
GPUs, Massive Parallelism, and
Compute Abstractions

Andreas Kloeckner

University of Illinois

January 20�22, 2020

Outline

Python and GPUs
Why GPUs?
OpenCL

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Outline

Python and GPUs
Why GPUs?
OpenCL

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Moore's Law

Issue: More transistors =
faster?

Work

s
= Clock Frequency

× Work/Clock

Peak Architectural Instructions per Clock: Intel

CPU IPC Year

Pentium 1 1.1 1993
Pentium MMX 1.2 1996
Pentium 3 1.9 1999
Pentium 4 (Willamette) 1.5 2003
Pentium 4 (Northwood) 1.6 2003
Pentium 4 (Prescott) 1.8 2003
Pentium 4 (Gallatin) 1.9 20
Pentium D 2 2005
Pentium M 2.5 2003
Core 2 3 2006
Sandy Bridge. . . 3.5ish 2011

[Charlie Brej http://brej.org/blog/?p=15]
Discuss: How do we get out of this dilemma?

http://brej.org/blog/?p=15

The Performance Dilemma

I IPC: Brick Wall

I Clock Frequency: Brick Wall

Ideas:

I Make one instruction do more copies of the same thing
(�SIMD�)

I Use copies of the same processor (�SPMD�/�MPMD�)

Question: What is the conceptual di�erence between those ideas?

I SIMD executes multiple program instances in lockstep.

I SPMD has no synchronization assumptions.

The Performance Dilemma: Another Look

I Really: A crisis of the 'starts-at-the-top-ends-at-the-bottom'
prorgramming model

I Tough luck: Most of our codes are written that way

I Even tougher luck: Everybody on the planet is trained to write
codes this way

So:

I Need: Di�erent tools/abstractions to write those codes

GPU Programmability

The `nightmare limit':

I �In�nitely� many cores

I �In�nite� vector width

I �In�nite�memory/comm. latency

Further complications:

I Commodity chips
I Compute only one design driver

of many

I Bandwidth only achievable by
homogeneity

I Compute bandwidth � Memory
bandwidth

→ Programmability is key.

[�ickr.com/oskay]

Why Python for HPC

I Mature, large and active community

I Emphasizes readability

I Written in widely-portable C
I Easy coupling to C/C++ (pybind11) /

Fortran (f2py)

I A `multi-paradigm' language

I Rich ecosystem of sci-comp related
software

I Great as a `glue language'

[Python logo: python.org]

Addressing the Elephant in the Room: Slowness

Compute result

Organize computation

Write code

Describe computation

Python + GPUs

I GPUs are everything that scripting
languages are not.
I Highly parallel
I Very architecture-sensitive
I Built for maximum FP/memory

throughput

→ complement each other

I CPU: largely restricted to control
tasks ∼1000/sec
I Scripting fast enough

I Python + OpenCL = PyOpenCL

I Python + CUDA = PyCUDA

[GPU: Nvidia Corp.]

Outline

Python and GPUs
Why GPUs?
OpenCL

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

I Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

I Vendor-neutral

I JIT built into the standard

De�nes:

I Host-side programming interface (library)

I Device-side programming language (!)

Wrangling the Grid

Axis 0

A
xi
s
1

I get_local_id(axis)?/size(axis)?

I get_group_id(axis)?/num_groups(axis)?

I get_global_id(axis)?/size(axis)?

axis=0,1,2,...

Machine Abstractions
Is OpenCL only for GPUs?

No. Implementations for CPUs exist.

How does OpenCL map onto CPUs?

I Two levels of concurrency, one for cores, one for vector
lanes

I Use the same mapping idea for CPUs

I Realize that you're not programming the hardware:
you're programming an abstract model of the hardware.

What is essential about programming in OpenCL, what is arbitrary?

I Essential: the semantics of the programming model
(what does the program mean?)

I Arbitrary: the spelling of the programm

Demo

[DEMO: intro-01-hello-pyopencl]

To follow along: http://bit.ly/geilogpu20

http://bit.ly/geilogpu20

Programming Approaches

Decisions that determine your approach
to throughput computing:

I AOT vs JIT

I Meta vs not

I In-language vs Hybrid

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Why Arrays?

I Parallelism: best if applied in large quantities

I Arrays: The natural data structure to support
large-scale concurrency

I Structured
I Unstructured workloads: See Johannes's talks

I O(1) element access

I Static (i.e. known-from-the-outset) control �ow for
traversal

Arrays in Numpy

Core attributes of an array:

I Shape

I dtype (data type)

I Strides

I Pointer

I (Lifetime relationship)

Demo: Host Arrays

[DEMO: arrays-01-numpy]

Device Arrays

Want: An array object that works just like numpy arrays, but on the
GPU
Issues:

I Which command queue? (Which context?)

I Synchronization?

I When to generate code? For which data types?

Demo: Device Arrays

[DEMO: arrays-02-pyopencl]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Map

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation:

I xi : inputs

I yi : outputs

I fi : (pure) functions (i.e. no side e�ects)

When does a function have a �side e�ect�?

In addition to producing a value, it

I modi�es non-local state, or

I has an observable interaction with the outside world.

Map: Graph Representation

x0

y0

f0

x1

y1

f1

x2

y2

f2

x3

y3

f3

x4

y4

f4

x5

y5

f5

x6

y6

f6

x7

y7

f7

x8

y8

f8

Embarrassingly Parallel: Examples

Surprisingly useful:

I Element-wise linear algebra:
Addition, scalar multiplication (not inner product)

I Image Processing: Shift, rotate, clip, scale, . . .

I Monte Carlo simulation

I (Brute-force) Optimization

I Random Number Generation

I Encryption, Compression
(after blocking)

Demo

[DEMO: patterns-01-elementwise]

Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)

where N is the input size.
Also known as

I Lisp/Python function reduce (Scheme: fold)

I C++ STL std::accumulate

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

Approach to Reduction

f (
x ,
y)
?

Can we do better?

�Tree� very imbalanced. What property
of f would allow `rebalancing'?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity

Reduction: A Better Graph

y

x0 x1 x2 x3 x4 x5 x6 x7

Processor allocation?

Mapping Reduction to SIMD/GPU

I Obvious: Want to use tree-based approach.

I Problem: Two scales, Work group and Grid
I to occupy both to make good use of the machine.

I In particular, need synchronization after each tree stage.

I Solution: Use a two-scale algorithm.

5

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation
into multiple kernel invocations

In the case of reductions, code for all levels is the
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

In particular: Use multiple grid invocations to achieve
inter-workgroup synchronization.

Demo

[DEMO: patterns-02-reduction]

Scan

y1 = x1
y2 = f (y1, x2)

.

.

. = .

.

.

yN = f (yN−1, xN)
where N is the input size. (Think: N large, f (x , y) = x + y)

I Pre�x Sum/Cumulative Sum

I Abstract view of: loop-carried dependence

I Also possible: Segmented Scan

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

Again: Need assumptions on f .
Associativity, commutativity.

Scan: Implementation

Work-e�cient?

Scan: Implementation II

⊕ ⊕ ⊕

Problem:
Trees alone often don't
provide su�cient
concurrency

Idea:

I Run multiple
scans

I Combine
results (also a
scan)

I Run a �nal
update

Scan: Examples

Name examples of Pre�x Sums/Scans:

I Anything with a loop-carried dependence

I One row of Gauss-Seidel

I One row of triangular solve

I Segment numbering if boundaries are known

I Low-level building block for many higher-level
algorithms algorithms, e.g. predicate �lter, sort

I FIR/IIR Filtering

I Blelloch `93

http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

Demo

[DEMO: patterns-03-scan]

Assignment

Use PyOpenCL scan to

I Generate 10,000,000 uniformly distributed single-precision
random numbers in [0, 1)

I Make a new array that retains only the ones ≤ 1/2

Practice

[DEMO: patterns-04-scan-practice]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details
GPU Architecture: Philosophy
Communication / Synchronization

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details
GPU Architecture: Philosophy
Communication / Synchronization

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

�CPU-style� Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

CPU-“style” cores

ALU
(Execute)

Fetch/
Decode

Execution
Context

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache
(A big one)

13

[Fatahalian `08]

Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Slimming down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1:

Remove components that
help a single instruction
stream run fast

14

[Fatahalian `08]

More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Two cores (two fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

15

[Fatahalian `08]

Even more

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17 [Fatahalian `08]

SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

[Fatahalian `08]

SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

[Fatahalian `08]

SIMD

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20

Idea #2: SIMD

Amortize cost/complexity of
managing an instruction stream
across many ALUs

[Fatahalian `08]

Latency Hiding

I Latency (mem, pipe) hurts
non-OOO cores

I Do something while waiting

What is the unit in which work
gets scheduled on a GPU?

A SIMD vector
('warp' (Nvidia), 'Wave-
front' (AMD))

How can we keep busy?

I More vectors
(bigger group)

I ILP

Change in architectural picture?

Before:

Fetch/
Decode

Register File

Scratchpad/L1

After:

Fetch/
Decode

Register FileRegister FileRegister FileRegister File

Scratchpad/L1

More
state
space!

GPUs: Core Architecture Ideas

Three core ideas:

I Remove things that help with latency in single-thread

I Massive core and SIMD parallelism

I Cover latency with concurrency
I SMT
I ILP

GPU Abstraction: Core Model Ideas

How do these aspects show up in the model?

I View concrete counts as an implementation detail
I SIMD lane
I Core
I Scheduling slot

I Program as if there are in�nitely many of them

I Hardware division is expensive
Make nD grids part of the model to avoid it

I Design the model to expose extremely �ne-grain concurrency
(e.g. between loop iterations!)

I Draw from the same pool of concurrency to hide latency

`SIMT' and Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

29
[Fatahalian `08]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details
GPU Architecture: Philosophy
Communication / Synchronization

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Host-Device Concurrency

I Host and Device run
asynchronously

I Host submits to queue:
I Computations
I Memory Transfers
I Sync primitives
I . . .

I Host can wait for:
I drained queue
I Individual �events�

I Pro�ling

. . .
HostHost

DeviceDevice

Q
u
eu
e
1

Q
u
eu
e
1

Q
u
eu
e
2

Q
u
eu
e
2

Demo: Timing GPU Work

[DEMO: gpu-01-timing-queues]

How do you �nd the execution time of a GPU kernel?

I Do a few `warm-up' calls to the kernel

I Drain the queue

I Start the timer

I Run the kernel enough times to get to a few
milliseconds run time

I Drain the queue

I Stop the timer, divide by the number of runs

How do you do this asynchronously?

I Enqueue 'markers' instead of draining the queue.

I Find timing of 'markers' after work is complete

Demo: Intra-Group Synchronization

[DEMO: gpu-02-barrier-sync]

'Conventional' vs Atomic Memory Update

Read Increment Write

Interruptible! Interruptible!

Read Increment Write

Protected Protected

Atomic Operations: Compare-and-Swap

#inc lude <stda tom i c . h>
_Bool atomic_compare_exchange_strong (

v o l a t i l e A* obj ,
C* expected , C d e s i r e d) ;

What does volatile mean?

Memory may change at any time, do not keep in register.

What does this do?

I Store (*obj == *expected) ? desired : *obj

into *obj.

I Return true i� memory contents was as expected.

How might you use this to implement atomic FP multiplication?

Read previous, perform operation, try CAS, maybe retry

Memory Ordering

Why is Memory Ordering a Problem?

I Out-of-order CPUs reorder memory operations

I Compilers reorder memory operations

What are the di�erent memory orders and what do they mean?

I Atomicity itself is una�ected

I Makes sure that 'and then' is meaningful

Types:

I Sequentially consistent: no reordering

I Acquire: later loads may not reorder across

I Release: earlier writes may not reorder across

I Relaxed: reordering OK

Implementing Locking?

Can we just do locking like we might do on a CPU?

I Indepdendent forward progress of all threads is not
guaranteed.
(true until recently)

I But: Device partitioning can help!

Discussion: Ways to Realize SpMV

What to parallelize over? Advantages/disadvantages?

I Rows of the matrix
I Upside: no write races
I Downsides: load balance? limited concurrency? data

reuse?

I Matrix entries
I Upside: load balance
I Downside: write races?

I . . .

GPU Communication 'Scopes'

Hardware CL adjective CL noun CUDA

SIMD lane private Work Item Thread
SIMD Vector � Subgroup Warp
Core local Workgroup Thread Block
Processor global NDRange Grid
Machine � � �

GPU: Communication

What forms of communication exist within each scope?

I Subgroup: Shu�es (!)

I Workgroup:
I Scratchpad + barrier
I local atomics + mem fence

I Grid: Global atomics

I Machine:
I Global atomics (requires coherence)
I Queues
I Events

Host-Device Data Exchange

Sad fact: Must get data onto device to compute

I Transfers can be a bottleneck

I If possible, overlap with computation

I Pageable memory incurs di�culty in GPU-host transfers, often
entails (another!) CPU side copy

I �Pinned memory�: unpageable, avoids copy
I Various system-de�ned ways of allocating pinned memory

�Uni�ed memory� (CUDA)/�Shared Virtual Memory� (OpenCL):

I GPU directly accesses host memory

I Main distinction: Coherence
I �Coarse grain�: Per-bu�er fences
I �Fine grain bu�er�: Byte-for-byte coherent (device mem)
I �Fine grain system�: Byte-for-byte coherent (anywhere)

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement
Performance Models
Memory Systems
GPU Memory Systems
Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement
Performance Models
Memory Systems
GPU Memory Systems
Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

Performance: Ballpark Numbers?

Bandwidth host/device:

PCIe v2: 8 GB/s � PCIe v3: 16 GB/s � NVLink: 200 GB/s

Bandwidth on device:

Registers: ∼10 TB/s � Scratch: ∼10 TB/s � Global: 500
GB/s

Flop throughput?

10 TFLOPS single precision � 3 TFLOPS double precision

Kernel launch overhead?

10 microseconds

Good source of details: Wikipedia: List of Nidia GPUs

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

Qualifying Performance

I What is good performance?

I Is speed-up (e.g. GPU vs CPU? C vs Matlab?) a meaningful
way to assess performance?

I How else could one form an understanding of performance?

Modeling: how understanding works in science

Hager et al. `17
Hockney et al. `89

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf
https://doi.org/10.1016/0167-8191(89)90100-2

A Story of Bottlenecks

Imagine:

I A bank with a few service desks

I A revolving door at the entrance

What situations can arise at steady-state?

I Line inside the bank (good)

I Line at the door (bad)

What numbers do we need to characterize performance of this
system?

I Ppeak: [task/sec] Peak throughput of the service desks

I I : [tasks/customer] Intensity

I b: [customers/sec] Throughput of the revolving door

A Story of Bottlenecks (cont'd)

I Ppeak: [task/sec] Peak throughput of the service desks

I I : [tasks/customer] Intensity

I b: [customers/sec] Throughput of the revolving door

What is the aggregate throughput?

Bottleneck is either

I the service desks (good) or

I the revolving door (bad).

P ≤ min(Ppeak, I · b)

Hager et al. `17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Application in Computation
Translate the bank analogy to computers:

I Revolving door: typicallly: Memory interface

I Revolving door throughput: Memory bandwidth
[bytes/s]

I Service desks: Functional units (e.g. �oating point)

I Ppeak: Peak FU throughput (e.g.: [�ops/s])

I Intensity: e.g. [�ops/byte]

Which parts of this are task-dependent?

I All of them! This is not a model, it's a guideline for
making models.

I Speci�cally Ppeak varies substantially by task

P ≤ min(Ppeak, I · b)
Hager et al. `17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

A Graphical Representation: `Roo�ine'
Plot (often log-log, but not necessarily):

I X-Axis: Intensity

I Y-Axis: Performance

What does our inequality correspond to graphically?

P ≤ min(Ppeak, I · b)

Intensity

P
er
fo
rm

an
ce

What does the shaded area mean?

Achievable performance

Hager et al. `17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Example: Vector Addition

double r , s , a [N] ;
fo r (i =0; i<N; ++i)

a [i] = r + s * a [i] ; }

Find the parameters and make a prediction.

Machine model:

I Memory Bandwidth: e.g. b = 10 GB/s

I Ppeak: e.g. 4 GF/s

Application model:

I I = 2 �ops / 16 bytes = 0.125 �ops/byte

Intensity

P
er
fo
rm

an
ce

Hager et al. `17

https://blogs.fau.de/hager/files/2017/07/sc17_tutorial_NLPE_Web_01.pdf

Demo: Performance Modeling

[DEMO: perf-01-modeling]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement
Performance Models
Memory Systems
GPU Memory Systems
Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

Memory Systems: Bird's Eye View

Processor Memory

CLK

R/W̄

A0..15

D0..15

Somewhere Behind the Interconnect: Memory

Performance characteristics of memory:

I Bandwidth

I Latency

Flops are cheap

Bandwidth is money

Latency is physics

I M. Hoemmen

Minor addition (but important for us)?

I Bandwidth is money and code structure

Latency is Physics: Distance

[Wikipedia]

Latency is Physics: Electrical Model

Latency is Physics: DRAM

[Wikipedia]

Alignment

Alignment describes the process of matching the base address of:

I Single word: double, float

I SIMD vector

I Larger structure

To machine granularities:

I Natural word size

I Vector size

I Cache line

Q: What is the performance impact of misalignment?

Performance Impact of Misalignment

· · ·
Matched structure

· · ·
Matched structure

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement
Performance Models
Memory Systems
GPU Memory Systems
Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

Parallel Memories

Problem: Memory chips have only one data bus.
So how can multiple threads read multiple data items from memory
simultaneously?

Broadly:

I Split a really wide data bus, but have only one address
bus

I Have many 'small memories' ('banks') with separate
data and address busses, select by address LSB.

Where does banking show up?

I Scratchpad

I GPU register �le

I Global memory

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]

local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]

local_variable[BANK_COUNT*lid(0)]

local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]

local_variable[(BANK_COUNT+1)*lid(0)]

local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]

local_variable[ODD_NUMBER*lid(0)]

local_variable[2*lid(0)]local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]

local_variable[2*lid(0)]

local_variable[f(gid(0))]

Memory Banking

Fill in the access pattern:

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Thread

0

1

2

3

local_variable[lid(0)]local_variable[BANK_COUNT*lid(0)]local_variable[(BANK_COUNT+1)*lid(0)]local_variable[ODD_NUMBER*lid(0)]local_variable[2*lid(0)]

local_variable[f(gid(0))]

GPU Global Memory System

GCN Optimization Manual, AMD

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf

GPU Global Memory Channel Map: Example

Byte address decomposition:

Address

8 | 7 0

Chnl

11 | 10

Bank

?

Address

31

Implications:

I Transfers between compute unit and channel have granularity
I Reasonable guess: warp/wavefront size × 32bits
I Should strive for good utilization ('Coalescing')

I Channel count often not a power of two -> complex mapping
I Channel con�icts possible

I Also banked
I Bank con�icts also possible

GPU Global Memory: Performance Observations

Key quantities to observe for GPU global memory access:

I Stride

I Utilization

Are there any guaranteed-good memory access patterns?

Unit stride, just like on the CPU

I Need to consider access pattern across entire device

I GPU caches: Use for spatial, not for temporal locality

I Switch available: L1/Scratchpad partitioning
I Settable on a per-kernel basis

I Since GPUs have meaningful caches at this point:
Be aware of cache annotations (see later)

Demo: Matrix Transpose

[DEMO: perf-04-transpose]

Performance: Limits to Concurrency

Concurrency is essential to good (memory) latency hiding.
What limits the amount of concurrency exposed to GPU hardware?

I Amount of register space
Important: Size of (per-lane) register �le is variable

I Amount of scratchpad space
Size of (per-group) scratchpad space is variable

I Workgroup size

I Available ILP

I Number of scheduler (warp/group) slots (not really)

I Synchronization

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement
Performance Models
Memory Systems
GPU Memory Systems
Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

A Basic Processor: Closer to the Truth

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

I loosely based on Intel 8086

I What's a bus?

http://en.wikipedia.org/wiki/Bus_(computing)

A Very Simple Program

i n t a = 5 ;
i n t b = 17 ;
i n t z = a * b ;

4: c7 45 f4 05 00 00 00 movl $0x5,-0xc(%rbp)

b: c7 45 f8 11 00 00 00 movl $0x11,-0x8(%rbp)

12: 8b 45 f4 mov -0xc(%rbp),%eax

15: 0f af 45 f8 imul -0x8(%rbp),%eax

19: 89 45 fc mov %eax,-0x4(%rbp)

1c: 8b 45 fc mov -0x4(%rbp),%eax

Things to know:

I Question: Which is it?
I <opcode> <src>, <dest>

I <opcode> <dest>, <src>

I Addressing modes (Immediate, Register, Base plus O�set)

I 0xHexadecimal

http://en.wikipedia.org/wiki/Addressing_mode
http://en.wikipedia.org/wiki/Hexadecimal

A Very Simple Program: Another Look

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

4: c7 45 f4 05 00 00 00 movl $0x5,-0xc(%rbp)

b: c7 45 f8 11 00 00 00 movl $0x11,-0x8(%rbp)

12: 8b 45 f4 mov -0xc(%rbp),%eax

15: 0f af 45 f8 imul -0x8(%rbp),%eax

19: 89 45 fc mov %eax,-0x4(%rbp)

1c: 8b 45 fc mov -0x4(%rbp),%eax

A Very Simple Program: Intel Form

4: c7 45 f4 05 00 00 00 mov DWORD PTR [rbp-0xc],0x5

b: c7 45 f8 11 00 00 00 mov DWORD PTR [rbp-0x8],0x11

12: 8b 45 f4 mov eax,DWORD PTR [rbp-0xc]

15: 0f af 45 f8 imul eax,DWORD PTR [rbp-0x8]

19: 89 45 fc mov DWORD PTR [rbp-0x4],eax

1c: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

I �Intel Form�: (you might see this on the net)
<opcode> <sized dest>, <sized source>

I Previous: �AT&T Form�

I Goal: Reading comprehension.

I Don't understand an opcode?
https://en.wikipedia.org/wiki/X86_instruction_listings

https://en.wikipedia.org/wiki/X86_instruction_listings

Assembly Loops

i n t main ()
{

i n t y = 0 , i ;
fo r (i = 0 ;

y < 10 ; ++i)
y += i ;

return y ;
}

0: 55 push %rbp

1: 48 89 e5 mov %rsp,%rbp

4: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)

b: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

12: eb 0a jmp 1e <main+0x1e>

14: 8b 45 fc mov -0x4(%rbp),%eax

17: 01 45 f8 add %eax,-0x8(%rbp)

1a: 83 45 fc 01 addl $0x1,-0x4(%rbp)

1e: 83 7d f8 09 cmpl $0x9,-0x8(%rbp)

22: 7e f0 jle 14 <main+0x14>

24: 8b 45 f8 mov -0x8(%rbp),%eax

27: c9 leaveq

28: c3 retq

Things to know:

I Condition Codes (Flags): Zero, Sign, Carry, etc.

I Call Stack: Stack frame, stack pointer, base pointer

I ABI: Calling conventions

Demo Instructions: C → Assembly mapping from
https://github.com/ynh/cpp-to-assembly

http://en.wikipedia.org/wiki/Status_register
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Application_binary_interface
https://github.com/ynh/cpp-to-assembly

Demo: Assembly Reading Comprehension

[DEMO: perf-02-assembly-reading]

Demo: Source-to-assembly mapping
Code to try:

i n t main ()
{

i n t y = 0 , i ;
fo r (i = 0 ; y < 10 ; ++i)

y += i ;
return y ;

}

A Glimpse of a More Modern Processor

[David Kanter / Realworldtech.com]

PTX: Demo

[DEMO: perf-03-ptx-sass]
Nvidia PTX manual

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators

SPIR-V

Currently: C (OpenCL C, GLSL, HLSL) used as intermediate
representations to feed GPUs.
Downsides:

I Compiler heuristics may be focused on human-written code

I Parsing overhead (preprocessor!)

I C semantics may not match (too high-level)

SPIR-V:

I Goal: Common intermediate represenation (�IR�) for all
GPU-facing code (Vulkan, OpenCL)

I �Extended Instruction Sets�:
I General compute (OpenCL/CUDA) needs: pointers, special

functions

I Di�erent from �SPIR� (tweaked LLVM IR)

SPIR-V Example

%2 = OpTypeVoid

%3 = OpTypeFunction %2 ; void ()

%6 = OpTypeFloat 32 ; 32-bit float

%7 = OpTypeVector %6 4 ; vec4

%8 = OpTypePointer Function %7 ; function-local vec4*

%10 = OpConstant %6 1

%11 = OpConstant %6 2

%12 = OpConstantComposite %7 %10 %10 %11 %10 ; vec4(1.0, 1.0, 2.0, 1.0)

%13 = OpTypeInt 32 0 ; 32-bit int, sign-less

%14 = OpConstant %13 5

%15 = OpTypeArray %7 %14

[...]

%34 = OpLoad %7 %33

%38 = OpAccessChain %37 %20 %35 %21 %36 ; s.v[2]

%39 = OpLoad %7 %38

%40 = OpFAdd %7 %34 %39

OpStore %31 %40

OpBranch %29

%41 = OpLabel ; else

%43 = OpLoad %7 %42

%44 = OpExtInst %7 %1 Sqrt %43 ; extended instruction sqrt

%45 = OpLoad %7 %9

%46 = OpFMul %7 %44 %45

OpStore %31 %46

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?
Convergence, Di�erences in Machine Mapping
Code Transformation and Machine Models
Domain Speci�c Languages

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?
Convergence, Di�erences in Machine Mapping
Code Transformation and Machine Models
Domain Speci�c Languages

The OpenCL model as a machine abstraction

Ideas:

I Abstract, n-dimensional index of cores
I Limited communication/synchronization between cores

I Abstract, n-dimensional index of SIMD lanes with slightly
more ability to communicate
I Barriers and atomics

I Fairly implicit represenation of actual SIMD width

How would we achieve a more explicit representation of the
hardware lane count?

Use it as the length of the fastest-varying lane axis.

Intel SPMD Program Compiler (ISPC)

Goal: predictable vectorization of x86 code
Idea:

I Start from the CUDA/OpenCL model

I taskIndex for core index, programIndex for SIMD lane index

I programIndex is precisely the lane count (or 2x)

I Warn about code that gets scalarized

I uniform and varying types

[DEMO: lang-01-ispc]
https://ispc.github.io/

https://ispc.github.io/

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?
Convergence, Di�erences in Machine Mapping
Code Transformation and Machine Models
Domain Speci�c Languages

Loopy: a Code Generator for Computation with Arrays

Loopy is a code generator for computation with arrays.

Performance: human `in the loop' for the foreseeable future.

I Capture math at a high level; target number crunching

I Progressively `lower' through manual transformations

I Observe and control optimization steps

I `Help me write the CUDA C/ISPC/. . . I would write'

Loopy: Program Representation

Primary design constraint:
Single Program Representation from UI to code gen

Must work for:

I Humans and Machines

I High Level and Fully Speci�ed Hardware Mapping

I Static and (moderately) Data-Dependent Control Flow

Loopy: Program Representation

Polyhedron

{[i,j]:0 <= i,j < n and... }

b[i] = sum(j, A[i,j] * x[j])

Tree of Polyhedra

I (DAG of) Statements

I Per-loop `mode' (seq/par)

= Semantics

Loopy: Execution and Transformation

Granularity: `Kernel'

I May lower to multiple GPU `kernels'

I One `coherent computational step'

Transformations

knl = lp.split_iname(knl, "i", 16)

Loopy Demo

[DEMO: loopy-01-rank-one]

I Seen: Just-in-time mode in Python

I Also possible: Ahead-of-time mode from command line or
Make�le

Kernel IR: Design Aspects

Criteria:

I Single shared medium across tools

I Shared medium between human and machine

I Ease of transformation

I Speci�ed hardware mapping (no heuristics!)

Other very recent IRs:

I C. Lattner, J. Pienaar �MLIR Primer: A Compiler Infrastructure for the
End of Moore's Law.� (2019).

I R. Baghdadi et al. �Tiramisu: A polyhedral compiler for expressing fast
and portable code.� Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Press, 2019.

I T. Ben-Nun et al. �Stateful Data�ow Multigraphs: A Data-Centric Model
for High-Performance Parallel Programs.�, SC `19.

More demos

I [DEMO: loopy-02-a-more-complex-code]

I [DEMO: loopy-03-fortran]

I [DEMO: loopy-04-data-layout]

I [DEMO: loopy-05-reduction]

I [DEMO: loopy-06-pde-to-code]

Basic Code Transforms

I Unroll

I Stride changes (Row/column/something
major)

I Prefetch

I Precompute

I Tile

I Reorder loops

I Fix constants

I Parallelize (Thread/Workgroup)

I A�ne map loop domains

I Texture-based data access

I Naming of array axes

I Loop collapse

Less Basic Code Transforms

I Kernel Fusion

I Splitting of Scans and Reductions

I Global Barrier by Kernel Fission

I Explicit-SIMD Vectorization

I Reuse of Temporary Storage

I SoA ↔ AoS

I Bu�ering / Storage substitution

I Save �ops using Distributive Law

I Arbitrary nesting of Data Layouts

I Realization of ILP

Further Features

I A-priori bounds checking

I Automatic Testing (against unopt. version)

I Symbolic operation counts
I Flops
I Memory access / Footprint size
I Synchronization

I One Transformation Chain per Target Arch

I Script-Driven Transformation:
I Share Transform Code
I Build Transformation Abstractions
I Build Simple Autotuners

Loopy: Example Users

I Firedrake �nite element framework:
https://arxiv.org/abs/1903.08243

I Dune PDElab �nite element framework:
http://arxiv.org/abs/1812.08075

I Pystella stencil-based cosmology solver:
https://arxiv.org/abs/1909.12843,
https://arxiv.org/abs/1909.12842

I Computational neuroscience:
https://doi.org/10.3389/fninf.2018.00068

I SIMD/SIMT for chemical kinetics:
https://doi.org/10.1016/j.combustflame.2018.09.008

I (My own numerics codes: Pytential, Grudge, Meshmode)

https://arxiv.org/abs/1903.08243
http://arxiv.org/abs/1812.08075
https://arxiv.org/abs/1909.12843
https://arxiv.org/abs/1909.12842
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1016/j.combustflame.2018.09.008

Conclusions: Loopy

I Goal: Allow near-peak performance
(with some e�ort)

I `Performance transparence'
I Best if no further loop transforms are carried out
I What is a good abstraction for the `next layer down' from a

tool like loopy?

I Common theme:
Separation of concerns vs. Performance

I Human-in-the-loop seems unavoidable
I Research question: What should the user interface to a

compiler look like?

https://documen.tician.de/loopy

Fork
m
e
on
GitHub

github.com
/inducer/loopy

(M
IT)

https://documen.tician.de/loopy
http://github.com/inducer/loopy

Play With Loopy Yourself

[DEMO: loopy-07-practice]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?
Convergence, Di�erences in Machine Mapping
Code Transformation and Machine Models
Domain Speci�c Languages

De�ning an Expression DSL: Demo

I [DEMO: dsl-01-expression-trees]

I [DEMO: dsl-01-traversing-trees]

I [DEMO: dsl-03-de�ning-node-types]

https://documen.tician.de/pymbolic/

https://documen.tician.de/pymbolic/

	Python and GPUs
	Why GPUs?
	OpenCL

	Arrays
	Parallel Patterns
	GPUs: More Details
	GPU Architecture: Philosophy
	Communication / Synchronization

	Performance: Expectations and Measurement
	Performance Models
	Memory Systems
	GPU Memory Systems
	Lowest Accessible Abstraction: Assembly

	Tools and Abstractions: Where to from here?
	Convergence, Differences in Machine Mapping
	Code Transformation and Machine Models
	Domain Specific Languages

