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Moore's Law

Issue: More transistors =
faster?

Work

s
= Clock Frequency

× Work/Clock



Peak Architectural Instructions per Clock: Intel

CPU IPC Year

Pentium 1 1.1 1993
Pentium MMX 1.2 1996
Pentium 3 1.9 1999
Pentium 4 (Willamette) 1.5 2003
Pentium 4 (Northwood) 1.6 2003
Pentium 4 (Prescott) 1.8 2003
Pentium 4 (Gallatin) 1.9 20
Pentium D 2 2005
Pentium M 2.5 2003
Core 2 3 2006
Sandy Bridge. . . 3.5ish 2011

[Charlie Brej http://brej.org/blog/?p=15]
Discuss: How do we get out of this dilemma?

http://brej.org/blog/?p=15


The Performance Dilemma

I IPC: Brick Wall

I Clock Frequency: Brick Wall

Ideas:

I Make one instruction do more copies of the same thing
(�SIMD�)

I Use copies of the same processor (�SPMD�/�MPMD�)

Question: What is the conceptual di�erence between those ideas?

I SIMD executes multiple program instances in lockstep.

I SPMD has no synchronization assumptions.



The Performance Dilemma: Another Look

I Really: A crisis of the 'starts-at-the-top-ends-at-the-bottom'
prorgramming model

I Tough luck: Most of our codes are written that way

I Even tougher luck: Everybody on the planet is trained to write
codes this way

So:

I Need: Di�erent tools/abstractions to write those codes



GPU Programmability

The `nightmare limit':

I �In�nitely� many cores

I �In�nite� vector width

I �In�nite�memory/comm. latency

Further complications:

I Commodity chips
I Compute only one design driver

of many

I Bandwidth only achievable by
homogeneity

I Compute bandwidth � Memory
bandwidth

→ Programmability is key.

[�ickr.com/oskay ]



Why Python for HPC

I Mature, large and active community

I Emphasizes readability

I Written in widely-portable C
I Easy coupling to C/C++ (pybind11) /

Fortran (f2py)

I A `multi-paradigm' language

I Rich ecosystem of sci-comp related
software

I Great as a `glue language'

[Python logo: python.org]



Addressing the Elephant in the Room: Slowness

Compute result

Organize computation

Write code

Describe computation



Python + GPUs

I GPUs are everything that scripting
languages are not.
I Highly parallel
I Very architecture-sensitive
I Built for maximum FP/memory

throughput

→ complement each other

I CPU: largely restricted to control
tasks ∼1000/sec
I Scripting fast enough

I Python + OpenCL = PyOpenCL

I Python + CUDA = PyCUDA

[GPU: Nvidia Corp.]
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What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

I Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

I Vendor-neutral

I JIT built into the standard

De�nes:

I Host-side programming interface (library)

I Device-side programming language (!)



Wrangling the Grid

Axis 0

A
xi
s
1

I get_local_id(axis)?/size(axis)?

I get_group_id(axis)?/num_groups(axis)?

I get_global_id(axis)?/size(axis)?

axis=0,1,2,...



Machine Abstractions
Is OpenCL only for GPUs?

No. Implementations for CPUs exist.

How does OpenCL map onto CPUs?

I Two levels of concurrency, one for cores, one for vector
lanes

I Use the same mapping idea for CPUs

I Realize that you're not programming the hardware:
you're programming an abstract model of the hardware.

What is essential about programming in OpenCL, what is arbitrary?

I Essential: the semantics of the programming model
(what does the program mean?)

I Arbitrary: the spelling of the programm



Demo

[DEMO: intro-01-hello-pyopencl]

To follow along: http://bit.ly/geilogpu20

http://bit.ly/geilogpu20


Programming Approaches

Decisions that determine your approach
to throughput computing:

I AOT vs JIT

I Meta vs not

I In-language vs Hybrid
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Why Arrays?

I Parallelism: best if applied in large quantities

I Arrays: The natural data structure to support
large-scale concurrency

I Structured
I Unstructured workloads: See Johannes's talks

I O(1) element access

I Static (i.e. known-from-the-outset) control �ow for
traversal



Arrays in Numpy

Core attributes of an array:

I Shape

I dtype (data type)

I Strides

I Pointer

I (Lifetime relationship)



Demo: Host Arrays

[DEMO: arrays-01-numpy]



Device Arrays

Want: An array object that works just like numpy arrays, but on the
GPU
Issues:

I Which command queue? (Which context?)

I Synchronization?

I When to generate code? For which data types?



Demo: Device Arrays

[DEMO: arrays-02-pyopencl]
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Map

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation:

I xi : inputs

I yi : outputs

I fi : (pure) functions (i.e. no side e�ects)

When does a function have a �side e�ect�?

In addition to producing a value, it

I modi�es non-local state, or

I has an observable interaction with the outside world.



Map: Graph Representation
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Embarrassingly Parallel: Examples

Surprisingly useful:

I Element-wise linear algebra:
Addition, scalar multiplication (not inner product)

I Image Processing: Shift, rotate, clip, scale, . . .

I Monte Carlo simulation

I (Brute-force) Optimization

I Random Number Generation

I Encryption, Compression
(after blocking)



Demo

[DEMO: patterns-01-elementwise]



Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)

where N is the input size.
Also known as

I Lisp/Python function reduce (Scheme: fold)

I C++ STL std::accumulate



Reduction: Graph

y

x1 x2

x3

x4

x5

x6



Approach to Reduction

f (
x ,
y)
?

Can we do better?

�Tree� very imbalanced. What property
of f would allow `rebalancing'?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity



Reduction: A Better Graph

y

x0 x1 x2 x3 x4 x5 x6 x7

Processor allocation?



Mapping Reduction to SIMD/GPU

I Obvious: Want to use tree-based approach.

I Problem: Two scales, Work group and Grid
I to occupy both to make good use of the machine.

I In particular, need synchronization after each tree stage.

I Solution: Use a two-scale algorithm.

5

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation 
into multiple kernel invocations

In the case of reductions, code for all levels is the 
same

Recursive kernel invocation
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Level 0:

8 blocks

Level 1:

1 block

In particular: Use multiple grid invocations to achieve
inter-workgroup synchronization.



Demo

[DEMO: patterns-02-reduction]



Scan

y1 = x1
y2 = f (y1, x2)

.

.

. = .

.

.

yN = f (yN−1, xN)
where N is the input size. (Think: N large, f (x , y) = x + y)

I Pre�x Sum/Cumulative Sum

I Abstract view of: loop-carried dependence

I Also possible: Segmented Scan



Scan: Graph

x0
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Id

Again: Need assumptions on f .
Associativity, commutativity.



Scan: Implementation

Work-e�cient?



Scan: Implementation II

⊕ ⊕ ⊕

Problem:
Trees alone often don't
provide su�cient
concurrency

Idea:

I Run multiple
scans

I Combine
results (also a
scan)

I Run a �nal
update



Scan: Examples

Name examples of Pre�x Sums/Scans:

I Anything with a loop-carried dependence

I One row of Gauss-Seidel

I One row of triangular solve

I Segment numbering if boundaries are known

I Low-level building block for many higher-level
algorithms algorithms, e.g. predicate �lter, sort

I FIR/IIR Filtering

I Blelloch `93

http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf


Demo

[DEMO: patterns-03-scan]



Assignment

Use PyOpenCL scan to

I Generate 10,000,000 uniformly distributed single-precision
random numbers in [0, 1)

I Make a new array that retains only the ones ≤ 1/2



Practice

[DEMO: patterns-04-scan-practice]
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�CPU-style� Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

CPU-“style” cores 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

Out-of-order control logic 

Fancy branch predictor 

Memory pre-fetcher 

Data cache 
(A big one) 

13 

[Fatahalian `08]



Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Slimming down 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

Idea #1:  

Remove components that 
help a single instruction 
stream run fast  

14 

[Fatahalian `08]



More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Two cores   (two fragments in parallel) 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

<diffuseShader>: 

sample r0, v4, t0, s0 

mul  r3, v0, cb0[0] 

madd r3, v1, cb0[1], r3 

madd r3, v2, cb0[2], r3 

clmp r3, r3, l(0.0), l(1.0) 

mul  o0, r0, r3 

mul  o1, r1, r3 

mul  o2, r2, r3 

mov  o3, l(1.0) 

fragment 1 

<diffuseShader>: 

sample r0, v4, t0, s0 

mul  r3, v0, cb0[0] 

madd r3, v1, cb0[1], r3 

madd r3, v2, cb0[2], r3 

clmp r3, r3, l(0.0), l(1.0) 

mul  o0, r0, r3 

mul  o1, r1, r3 

mul  o2, r2, r3 

mov  o3, l(1.0) 

fragment 2 

15 

[Fatahalian `08]



Even more

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Sixteen cores   (sixteen fragments in parallel) 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

16 cores = 16 simultaneous instruction streams 
17 [Fatahalian `08]



SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

[Fatahalian `08]



SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Add ALUs 

Fetch/ 
Decode 

Idea #2: 

Amortize cost/complexity of 
managing an instruction 
stream across many ALUs 

ALU 1 ALU 2 ALU 3 ALU 4 

ALU 5 ALU 6 ALU 7 ALU 8 

SIMD processing Ctx Ctx Ctx Ctx 

Ctx Ctx Ctx Ctx 

Shared Ctx Data  

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  
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SIMD
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Latency Hiding

I Latency (mem, pipe) hurts
non-OOO cores

I Do something while waiting

What is the unit in which work
gets scheduled on a GPU?

A SIMD vector
('warp' (Nvidia), 'Wave-
front' (AMD))

How can we keep busy?

I More vectors
(bigger group)

I ILP

Change in architectural picture?

Before:

Fetch/
Decode

Register File

Scratchpad/L1

After:

Fetch/
Decode

Register FileRegister FileRegister FileRegister File

Scratchpad/L1

More
state
space!



GPUs: Core Architecture Ideas

Three core ideas:

I Remove things that help with latency in single-thread

I Massive core and SIMD parallelism

I Cover latency with concurrency
I SMT
I ILP



GPU Abstraction: Core Model Ideas

How do these aspects show up in the model?

I View concrete counts as an implementation detail
I SIMD lane
I Core
I Scheduling slot

I Program as if there are in�nitely many of them

I Hardware division is expensive
Make nD grids part of the model to avoid it

I Design the model to expose extremely �ne-grain concurrency
(e.g. between loop iterations!)

I Draw from the same pool of concurrency to hide latency



`SIMT' and Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

But what about branches? 

ALU 1 ALU 2 . . .  ALU 8 . . .  
Time 

(clocks) 

2 ...  1 ... 8 

if (x > 0) { 

} else { 

} 

<unconditional 
shader code> 

<resume unconditional 
shader code> 

y = pow(x, exp); 

y *= Ks; 

refl = y + Ka;   

x = 0;  

refl = Ka;   

T T T F F F F F 

29 
[Fatahalian `08]
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Host-Device Concurrency

I Host and Device run
asynchronously

I Host submits to queue:
I Computations
I Memory Transfers
I Sync primitives
I . . .

I Host can wait for:
I drained queue
I Individual �events�

I Pro�ling

. . .
HostHost

DeviceDevice

Q
u
eu
e
1

Q
u
eu
e
1

Q
u
eu
e
2

Q
u
eu
e
2



Demo: Timing GPU Work

[DEMO: gpu-01-timing-queues]



How do you �nd the execution time of a GPU kernel?

I Do a few `warm-up' calls to the kernel

I Drain the queue

I Start the timer

I Run the kernel enough times to get to a few
milliseconds run time

I Drain the queue

I Stop the timer, divide by the number of runs

How do you do this asynchronously?

I Enqueue 'markers' instead of draining the queue.

I Find timing of 'markers' after work is complete



Demo: Intra-Group Synchronization

[DEMO: gpu-02-barrier-sync]



'Conventional' vs Atomic Memory Update

Read Increment Write

Interruptible! Interruptible!

Read Increment Write

Protected Protected



Atomic Operations: Compare-and-Swap

#inc lude <stda tom i c . h>
_Bool atomic_compare_exchange_strong (

v o l a t i l e A* obj ,
C* expected , C d e s i r e d ) ;

What does volatile mean?

Memory may change at any time, do not keep in register.

What does this do?

I Store (*obj == *expected) ? desired : *obj

into *obj.

I Return true i� memory contents was as expected.

How might you use this to implement atomic FP multiplication?

Read previous, perform operation, try CAS, maybe retry



Memory Ordering

Why is Memory Ordering a Problem?

I Out-of-order CPUs reorder memory operations

I Compilers reorder memory operations

What are the di�erent memory orders and what do they mean?

I Atomicity itself is una�ected

I Makes sure that 'and then' is meaningful

Types:

I Sequentially consistent: no reordering

I Acquire: later loads may not reorder across

I Release: earlier writes may not reorder across

I Relaxed: reordering OK



Implementing Locking?

Can we just do locking like we might do on a CPU?

I Indepdendent forward progress of all threads is not
guaranteed.
(true until recently)

I But: Device partitioning can help!



Discussion: Ways to Realize SpMV

What to parallelize over? Advantages/disadvantages?

I Rows of the matrix
I Upside: no write races
I Downsides: load balance? limited concurrency? data

reuse?

I Matrix entries
I Upside: load balance
I Downside: write races?

I . . .



GPU Communication 'Scopes'

Hardware CL adjective CL noun CUDA

SIMD lane private Work Item Thread
SIMD Vector � Subgroup Warp
Core local Workgroup Thread Block
Processor global NDRange Grid
Machine � � �



GPU: Communication

What forms of communication exist within each scope?

I Subgroup: Shu�es (!)

I Workgroup:
I Scratchpad + barrier
I local atomics + mem fence

I Grid: Global atomics

I Machine:
I Global atomics (requires coherence)
I Queues
I Events



Host-Device Data Exchange

Sad fact: Must get data onto device to compute

I Transfers can be a bottleneck

I If possible, overlap with computation

I Pageable memory incurs di�culty in GPU-host transfers, often
entails (another!) CPU side copy

I �Pinned memory�: unpageable, avoids copy
I Various system-de�ned ways of allocating pinned memory

�Uni�ed memory� (CUDA)/�Shared Virtual Memory� (OpenCL):

I GPU directly accesses host memory

I Main distinction: Coherence
I �Coarse grain�: Per-bu�er fences
I �Fine grain bu�er�: Byte-for-byte coherent (device mem)
I �Fine grain system�: Byte-for-byte coherent (anywhere)
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Performance: Ballpark Numbers?

Bandwidth host/device:

PCIe v2: 8 GB/s � PCIe v3: 16 GB/s � NVLink: 200 GB/s

Bandwidth on device:

Registers: ∼10 TB/s � Scratch: ∼10 TB/s � Global: 500
GB/s

Flop throughput?

10 TFLOPS single precision � 3 TFLOPS double precision

Kernel launch overhead?

10 microseconds

Good source of details: Wikipedia: List of Nidia GPUs

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units


Qualifying Performance

I What is good performance?

I Is speed-up (e.g. GPU vs CPU? C vs Matlab?) a meaningful
way to assess performance?

I How else could one form an understanding of performance?

Modeling: how understanding works in science

Hager et al. `17
Hockney et al. `89

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf
https://doi.org/10.1016/0167-8191(89)90100-2


A Story of Bottlenecks

Imagine:

I A bank with a few service desks

I A revolving door at the entrance

What situations can arise at steady-state?

I Line inside the bank (good)

I Line at the door (bad)

What numbers do we need to characterize performance of this
system?

I Ppeak: [task/sec] Peak throughput of the service desks

I I : [tasks/customer] Intensity

I b: [customers/sec] Throughput of the revolving door



A Story of Bottlenecks (cont'd)

I Ppeak: [task/sec] Peak throughput of the service desks

I I : [tasks/customer] Intensity

I b: [customers/sec] Throughput of the revolving door

What is the aggregate throughput?

Bottleneck is either

I the service desks (good) or

I the revolving door (bad).

P ≤ min(Ppeak, I · b)

Hager et al. `17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf


Application in Computation
Translate the bank analogy to computers:

I Revolving door: typicallly: Memory interface

I Revolving door throughput: Memory bandwidth
[bytes/s]

I Service desks: Functional units (e.g. �oating point)

I Ppeak: Peak FU throughput (e.g.: [�ops/s])

I Intensity: e.g. [�ops/byte]

Which parts of this are task-dependent?

I All of them! This is not a model, it's a guideline for
making models.

I Speci�cally Ppeak varies substantially by task

P ≤ min(Ppeak, I · b)
Hager et al. `17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf


A Graphical Representation: `Roo�ine'
Plot (often log-log, but not necessarily):

I X-Axis: Intensity

I Y-Axis: Performance

What does our inequality correspond to graphically?

P ≤ min(Ppeak, I · b)

Intensity

P
er
fo
rm

an
ce

What does the shaded area mean?

Achievable performance

Hager et al. `17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf


Example: Vector Addition

double r , s , a [N ] ;
fo r ( i =0; i<N; ++i )

a [ i ] = r + s * a [ i ] ; }

Find the parameters and make a prediction.

Machine model:

I Memory Bandwidth: e.g. b = 10 GB/s

I Ppeak: e.g. 4 GF/s

Application model:

I I = 2 �ops / 16 bytes = 0.125 �ops/byte

Intensity

P
er
fo
rm

an
ce

Hager et al. `17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf


Demo: Performance Modeling

[DEMO: perf-01-modeling]
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Memory Systems: Bird's Eye View

Processor Memory

CLK

R/W̄

A0..15

D0..15



Somewhere Behind the Interconnect: Memory

Performance characteristics of memory:

I Bandwidth

I Latency

Flops are cheap

Bandwidth is money

Latency is physics

I M. Hoemmen

Minor addition (but important for us)?

I Bandwidth is money and code structure



Latency is Physics: Distance

[Wikipedia ]



Latency is Physics: Electrical Model



Latency is Physics: DRAM

[Wikipedia ]



Alignment

Alignment describes the process of matching the base address of:

I Single word: double, float

I SIMD vector

I Larger structure

To machine granularities:

I Natural word size

I Vector size

I Cache line

Q: What is the performance impact of misalignment?



Performance Impact of Misalignment

· · ·
Matched structure

· · ·
Matched structure
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Parallel Memories

Problem: Memory chips have only one data bus.
So how can multiple threads read multiple data items from memory
simultaneously?

Broadly:

I Split a really wide data bus, but have only one address
bus

I Have many 'small memories' ('banks') with separate
data and address busses, select by address LSB.

Where does banking show up?

I Scratchpad

I GPU register �le

I Global memory



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]

local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]

local_variable[BANK_COUNT*lid(0)]

local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]

local_variable[(BANK_COUNT+1)*lid(0)]

local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]

local_variable[ODD_NUMBER*lid(0)]

local_variable[2*lid(0)]local_variable[f(gid(0))]



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]

local_variable[2*lid(0)]

local_variable[f(gid(0))]



Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]

local_variable[f(gid(0))]



GPU Global Memory System

GCN Optimization Manual, AMD

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf


GPU Global Memory Channel Map: Example

Byte address decomposition:

Address

8 | 7 0

Chnl

11 | 10

Bank

?

Address

31

Implications:

I Transfers between compute unit and channel have granularity
I Reasonable guess: warp/wavefront size × 32bits
I Should strive for good utilization ('Coalescing')

I Channel count often not a power of two -> complex mapping
I Channel con�icts possible

I Also banked
I Bank con�icts also possible



GPU Global Memory: Performance Observations

Key quantities to observe for GPU global memory access:

I Stride

I Utilization

Are there any guaranteed-good memory access patterns?

Unit stride, just like on the CPU

I Need to consider access pattern across entire device

I GPU caches: Use for spatial, not for temporal locality

I Switch available: L1/Scratchpad partitioning
I Settable on a per-kernel basis

I Since GPUs have meaningful caches at this point:
Be aware of cache annotations (see later)



Demo: Matrix Transpose

[DEMO: perf-04-transpose]



Performance: Limits to Concurrency

Concurrency is essential to good (memory) latency hiding.
What limits the amount of concurrency exposed to GPU hardware?

I Amount of register space
Important: Size of (per-lane) register �le is variable

I Amount of scratchpad space
Size of (per-group) scratchpad space is variable

I Workgroup size

I Available ILP

I Number of scheduler (warp/group) slots (not really)

I Synchronization
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A Basic Processor: Closer to the Truth

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

I loosely based on Intel 8086

I What's a bus?

http://en.wikipedia.org/wiki/Bus_(computing)


A Very Simple Program

i n t a = 5 ;
i n t b = 17 ;
i n t z = a * b ;

4: c7 45 f4 05 00 00 00 movl $0x5,-0xc(%rbp)

b: c7 45 f8 11 00 00 00 movl $0x11,-0x8(%rbp)

12: 8b 45 f4 mov -0xc(%rbp),%eax

15: 0f af 45 f8 imul -0x8(%rbp),%eax

19: 89 45 fc mov %eax,-0x4(%rbp)

1c: 8b 45 fc mov -0x4(%rbp),%eax

Things to know:

I Question: Which is it?
I <opcode> <src>, <dest>

I <opcode> <dest>, <src>

I Addressing modes (Immediate, Register, Base plus O�set)

I 0xHexadecimal

http://en.wikipedia.org/wiki/Addressing_mode
http://en.wikipedia.org/wiki/Hexadecimal


A Very Simple Program: Another Look

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

4: c7 45 f4 05 00 00 00 movl $0x5,-0xc(%rbp)

b: c7 45 f8 11 00 00 00 movl $0x11,-0x8(%rbp)

12: 8b 45 f4 mov -0xc(%rbp),%eax

15: 0f af 45 f8 imul -0x8(%rbp),%eax

19: 89 45 fc mov %eax,-0x4(%rbp)

1c: 8b 45 fc mov -0x4(%rbp),%eax



A Very Simple Program: Intel Form

4: c7 45 f4 05 00 00 00 mov DWORD PTR [rbp-0xc],0x5

b: c7 45 f8 11 00 00 00 mov DWORD PTR [rbp-0x8],0x11

12: 8b 45 f4 mov eax,DWORD PTR [rbp-0xc]

15: 0f af 45 f8 imul eax,DWORD PTR [rbp-0x8]

19: 89 45 fc mov DWORD PTR [rbp-0x4],eax

1c: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

I �Intel Form�: (you might see this on the net)
<opcode> <sized dest>, <sized source>

I Previous: �AT&T Form�

I Goal: Reading comprehension.

I Don't understand an opcode?
https://en.wikipedia.org/wiki/X86_instruction_listings

https://en.wikipedia.org/wiki/X86_instruction_listings


Assembly Loops

i n t main ( )
{

i n t y = 0 , i ;
fo r ( i = 0 ;

y < 10 ; ++i )
y += i ;

return y ;
}

0: 55 push %rbp

1: 48 89 e5 mov %rsp,%rbp

4: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)

b: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

12: eb 0a jmp 1e <main+0x1e>

14: 8b 45 fc mov -0x4(%rbp),%eax

17: 01 45 f8 add %eax,-0x8(%rbp)

1a: 83 45 fc 01 addl $0x1,-0x4(%rbp)

1e: 83 7d f8 09 cmpl $0x9,-0x8(%rbp)

22: 7e f0 jle 14 <main+0x14>

24: 8b 45 f8 mov -0x8(%rbp),%eax

27: c9 leaveq

28: c3 retq

Things to know:

I Condition Codes (Flags): Zero, Sign, Carry, etc.

I Call Stack: Stack frame, stack pointer, base pointer

I ABI: Calling conventions

Demo Instructions: C → Assembly mapping from
https://github.com/ynh/cpp-to-assembly

http://en.wikipedia.org/wiki/Status_register
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Application_binary_interface
https://github.com/ynh/cpp-to-assembly


Demo: Assembly Reading Comprehension

[DEMO: perf-02-assembly-reading]

Demo: Source-to-assembly mapping
Code to try:

i n t main ( )
{

i n t y = 0 , i ;
fo r ( i = 0 ; y < 10 ; ++i )

y += i ;
return y ;

}



A Glimpse of a More Modern Processor

[David Kanter / Realworldtech.com]



PTX: Demo

[DEMO: perf-03-ptx-sass]
Nvidia PTX manual

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators


SPIR-V

Currently: C (OpenCL C, GLSL, HLSL) used as intermediate
representations to feed GPUs.
Downsides:

I Compiler heuristics may be focused on human-written code

I Parsing overhead (preprocessor!)

I C semantics may not match (too high-level)

SPIR-V:

I Goal: Common intermediate represenation (�IR�) for all
GPU-facing code (Vulkan, OpenCL)

I �Extended Instruction Sets�:
I General compute (OpenCL/CUDA) needs: pointers, special

functions

I Di�erent from �SPIR� (tweaked LLVM IR)



SPIR-V Example

%2 = OpTypeVoid

%3 = OpTypeFunction %2 ; void ()

%6 = OpTypeFloat 32 ; 32-bit float

%7 = OpTypeVector %6 4 ; vec4

%8 = OpTypePointer Function %7 ; function-local vec4*

%10 = OpConstant %6 1

%11 = OpConstant %6 2

%12 = OpConstantComposite %7 %10 %10 %11 %10 ; vec4(1.0, 1.0, 2.0, 1.0)

%13 = OpTypeInt 32 0 ; 32-bit int, sign-less

%14 = OpConstant %13 5

%15 = OpTypeArray %7 %14

[...]

%34 = OpLoad %7 %33

%38 = OpAccessChain %37 %20 %35 %21 %36 ; s.v[2]

%39 = OpLoad %7 %38

%40 = OpFAdd %7 %34 %39

OpStore %31 %40

OpBranch %29

%41 = OpLabel ; else

%43 = OpLoad %7 %42

%44 = OpExtInst %7 %1 Sqrt %43 ; extended instruction sqrt

%45 = OpLoad %7 %9

%46 = OpFMul %7 %44 %45

OpStore %31 %46
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The OpenCL model as a machine abstraction

Ideas:

I Abstract, n-dimensional index of cores
I Limited communication/synchronization between cores

I Abstract, n-dimensional index of SIMD lanes with slightly
more ability to communicate
I Barriers and atomics

I Fairly implicit represenation of actual SIMD width

How would we achieve a more explicit representation of the
hardware lane count?

Use it as the length of the fastest-varying lane axis.



Intel SPMD Program Compiler (ISPC)

Goal: predictable vectorization of x86 code
Idea:

I Start from the CUDA/OpenCL model

I taskIndex for core index, programIndex for SIMD lane index

I programIndex is precisely the lane count (or 2x)

I Warn about code that gets scalarized

I uniform and varying types

[DEMO: lang-01-ispc]
https://ispc.github.io/

https://ispc.github.io/
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Loopy: a Code Generator for Computation with Arrays

Loopy is a code generator for computation with arrays.

Performance: human `in the loop' for the foreseeable future.

I Capture math at a high level; target number crunching

I Progressively `lower' through manual transformations

I Observe and control optimization steps

I `Help me write the CUDA C/ISPC/. . . I would write'



Loopy: Program Representation

Primary design constraint:
Single Program Representation from UI to code gen

Must work for:

I Humans and Machines

I High Level and Fully Speci�ed Hardware Mapping

I Static and (moderately) Data-Dependent Control Flow



Loopy: Program Representation

Polyhedron

{[i,j]:0 <= i,j < n and... }

b[i] = sum(j, A[i,j] * x[j])

Tree of Polyhedra

I (DAG of) Statements

I Per-loop `mode' (seq/par)

= Semantics



Loopy: Execution and Transformation

Granularity: `Kernel'

I May lower to multiple GPU `kernels'

I One `coherent computational step'

Transformations

knl = lp.split_iname(knl, "i", 16)



Loopy Demo

[DEMO: loopy-01-rank-one]

I Seen: Just-in-time mode in Python

I Also possible: Ahead-of-time mode from command line or
Make�le



Kernel IR: Design Aspects

Criteria:

I Single shared medium across tools

I Shared medium between human and machine

I Ease of transformation

I Speci�ed hardware mapping (no heuristics!)

Other very recent IRs:

I C. Lattner, J. Pienaar �MLIR Primer: A Compiler Infrastructure for the
End of Moore's Law.� (2019).

I R. Baghdadi et al. �Tiramisu: A polyhedral compiler for expressing fast
and portable code.� Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Press, 2019.

I T. Ben-Nun et al. �Stateful Data�ow Multigraphs: A Data-Centric Model
for High-Performance Parallel Programs.�, SC `19.



More demos

I [DEMO: loopy-02-a-more-complex-code]

I [DEMO: loopy-03-fortran]

I [DEMO: loopy-04-data-layout]

I [DEMO: loopy-05-reduction]

I [DEMO: loopy-06-pde-to-code]



Basic Code Transforms

I Unroll

I Stride changes (Row/column/something
major)

I Prefetch

I Precompute

I Tile

I Reorder loops

I Fix constants

I Parallelize (Thread/Workgroup)

I A�ne map loop domains

I Texture-based data access

I Naming of array axes

I Loop collapse



Less Basic Code Transforms

I Kernel Fusion

I Splitting of Scans and Reductions

I Global Barrier by Kernel Fission

I Explicit-SIMD Vectorization

I Reuse of Temporary Storage

I SoA ↔ AoS

I Bu�ering / Storage substitution

I Save �ops using Distributive Law

I Arbitrary nesting of Data Layouts

I Realization of ILP



Further Features

I A-priori bounds checking

I Automatic Testing (against unopt. version)

I Symbolic operation counts
I Flops
I Memory access / Footprint size
I Synchronization

I One Transformation Chain per Target Arch

I Script-Driven Transformation:
I Share Transform Code
I Build Transformation Abstractions
I Build Simple Autotuners



Loopy: Example Users

I Firedrake �nite element framework:
https://arxiv.org/abs/1903.08243

I Dune PDElab �nite element framework:
http://arxiv.org/abs/1812.08075

I Pystella stencil-based cosmology solver:
https://arxiv.org/abs/1909.12843,
https://arxiv.org/abs/1909.12842

I Computational neuroscience:
https://doi.org/10.3389/fninf.2018.00068

I SIMD/SIMT for chemical kinetics:
https://doi.org/10.1016/j.combustflame.2018.09.008

I (My own numerics codes: Pytential, Grudge, Meshmode)

https://arxiv.org/abs/1903.08243
http://arxiv.org/abs/1812.08075
https://arxiv.org/abs/1909.12843
https://arxiv.org/abs/1909.12842
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1016/j.combustflame.2018.09.008


Conclusions: Loopy

I Goal: Allow near-peak performance
(with some e�ort)

I `Performance transparence'
I Best if no further loop transforms are carried out
I What is a good abstraction for the `next layer down' from a

tool like loopy?

I Common theme:
Separation of concerns vs. Performance

I Human-in-the-loop seems unavoidable
I Research question: What should the user interface to a

compiler look like?

https://documen.tician.de/loopy

Fork
m
e
on
GitHub

github.com
/inducer/loopy

(M
IT)

https://documen.tician.de/loopy
http://github.com/inducer/loopy


Play With Loopy Yourself

[DEMO: loopy-07-practice]
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De�ning an Expression DSL: Demo

I [DEMO: dsl-01-expression-trees]

I [DEMO: dsl-01-traversing-trees]

I [DEMO: dsl-03-de�ning-node-types]

https://documen.tician.de/pymbolic/

https://documen.tician.de/pymbolic/
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