GPUs, Massive Parallelism, and Compute Abstractions

Andreas Kloeckner

University of Illinois

January 20-22, 2020

Outline

Python and GPUs Why GPUs? OpenCL

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Outline

Python and GPUs Why GPUs? OpenCL

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Moore's Law

Peak Architectural Instructions per Clock: Intel

CPU	IPC	Year
Pentium 1	1.1	1993
Pentium MMX	1.2	1996
Pentium 3	1.9	1999
Pentium 4 (Willamette)	1.5	2003
Pentium 4 (Northwood)	1.6	2003
Pentium 4 (Prescott)	1.8	2003
Pentium 4 (Gallatin)	1.9	20
Pentium D	2	2005
Pentium M	2.5	2003
Core 2	3	2006
Sandy Bridge	3.5ish	2011

[Charlie Brej http://brej.org/blog/?p=15] Discuss: How do we get out of this dilemma?

The Performance Dilemma

- IPC: Brick Wall
- Clock Frequency: Brick Wall

Ideas:

- Make one instruction do more copies of the same thing ("SIMD")
- Use copies of the same processor ("SPMD"/"MPMD")

Question: What is the *conceptual* difference between those ideas?

- SIMD executes multiple program instances in lockstep.
- SPMD has no synchronization assumptions.

The Performance Dilemma: Another Look

- Really: A crisis of the 'starts-at-the-top-ends-at-the-bottom' prorgramming model
- Tough luck: Most of our codes are written that way
- Even tougher luck: Everybody on the planet is trained to write codes this way

So:

Need: Different tools/abstractions to write those codes

GPU Programmability

- The 'nightmare limit':
 - "Infinitely" many cores
 - "Infinite" vector width
 - "Infinite"memory/comm. latency

Further complications:

- Commodity chips
 - Compute only one design driver of many
- Bandwidth only achievable by homogeneity
- Compute bandwidth >> Memory bandwidth
- ightarrow Programmability is key.

Why Python for HPC

Mature, large and active community

- Emphasizes readability
- Written in widely-portable C
 - Easy coupling to C/C++ (pybind11) / Fortran (f2py)
- A 'multi-paradigm' language
- Rich ecosystem of sci-comp related software
- Great as a 'glue language'

[Python logo: python.org]

•		
	0	

Addressing the Elephant in the Room: Slowness

Python + GPUs

- GPUs are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput
 - ightarrow complement each other
- CPU: largely restricted to control tasks ~1000/sec
 - Scripting fast enough
- Python + OpenCL = PyOpenCL
- Python + CUDA = PyCUDA

[GPU: Nvidia Corp.]

Outline

Python and GPUs Why GPUs? OpenCL

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

What is OpenCL?

OpenCL (Open Computing Language) is an open, royalty-free standard for general purpose parallel programming across CPUs, GPUs and other processors. [OpenCL 1.1 spec]

- Device-neutral (Nv GPU, AMD GPU, Intel/AMD CPU)
- Vendor-neutral
- JIT built into the standard

Defines:

- Host-side programming interface (library)
- Device-side programming language (!)

Wrangling the Grid

Machine Abstractions

Is OpenCL only for GPUs?

No. Implementations for CPUs exist.

How does OpenCL map onto CPUs?

- Two levels of concurrency, one for cores, one for vector lanes
- Use the same mapping idea for CPUs
- Realize that you're not programming the hardware: you're programming an abstract model of the hardware.

What is essential about programming in OpenCL, what is arbitrary?

- Essential: the semantics of the programming model (what does the program mean?)
- Arbitrary: the spelling of the programm

[DEMO: intro-01-hello-pyopencl]

To follow along: http://bit.ly/geilogpu20

Programming Approaches

Decisions that determine your approach to throughput computing:

- AOT vs JIT
- Meta vs not
- In-language vs Hybrid

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Why Arrays?

Arrays in Numpy

Core attributes of an array:

- Shape
- dtype (data type)
- Strides
- Pointer
- (Lifetime relationship)

Demo: Host Arrays

[DEMO: arrays-01-numpy]

Device Arrays

Want: An array object that works just like numpy arrays, but on the GPU

lssues:

- Which command queue? (Which context?)
- Synchronization?
- When to generate code? For which data types?

Demo: Device Arrays

[DEMO: arrays-02-pyopencl]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

 $y_i = f_i(x_i)$

where $i \in \{1, \ldots, N\}$.

Notation:

- ▶ x_i: inputs
- ▶ y_i: outputs
- ▶ *f_i*: (pure) functions (i.e. *no side effects*)

When does a function have a "side effect"?

In addition to producing a value, it

- modifies non-local state, or
- has an observable interaction with the outside world.

Map: Graph Representation

Embarrassingly Parallel: Examples

Surprisingly useful:

- Element-wise linear algebra: Addition, scalar multiplication (*not* inner product)
- Image Processing: Shift, rotate, clip, scale, ...
- Monte Carlo simulation
- (Brute-force) Optimization
- Random Number Generation
- Encryption, Compression (after blocking)

[DEMO: patterns-01-elementwise]

_

Reduction

$y = f(\cdots f(f(x_1, x_2), x_3), \ldots, x_N)$

where N is the input size.

Also known as

- Lisp/Python function reduce (Scheme: fold)
- C++ STL std::accumulate

Reduction: Graph

Approach to Reduction

Can we do better?

"Tree" very imbalanced. What property of *f* would allow 'rebalancing'?

$$f(f(x,y),z) = f(x,f(y,z))$$

Looks less improbable if we let $x \circ y = f(x, y)$:

$$x \circ (y \circ z)) = (x \circ y) \circ z$$

Has a very familiar name: Associativity

Reduction: A Better Graph

Processor allocation?

Mapping Reduction to SIMD/GPU

- Obvious: Want to use tree-based approach.
- Problem: Two scales, Work group and Grid
 - to occupy both to make good use of the machine.
- In particular, need synchronization after each tree stage.
- Solution: Use a two-scale algorithm.

In particular: Use multiple grid invocations to achieve inter-workgroup synchronization.

[DEMO: patterns-02-reduction]

Scan

 $y_1 = x_1$ $y_2 = f(y_1, x_2)$: = : $y_{N} = f(y_{N-1}, x_{N})$

where N is the input size. (Think: N large, f(x, y) = x + y)

- Prefix Sum/Cumulative Sum
- Abstract view of: loop-carried dependence
- Also possible: Segmented Scan

Scan: Graph

Scan: Implementation

Scan: Implementation II

Problem:

Trees alone often don't provide sufficient concurrency

Idea:

Scan: Examples

Name examples of Prefix Sums/Scans:

- Anything with a loop-carried dependence
- One row of Gauss-Seidel
- One row of triangular solve
- Segment numbering if boundaries are known
- Low-level building block for many higher-level algorithms algorithms, e.g. predicate filter, sort
- FIR/IIR Filtering
- Blelloch '93

[DEMO: patterns-03-scan]

Assignment

Use PyOpenCL scan to

- Generate 10,000,000 uniformly distributed single-precision random numbers in [0, 1)
- \blacktriangleright Make a new array that retains only the ones $\leq 1/2$

Practice

[DEMO: patterns-04-scan-practice]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details GPU Architecture: Philosophy Communication / Synchronization

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details GPU Architecture: Philosophy Communication / Synchronizatio

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

"CPU-style" Cores

[Fatahalian '08]

Slimming down

[Fatahalian '08]

More Space: Double the Number of Cores

Even more

ALU	ALU		ALU
	ALU	ALU	ALU
ALU	ALU	ALU	ALU
		ALU	ALU

[Fatahalian '08]

SIMD

Fetch/ Decode	
ALU (Execute)	
Execution Context	

Idea #2: SIMD

Amortize cost/complexity of managing an instruction stream across many ALUs

SIMD

Idea #2: SIMD

Amortize cost/complexity of managing an instruction stream across many ALUs

SIMD

Idea #2: SIMD

Amortize cost/complexity of managing an instruction stream across many ALUs

[Fatahalian '08]

Latency Hiding

- Latency (mem, pipe) hurts non-OOO cores
- Do something while waiting

What is the unit in which work gets scheduled on a GPU?

A SIMD vector ('warp' (Nvidia), 'Wavefront' (AMD))

How can we keep busy?

Change in architectural picture?

After:

GPUs: Core Architecture Ideas

Three core ideas:

GPU Abstraction: Core Model Ideas

How do these aspects show up in the model?

- View concrete counts as an implementation detail
 - SIMD lane
 - Core
 - Scheduling slot
- Program as if there are infinitely many of them
- Hardware division is expensive
 Make nD grids part of the model to avoid it
- Design the model to expose *extremely* fine-grain concurrency (e.g. between loop iterations!)
- Draw from the same pool of concurrency to hide latency

'SIMT' and Branches

[Fatahalian '08]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details GPU Architecture: Philosophy Communication / Synchronization

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here?

Host-Device Concurrency

- Host and Device run asynchronously
- Host submits to queue:
 - ComputationsMemory Transfers
 - Sync primitives
- Host can wait for:
 - drained queue
 - Individual "events"
- Profiling

Demo: Timing GPU Work

[DEMO: gpu-01-timing-queues]

How do you find the execution time of a GPU kernel?

- Do a few 'warm-up' calls to the kernel
- Drain the queue
- Start the timer
- Run the kernel enough times to get to a few milliseconds run time
- Drain the queue
- Stop the timer, divide by the number of runs

How do you do this asynchronously?

- Enqueue 'markers' instead of draining the queue.
- Find timing of 'markers' after work is complete

Demo: Intra-Group Synchronization

[DEMO: gpu-02-barrier-sync]

'Conventional' vs Atomic Memory Update

Atomic Operations: Compare-and-Swap

```
#include <stdatomic.h>
    _Bool atomic_compare_exchange_strong(
    volatile A* obj,
    C* expected, C desired );
```

What does volatile mean?

Memory may change at any time, do not keep in register.

What does this do?

- Store (*obj == *expected) ? desired : *obj into *obj.
- Return true iff memory contents was as expected.

How might you use this to implement atomic FP multiplication?

Read previous, perform operation, try CAS, maybe retry

Memory Ordering

Why is Memory Ordering a Problem?

- Out-of-order CPUs reorder memory operations
- Compilers reorder memory operations

What are the different memory orders and what do they mean?

- Atomicity itself is unaffected
- Makes sure that 'and then' is meaningful

Types:

- Sequentially consistent: no reordering
- Acquire: later loads may not reorder across
- Release: earlier writes may not reorder across
- Relaxed: reordering OK

Can we just do locking like we might do on a CPU?

- Indepdendent forward progress of all threads is not guaranteed.
 (two watil meanths)
 - (true until recently)
- But: Device partitioning can help!

Discussion: Ways to Realize SpMV

What to parallelize over? Advantages/disadvantages?

GPU Communication 'Scopes'

Hardware	CL adjective	CL noun	CUDA
SIMD lane	private	Work Item	Thread
SIMD Vector		Subgroup	Warp
Core	local	Workgroup	Thread Block
Processor	global	NDRange	Grid
Machine			_

GPU: Communication

What forms of communication exist within each scope?

Subgroup: Shuffles (!)
Workgroup:

Scratchpad + barrier
local atomics + mem fence

Grid: Global atomics
Machine:

Global atomics (requires coherence)
Queues
Events

Host-Device Data Exchange

Sad fact: Must get data onto device to compute

- Transfers can be a bottleneck
- ▶ If possible, overlap with computation
- Pageable memory incurs difficulty in GPU-host transfers, often entails (another!) CPU side copy
- "Pinned memory": unpageable, avoids copy
 - Various system-defined ways of allocating pinned memory

"Unified memory" (CUDA)/"Shared Virtual Memory" (OpenCL):

- GPU directly accesses host memory
- Main distinction: Coherence
 - "Coarse grain": Per-buffer fences
 - "Fine grain buffer": Byte-for-byte coherent (device mem)
 - "Fine grain system": Byte-for-byte coherent (anywhere)

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement Performance Models Memory Systems GPU Memory Systems Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement Performance Models

Memory Systems GPU Memory Systems Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

Performance: Ballpark Numbers?

Bandwidth host/device:

PCle v2: 8 GB/s — PCle v3: 16 GB/s — NVLink: 200 GB/s

Bandwidth on device:

Registers: ${\sim}10$ TB/s — Scratch: ${\sim}10$ TB/s — Global: 500 GB/s

Flop throughput?

10 TFLOPS single precision - 3 TFLOPS double precision

Kernel launch overhead?

10 microseconds

Good source of details: Wikipedia: List of Nidia GPUs

Qualifying Performance

What is good performance?

- Is speed-up (e.g. GPU vs CPU? C vs Matlab?) a meaningful way to assess performance?
- ▶ How else could one *form an understanding* of performance?

Modeling: how understanding works in science

Hager et al. '17 Hockney et al. '89

A Story of Bottlenecks

Imagine:

- A bank with a few service desks
- A revolving door at the entrance

What situations can arise at steady-state?

- Line inside the bank (good)
- Line at the door (bad)

What numbers do we need to characterize performance of this system?

- P_{peak}: [task/sec] Peak throughput of the service desks
- I: [tasks/customer] Intensity
- b: [customers/sec] Throughput of the revolving door

A Story of Bottlenecks (cont'd)

P_{peak}: [task/sec] Peak throughput of the service desks

- I: [tasks/customer] Intensity
- b: [customers/sec] Throughput of the revolving door

What is the aggregate throughput?

Bottleneck is either

- the service desks (good) or
- the revolving door (bad).

$$P \leq \min(P_{\mathsf{peak}}, I \cdot b)$$

Hager et al. '17

Application in Computation

Translate the bank analogy to computers:

- Revolving door: typicallly: Memory interface
- Revolving door throughput: Memory bandwidth [bytes/s]
- Service desks: Functional units (e.g. floating point)
- P_{peak}: Peak FU throughput (e.g.: [flops/s])
- Intensity: e.g. [flops/byte]

Which parts of this are task-dependent?

- All of them! This is not a model, it's a guideline for making models.
- Specifically P_{peak} varies substantially by task

$$P \leq \min(P_{\text{peak}}, I \cdot b)$$

A Graphical Representation: 'Roofline'

Plot (often log-log, but not necessarily):

X-Axis: Intensity

Y-Axis: Performance

What does our inequality correspond to graphically?

 $P \leq \min(P_{\mathsf{peak}}, I \cdot b)$

What does the shaded area mean?

Achievable performance

Hager et al. '17

Example: Vector Addition

Find the parameters and make a prediction.

Machine model:

• Memory Bandwidth: e.g. b = 10 GB/s

Application model:

Demo: Performance Modeling

[DEMO: perf-01-modeling]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement Performance Models Memory Systems GPU Memory Systems

Tools and Abstractions: Where to from here?

Memory Systems: Bird's Eye View

Somewhere Behind the Interconnect: Memory

Performance characteristics of memory:

Bandwidth

Latency

Flops are cheap Bandwidth is money Latency is physics

▶ M. Hoemmen

Minor addition (but important for us)?

Bandwidth is money and code structure

Latency is Physics: Distance

Latency is Physics: Electrical Model

Latency is Physics: DRAM

Alignment

Alignment describes the process of matching the base address of:

- Single word: double, float
- SIMD vector
- Larger structure

To machine granularities:

- Natural word size
- Vector size
- Cache line

Q: What is the performance impact of misalignment?

Performance Impact of Misalignment

Matched_structure

Matched_structure

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement Performance Models Memory Systems GPU Memory Systems Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

Parallel Memories

Problem: Memory chips have only one data bus.

So how can multiple threads read multiple data items from memory simultaneously?

Broadly:

- Split a really wide data bus, but have only one address bus
- Have many 'small memories' ('banks') with separate data and address busses, select by address LSB.

Where does banking show up?

- Scratchpad
- GPU register file
- Global memory

local_variable[lid(0)]

local_variable[BANK_COUNT*lid(0)]

local_variable[(BANK_COUNT+1)*lid(0)]

local_variable[ODD_NUMBER*lid(0)]

local_variable[2*lid(0)]

local_variable[f(gid(0))]

GPU Global Memory System

Ι

GCN Optimization Manual, AMD

GPU Global Memory Channel Map: Example

Byte address	decomposition:
--------------	----------------

Address	Bank	Chnl	Address	
31 ?	' 11	108	7	0

Implications:

- Transfers between compute unit and channel have granularity
 - Reasonable guess: warp/wavefront size × 32bits
 - Should strive for good utilization ('Coalescing')
- Channel count often not a power of two -> complex mapping
 - Channel conflicts possible
- Also banked
 - Bank conflicts also possible

GPU Global Memory: Performance Observations

Key quantities to observe for GPU global memory access:

Utilization

Are there any guaranteed-good memory access patterns?

Unit stride, just like on the CPU

- Need to consider access pattern across entire device
- ► GPU caches: Use for spatial, not for temporal locality
- Switch available: L1/Scratchpad partitioning
 - Settable on a per-kernel basis
- Since GPUs have meaningful caches at this point: Be aware of cache annotations (see later)

Demo: Matrix Transpose

[DEMO: perf-04-transpose]

Performance: Limits to Concurrency

Concurrency is essential to good (memory) latency hiding. What limits the amount of concurrency exposed to GPU hardware?

Amount of register space Important: Size of (per-lane) register file is variable
Amount of scratchpad space Size of (per-group) scratchpad space is variable
Workgroup size
Available ILP
Number of scheduler (warp/group) slots (not really)
Synchronization

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Performance Models Memory Systems GPU Memory Systems Lowest Accessible Abstraction: Assembly

Tools and Abstractions: Where to from here?

A Basic Processor: Closer to the Truth

A Very Simple Program

 4:
 c7 45 f4 05 00 00 00 movl

 int a = 5;
 b:
 c7 45 f8 11 00 00 00 movl

 int b = 17;
 12:
 8b 45 f4
 mov

 int z = a * b;
 15:
 0f af 45 f8
 imul

 19:
 89 45 fc
 mov

 1c:
 8b 45 fc
 mov

\$0x5,-0xc(%rbp) \$0x11,-0x8(%rbp) -0xc(%rbp),%eax -0x8(%rbp),%eax %eax,-0x4(%rbp) -0x4(%rbp),%eax

Things to know:

- Question: Which is it?
 - <opcode> <src>, <dest>
 - <opcode> <dest>, <src>
- Addressing modes (Immediate, Register, Base plus Offset)
- 0xHexadecimal

A Very Simple Program: Another Look

4:	c7	45	f4	05	00	00	00	movl	
b:	c7	45	f8	11	00	00	00	movl	
12:	8b	45	f4					mo v	
15:	0f	af	45	f8				imul	
19:	89	45	fc					mo v	
1c:	8b	45	fc					mo v	

\$0x5,-0xc(%rbp) \$0x11,-0x8(%rbp) -0xc(%rbp),%eax -0x8(%rbp),%eax %eax,-0x4(%rbp) -0x4(%rbp),%eax

A Very Simple Program: Intel Form

4:	c7	45	f4	05	00	00	00	mov	DWORD PTR	[rbp-0xc],0x
b:	c7	45	f8	11	00	00	00	mov	DWORD PTR	[rbp-0x8],0x
12:	8b	45	f4					mov	eax,DWORD	PTR [rbp-0xc
15:	Of	af	45	f8				imul	eax,DWORD	PTR [rbp-0x8
19:	89	45	fc					mov	DWORD PTR	[rbp-0x4],ea
1c:	8b	45	fc					mov	eax,DWORD	PTR [rbp-0x4

- "Intel Form": (you might see this on the net) <opcode> <sized dest>, <sized source>
- Previous: "AT&T Form"
- Goal: Reading comprehension.
- Don't understand an opcode? <u>https://en.wikipedia.org/wiki/X86_instruction_listings</u>

Assembly Loops

int main()	0:	55							push	%rbp
int main()	1:	48	89	e5					mov	%rsp,%rbp
{	4:	c7	45	f8	00	00	00	00	movl	\$ 0x0,-0x8(%rbp)
int $y = 0$ i	b:	c7	45	fc	00	00	00	00	movl	\$0x0,-0x4(%rbp)
$\prod_{i=1}^{n} y_{i} = 0, i, i \in \mathbb{N}$	12:	eb	0a						jmp	1e <main+0x1e></main+0x1e>
tor $(i = 0;$	14:	8b	45	fc					mov	-0x4(%rbp),%eax
v < 10 + +i	17:	01	45	f8					add	%eax,-0x8(%rbp)
y < _0, II)	1a:	83	45	fc	01				addl	\$0x1,-0x4(%rbp)
у += і;	1e:	83	7d	f8	09				cmpl	\$0x9,-0x8(%rbp)
return v:	22:	7 e	f0						jle	14 <main+0x14></main+0x14>
1	24:	8b	45	f8					mov	-0x8(%rbp),%eax
ſ	27:	c9							leaveq	
	28:	c3							retq	

Things to know:

- Condition Codes (Flags): Zero, Sign, Carry, etc.
- Call Stack: Stack frame, stack pointer, base pointer
- ABI: Calling conventions

Demo Instructions: C \rightarrow Assembly mapping from https://github.com/ynh/cpp-to-assembly

Demo: Assembly Reading Comprehension

[DEMO: perf-02-assembly-reading]

```
Demo: Source-to-assembly mapping Code to try:
```

```
int main()
{
    int y = 0, i;
    for (i = 0; y < 10; ++i)
        y += i;
    return y;
}</pre>
```


A Glimpse of a More Modern Processor

[David Kanter / Realworldtech.com]

PTX: Demo

[DEMO: perf-03-ptx-sass] Nvidia PTX manual

SPIR-V

Currently: C (OpenCL C, GLSL, HLSL) used as intermediate representations to feed GPUs. Downsides:

- Compiler heuristics may be focused on human-written code
- Parsing overhead (preprocessor!)
- C semantics may not match (too high-level)

SPIR-V:

- Goal: Common intermediate representation ("IR") for all GPU-facing code (Vulkan, OpenCL)
- "Extended Instruction Sets":
 - General compute (OpenCL/CUDA) needs: pointers, special functions
- Different from "SPIR" (tweaked LLVM IR)

SPIR-V Example

[...]

```
%2 = OpTypeVoid
 %3 = OpTypeFunction %2
                                              : void ()
 %6 = OpTypeFloat 32
                                              ; 32-bit float
 \%7 = OpTypeVector \%6 4
                                              : vec4
 %8 = OpTypePointer Function %7
                                              ; function-local vec4*
%10 = OpConstant \%6 1
%11 = OpConstant %6 2
%12 = OpConstantComposite %7 %10 %10 %11 %10 ; vec4(1.0, 1.0, 2.0, 1.0
%13 = OpTypeInt 32 0
                                              ; 32-bit int, sign-less
%14 = OpConstant %13 5
%15 = OpTypeArray %7 %14
%34 = OpLoad %7 %33
%38 = OpAccessChain %37 %20 %35 %21 %36 ; s.v[2]
%39 = OpLoad %7 %38
%40 = OpFAdd %7 %34 %39
      OpStore %31 %40
      OpBranch %29
%41 = OpLabel
                                              ; else
%43 = OpLoad %7 %42
%44 = OpExtInst %7 %1 Sqrt %43
                                              ; extended instruction sq
%45 = OpLoad \%7 \%9
%46 = OpFMul %7 %44 %45
      OpStore %31 %46
```

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here? Convergence, Differences in Machine Mapping Code Transformation and Machine Models Domain Specific Languages

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here? Convergence, Differences in Machine Mapping Code Transformation and Machine Models Domain Specific Languages

The OpenCL model as a machine abstraction

Ideas:

- Abstract, n-dimensional index of cores
 - Limited communication/synchronization between cores
- Abstract, n-dimensional index of SIMD lanes with slightly more ability to communicate
 - Barriers and atomics
- ► Fairly implicit represenation of actual SIMD width

How would we achieve a more explicit representation of the hardware lane count?

Use it as the length of the fastest-varying lane axis.

Intel SPMD Program Compiler (ISPC)

Goal: predictable vectorization of x86 code Idea:

- Start from the CUDA/OpenCL model
- taskIndex for core index, programIndex for SIMD lane index
- programIndex is precisely the lane count (or 2x)
- Warn about code that gets scalarized
- uniform and varying types

[DEMO: lang-01-ispc]

https://ispc.github.io/

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here? Convergence, Differences in Machine Mapping Code Transformation and Machine Models Domain Specific Languages

Loopy is a code generator for computation with arrays.

Performance: human 'in the loop' for the foreseeable future.

- Capture math at a high level; target number crunching
- Progressively 'lower' through manual transformations
- Observe and control optimization steps
- 'Help me write the CUDA C/ISPC/... I would write'

Primary design constraint: Single Program Representation from UI to code gen

Must work for:

- Humans and Machines
- High Level and Fully Specified Hardware Mapping
- Static and (moderately) Data-Dependent Control Flow

Loopy: Program Representation

Polyhedron

{

Tree of Polyhedra

- (DAG of) Statements
- Per-loop 'mode' (seq/par)

= Semantics

Loopy: Execution and Transformation

Granularity: 'Kernel'

- May lower to multiple GPU 'kernels'
- One 'coherent computational step'

Transformations

```
knl = lp.split_iname(knl, "i", 16)
```


Loopy Demo

[DEMO: loopy-01-rank-one]

- Seen: Just-in-time mode in Python
- Also possible: Ahead-of-time mode from command line or Makefile

Kernel IR: Design Aspects

Criteria :

- Single shared medium across tools
- Shared medium between human and machine
- Ease of transformation
- Specified hardware mapping (no heuristics!)

Other very recent IRs:

- C. Lattner, J. Pienaar "MLIR Primer: A Compiler Infrastructure for the End of Moore's Law." (2019).
- R. Baghdadi et al. "Tiramisu: A polyhedral compiler for expressing fast and portable code." Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization. IEEE Press, 2019.
- T. Ben-Nun et al. "Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs.", SC '19.

More demos

- ► [DEMO: loopy-02-a-more-complex-code]
- ► [DEMO: loopy-03-fortran]
- ► [DEMO: loopy-04-data-layout]
- ► [DEMO: loopy-05-reduction]
- [DEMO: loopy-06-pde-to-code]

Basic Code Transforms

- Unroll
- Stride changes (Row/column/something major)
- Prefetch
- Precompute
- Tile
- Reorder loops
- Fix constants
- Parallelize (Thread/Workgroup)
- Affine map loop domains
- Texture-based data access
- Naming of array axes
- Loop collapse

Less Basic Code Transforms

- Kernel Fusion
- Splitting of Scans and Reductions
- Global Barrier by Kernel Fission
- Explicit-SIMD Vectorization
- Reuse of Temporary Storage
- $\blacktriangleright \ \mathsf{SoA} \leftrightarrow \mathsf{AoS}$
- Buffering / Storage substitution
- Save flops using Distributive Law
- Arbitrary nesting of Data Layouts
- Realization of ILP

Further Features

- A-priori bounds checking
- Automatic Testing (against unopt. version)
- Symbolic operation counts
 - ► Flops
 - Memory access / Footprint size
 - Synchronization
- One Transformation Chain per Target Arch
- Script-Driven Transformation:
 - Share Transform Code
 - Build Transformation Abstractions
 - Build Simple Autotuners

Loopy: Example Users

- Firedrake finite element framework: <u>https://arxiv.org/abs/1903.08243</u>
- Dune PDElab finite element framework: http://arxiv.org/abs/1812.08075
- Pystella stencil-based cosmology solver: https://arxiv.org/abs/1909.12843, https://arxiv.org/abs/1909.12842
- Computational neuroscience: <u>https://doi.org/10.3389/fninf.2018.00068</u>
- SIMD/SIMT for chemical kinetics: https://doi.org/10.1016/j.combustflame.2018.09.008
- (My own numerics codes: Pytential, Grudge, Meshmode)

Conclusions: Loopy

- Goal: Allow near-peak performance (with some effort)
- 'Performance transparence'
- STITUD CORT INDUCED CORT (MIT) Best if no further loop transforms are carried out
 - What is a good abstraction for the 'next layer down' from a tool like loopy?
- Common theme:

Separation of concerns vs. Performance

- Human-in-the-loop seems unavoidable
 - Research guestion: What should the user interface to a compiler look like?

https://documen.tician.de/loopy

For me on Gittub

Play With Loopy Yourself

[DEMO: loopy-07-practice]

Outline

Python and GPUs

Arrays

Parallel Patterns

GPUs: More Details

Performance: Expectations and Measurement

Tools and Abstractions: Where to from here? Convergence, Differences in Machine Mapping Code Transformation and Machine Models Domain Specific Languages

Defining an Expression DSL: Demo

- ► [DEMO: dsl-01-expression-trees]
- ► [DEMO: dsl-01-traversing-trees]
- [DEMO: dsl-03-defining-node-types]

https://documen.tician.de/pymbolic/