wikipedia.org/wiki/Bus_(computing)

A Very Simple Program

. 4.
int a = 5; b:
int b =17; 12:
int z =a x b; 15
19:
ic:

Things to know:

c7
c7
8b
of
89
8b

> Question: Which is it?
P> <opcode> <src>, <dest>
P> <opcode> <dest>, <src>

45
45
45
af
45
45

fa
£8
fa
45
fc
fc

05 00 00 00 movl
11 00 00 00 movl

£8

mov
imul
mov
mov

$0x5,-0xc (Jrbp)
$0x11, -0x8 (%rbp)
-0xc (%rbp) ,%eax
-0x8 (Jirbp) , heax
heax ,-0x4 (%rbp)
-0x4 (%rbp) ,heax

» Addressing modes (Immediate, Register, Base plus Offset)

» OxHexadecimal

http://en.wikipedia.org/wiki/Addressing_mode
http://en.wikipedia.org/wiki/Hexadecimal

A Very Simple Program: Another Look

12:
15:
19:
lc:

c7
c7
8b
of
89
8b

45
45
45
af
45
45

f4
£8
f4
45
fc
fc

Address ALU

Memory Interface

Address Bus

Data Bus

Register File
Flags
3
p
| Internal Bus
l l N
Insn. L {} e
fetch
Control Unit i ALL
e———

05 00 00 00 movl
11 00 00 00 movl

8

mov
imul
mov
mov

$0x5, -0xc (%rbp)
$0x11,-0x8 (%rbp)
-0xc (%rbp) ,heax
-0x8 (%rbp) ,heax
%heax,-0x4 (%rbp)
-0x4 (%rbp) ,heax

A Very Simple Program: Intel Form

12:
15:
19:
lc:

v

c7
c7
8b
0of
89
8b

45
45
45
af
45
45

f4
£8
f4
45
fc
fc

05 00 00 00
11 00 00 00

£8

mov
mov
mov
imul
mov
mov

DWORD PTR [rbp-0xc],Ox!
DWORD PTR [rbp-0x8],0x:
eax,DWORD PTR [rbp-0xc.
eax,DWORD PTR [rbp-0x8:
DWORD PTR [rbp-0x4],ea:
eax,DWORD PTR [rbp-0x4.

“Intel Form”: (you might see this on the net)
<opcode> <sized dest>, <sized source>

Previous: “AT&T Form”

Goal: Reading comprehension.

Don’t understand an opcode?

https://en.wikipedia.org/wiki/X86_instruction_listings

https://en.wikipedia.org/wiki/X86_instruction_listings

Assembly Loops

{

int main () (1)
4:

int y =0, i; ;’2
for (i = 0; 14:
y < 10; ++i) 17‘

y += i le:
return vy; 22:
24:

27:

28:

a:

Things to know:

b5
43
c7
c7
eb
8b
01
83
83
Te
8b
c9
c3

89
45
45
Oa
45
45
45
7d
0
45

eb
£8
fec

fec
£8
fc
£8

£8

00 00 00 00
00 00 00 00

01
09

push
mov
movl
movl
jmp
mov
add
addl
cmpl
jle
mov
leaveq
retq

» Condition Codes (Flags): Zero, Sign, Carry, etc.

» Call Stack: Stack frame, stack pointer, base pointer

» ABI: Calling conventions

Demo Instructions: C — Assembly mapping from

https://github.com/ynh/cpp-to-assembly

%rbp

%rsp, hrbp
$0x0, -0x8 (%rbp)
$0x0, -0x4 (%rbp)
le <main+0Oxle>
-0x4(%rbp) , %eax
%eax, -0x8(%rbp)
$0x1,-0x4(%rbp)
$0x9, -0x8(%rbp)
14 <main+0x14>
-0x8(%rbp) , %eax

http://en.wikipedia.org/wiki/Status_register
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Application_binary_interface
https://github.com/ynh/cpp-to-assembly

Demo: Assembly Reading Comprehension

[DEMO: perf-02-assembly-reading]

Demo: Source-to-assembly mapping
Code to try:

int main ()
{
int y =20, i;
for (i = 0; y < 10; ++i)
y += i;
return vy;

}

A Glimpse of a More Modern Processor

Sandy Bridge

I 3
(15 Entry PP Physical Register File) (" 160Entry Physical Register File)
1 1]

T S
(‘54 Entry Unified Scheduler)

[David Kanter / Realworldtech.com]

PTX: Demo

[DEMO: perf-03-ptx-sass]
Nvidia PTX manual

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators

SPIR-V

Currently: C (OpenCL C, GLSL, HLSL) used as intermediate
representations to feed GPUs.
Downsides:
» Compiler heuristics may be focused on human-written code
» Parsing overhead (preprocessor!)
» C semantics may not match (too high-level)

SPIR-V:
» Goal: Common intermediate represenation (“IR") for all
GPU-facing code (Vulkan, OpenCL)
> “Extended Instruction Sets™
> General compute (OpenCL/CUDA) needs: pointers, special
functions

» Different from “SPIR" (tweaked LLVM IR)

SPIR-V Example

%2 =

%3
%6

W =

%8
%10
wit

%12 =

%13
W14

%15 =

%34 =

%38

%39 =
%40 =

%41 =

%43
ha4

%45 =
%46 =

OpTypeVoid

OpTypeFunction %2
OpTypeFloat 32
OpTypeVector %6 4
OpTypePointer Function %7
OpConstant %6 1
OpConstant %6 2

OpConstantComposite %7 %10 %10 %11 %10 ;

OpTypelInt 32 0
OpConstant %13 5
OpTypeArray %7 %14

OpLoad %7 %33
OpAccessChain %37 %20 %35 %21 %36
OpLoad %7 %38

OpFAdd %7 %34 %39
OpStore %31 %40

OpBranch %29

OpLabel

OpLoad %7 %42

OpExtInst %7 %1 Sqrt %43
OpLoad %7 %9

OpFMul %7 %44 %45
OpStore %31 %46

void ()

32-bit float

vecd

function-local vecédx*

vec4(1.0, 1.0, 2.0, 1.0
32-bit int, sign-less

s.v[2]

else

extended instruction sq

Outline

Tools and Abstractions: Where to from here?
Convergence, Differences in Machine Mapping
Code Transformation and Machine Models
Domain Specific Languages

Outline

Tools and Abstractions: Where to from here?
Convergence, Differences in Machine Mapping

The OpenCL model as a machine abstraction

Ideas:
» Abstract, n-dimensional index of cores
> Limited communication/synchronization between cores

» Abstract, n-dimensional index of SIMD lanes with slightly
more ability to communicate

» Barriers and atomics
» Fairly implicit represenation of actual SIMD width

How would we achieve a more explicit representation of the
hardware lane count?

[Use it as the length of the fastest-varying lane axis.

Intel SPMD Program Compiler (ISPC)

Goal: predictable vectorization of x86 code
Idea:

» Start from the CUDA/OpenCL model
» taskIndex for core index, programIndex for SIMD lane index
» programIndex is precisely the lane count (or 2x)
» Warn about code that gets scalarized
» uniform and varying types
[DEMO: lang-01-ispc]
https://ispc.github.io/

https://ispc.github.io/

Outline

Tools and Abstractions: Where to from here?

Code Transformation and Machine Models

Loopy: a Code Generator for Computation with Arrays

Loopy is a code generator for computation with arrays.

Performance: human ‘in the loop’ for the foreseeable future.
» Capture math at a high level; target number crunching
» Progressively ‘lower’” through manual transformations
» Observe and control optimization steps
» ‘Help me write the CUDA C/ISPC/... | would write’

Loopy: Program Representation

Primary design constraint:
Single Program Representation from Ul to code gen

Must work for:
» Humans and Machines
» High Level and Fully Specified Hardware Mapping
» Static and (moderately) Data-Dependent Control Flow

Loopy: Program Representation

Polyhedron

bli] = sum(j, A[i,j] * x[j1)

Tree of Polyhedra
» (DAG of) Statements
- » Per-loop ‘mode’ (seq/par)

= Semantics

{[1,31:0 <= i,j < n and... }

Loopy: Execution and Transformation

Granularity: ‘Kernel’
» May lower to multiple GPU ‘kernels’

» One ‘coherent computational step’

Transformations

knl = lp.split_iname(knl, "i", 16)

Loopy Demo

[DEMO: loopy-01-rank-one]

» Seen: Just-in-time mode in Python

» Also possible: Ahead-of-time mode from command line or
Makefile

Kernel IR: Design Aspects

Criteria:
» Single shared medium across tools
» Shared medium between human and machine
» Ease of transformation

» Specified hardware mapping (no heuristics!)

Other very recent IRs:

» C. Lattner, J. Pienaar “MLIR Primer: A Compiler Infrastructure for the
End of Moore's Law.” (2019).

» R. Baghdadi et al. “Tiramisu: A polyhedral compiler for expressing fast
and portable code.” Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Press, 2019.

» T. Ben-Nun et al. “Stateful Dataflow Multigraphs: A Data-Centric Model
for High-Performance Parallel Programs.”, SC '19.

More demos

[DEMO: loopy-02-a-more-complex-code]
[DEMO: loopy-03-fortran]

[DEMO: loopy-04-data-layout]

[DEMO: loopy-05-reduction]

[DEMO: loopy-06-pde-to-code]

vVvyYVvyyvyy

Basic Code Transforms

vy

VVVYyVvVVVyVYVYVYY

Unroll

Stride changes (Row/column/something
major)

Prefetch

Precompute

Tile

Reorder loops

Fix constants

Parallelize (Thread /Workgroup)
Affine map loop domains
Texture-based data access
Naming of array axes

Loop collapse

Less Basic Code Transforms

VVyVYVVVVVYYVYY

Kernel Fusion

Splitting of Scans and Reductions
Global Barrier by Kernel Fission
Explicit-SIMD Vectorization
Reuse of Temporary Storage

SoA < AoS

Buffering / Storage substitution
Save flops using Distributive Law
Arbitrary nesting of Data Layouts
Realization of ILP

Further Features

» A-priori bounds checking

» Automatic Testing (against unopt. version)

v

Symbolic operation counts
» Flops
» Memory access / Footprint size
» Synchronization

» One Transformation Chain per Target Arch

v

Script-Driven Transformation:
» Share Transform Code
» Build Transformation Abstractions
» Build Simple Autotuners

Loopy: Example Users

v

Firedrake finite element framework:
https://arxiv.org/abs/1903.08243

» Dune PDElab finite element framework:
http://arxiv.org/abs/1812.08075

» Pystella stencil-based cosmology solver:
https://arxiv.org/abs/1909.12843,
https://arxiv.org/abs/1909.12842

» Computational neuroscience:
https://doi.org/10.3389/fninf.2018.00068

» SIMD/SIMT for chemical kinetics:
https://doi.org/10.1016/j.combustflame.2018.09.008

» (My own numerics codes: Pytential, Grudge, Meshmode)

https://arxiv.org/abs/1903.08243
http://arxiv.org/abs/1812.08075
https://arxiv.org/abs/1909.12843
https://arxiv.org/abs/1909.12842
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1016/j.combustflame.2018.09.008

Conclusions: Loopy

» Goal: Allow near-peak performance
(with some effort)
» ‘Performance transparence’

» Best if no further loop transforms are carried out
» What is a good abstraction for the ‘next layer down' from a
tool like loopy?

» Common theme:
Separation of concerns vs. Performance
» Human-in-the-loop seems unavoidable

» Research question: What should the user interface to a
compiler look like?

https://documen.tician.de/loopy I

https://documen.tician.de/loopy
http://github.com/inducer/loopy

Play With Loopy Yourself

[DEMO: loopy-07-practice]

Outline

Tools and Abstractions: Where to from here?

Domain Specific Languages

Defining an Expression DSL: Demo

» [DEMO: dsl-01-expression-trees]

» [DEMO: dsl-01-traversing-trees]

» [DEMO: dsl-03-defining-node-types]
https://documen.tician.de/pymbolic/

https://documen.tician.de/pymbolic/

	Python and GPUs
	Why GPUs?
	OpenCL

	Arrays
	Parallel Patterns
	GPUs: More Details
	GPU Architecture: Philosophy
	Communication / Synchronization

	Performance: Expectations and Measurement
	Performance Models
	Memory Systems
	GPU Memory Systems
	Lowest Accessible Abstraction: Assembly

	Tools and Abstractions: Where to from here?
	Convergence, Differences in Machine Mapping
	Code Transformation and Machine Models
	Domain Specific Languages

