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Dirac/"Bra-ket” notation

e common notation for quantum states i.e. vectors in a complex Hilbert spaces V

|y denotes a vector in a vector space V

(| denotes a linear functional on V, i.e. is an element of V*

e we can identify a vector with a linear functional, i.e. a "ket” with a "bra”, and vice
versa

() : V. x V. — C denotes the inner product
[y (| : V. x V— V® V denotes the outer product
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A quantum bit

Postulate 1 [Nielsen and Chuang(2000), page 80]

Associated to any isolated physical system is a complex vector space with inner product
(that is, a Hilbert space) known as the state space of the system. The system is completely
described by its state vector, which is a unit vector in the system’s state space.
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A quantum bit

A quantum bit (qubit) is a quantum mechanical system with a two-dimensional state
space. A state |®) is a unit vector in C2. Given an orthonormal basis |©0) , |©1), a qubit
can be written as

|®) = ao |¢o) + a1 |p1), withap,a; € Cand (®|P) = 100’2 + |a1|2 =1. (1)
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A quantum bit

A quantum bit (qubit) is a quantum mechanical system with a two-dimensional state
space. A state |®) is a unit vector in C2. Given an orthonormal basis |¢0) , |1), a qubit
can be written as

|®) = ag |po) + a1 |¢1), with ag,a; € Cand (®|®) = |ag|* + |a1|> = 1. (1)

An example using states of hydrogen atoms

ground state |po) = |0) = <(1))
e == (})

first excited state

Q@

SINTEF



A quantum bit

A quantum bit (qubit) is a quantum mechanical system with a two-dimensional state
space. A state |®) is a unit vector in C2. Given an orthonormal basis |¢0) , |1), a qubit
can be written as

’@) = dp ‘gDo) —+ a; ‘@1) , with ap,a; € Cand <(I)"I)> = ]a0]2 + ‘01‘2 =1. (1)

An example using states of hydrogen atoms

ground state lo) = |0) == <é>

first excited state

Another example is photon polarization.
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A gquantum bit

A quantum bit (qubit) is a quantum mechanical system with a two-dimensional state
space. A state |®) is a unit vector in C2. Given an orthonormal basis |¢0) , |©1), a qubit
can be written as

|®) = ao |¢o) + a1 |p1), withag,a; € Cand (®|P) = ’00’2 + |a1|2 =1. (1)

In contrast to classical mechanics, a superposition of basis states is possible. An example
; 1 1
is the state | @) = v |0) + i 11).
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Bloch sphere and superposition

The general state of a qubit can be written using polar
representation

@) = rge® |0) + rie?t [1). (2)

The global phase is irrelevant (for reasons explained later), we
can multiply the state with e~ and our (equivalent) state is

|®) =19 |0) +re? 1), 6 =6, — 6. (3)
Using that we have a unit vector, we can write
|6) = cos(6/2) |0) + sin(6/2)e'” |1), (4)

where 0 < 6 < m,and 0 < ¢ < 27.

6
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Multiple qubits

Postulate 4 [Nielsen and Chuang(2000), page 94]

The state space of a composite physical system is the tensor product of the state spaces of
the component physical systems. Moreover, if we have systems numbered 1 through n,
and system number i is prepared in the state |®;), then the joint state of the total system
is |®1) ® |Pg) ® -+ - ® |Pp).
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Reminder: Tensor product

aib:

a by ayby
<a2> ® <b2) = | 4y, (5)
asby

a4 <b1,1 bl,z) a1y <b1,1 b1,2>

<al,1 (11,2> 2 <b1,1 b1,2> _ “\b21 byo “\b21 bap
as1 Ao b1 bao 4y 1 <b1,1 b1,2> s s <b1,1 b1,2>

“\b21 byo “\ba21 byo
aiibi1 aiibia aigsbii aigbin
aiibe1 aiibzo aigba1 aiobas
az1bi1 azibia azabii azobin

as1bs1 az1bzo asoba1 asobss

SINTEF




Multiple qubits

The general state |®) of n qubits is a unit vector in (C?)®" = C? ® - - - ® C2.
| ———

n times
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Multiple qubits

The general state |®) of n qubits is a unit vector in (C?)®" = C? ® - - - ® C2.
| ———
n times
Using the standard basis for C?, a basis for (C?)®" is given by the following 2" vectors

o _ _ T
|0),, :=100...00) =[0) ®[0) ®---®[0) ®]0) = (1,0 ... 0,0)
n digits
1), :=100...01) = [0)® |[0) ®---®|0) ® |1) = (0,1 ... 0,0)"
n digits (7)

— _ _ T
2" —-1),=[11...11) = ) ®[1)®---@|1)®]|1) = (0,0 ... 0,1)
n digits
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Multiple qubits

A general state can therefore be expressed as

Co
on_1 C1
@) = > aili) =
i=0 Con_o
Con_1

2"—1

d el =1, aeC

i=0
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Multiple qubits

A general state can therefore be expressed as

Co
1 C1 n—1
@)= aly=| : [, Y la’=1 caeC (8)
i—0 Con_3 i=0
Con_1q

Remark.
e The space ((C2)®" is a 2"-dimensional space. The dimension grows exponentially
with the number of qubits.
e The state space of n classical bits, i.e., a binary string {0, 1}" is an n-dimensional
space. The dimension grows linearly with the number of bits.
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Product states and entanglement
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Product states and entanglement

A quantum state |®) € (C2)®" is a product state if it can be expressed as a tensor
product of n single qubits |®;), i.e.,

|B) =P ® - ® Py (9)
————

n times

Otherwise, it is entangled.

Examples.
e Product state: 3 (]00) + |01) + [10) + |11)) = % (10) + 1)) ® % (10) + 1))

e Entangled state: % (|00) + |11))
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Important states and conventions

e Two-qubit Bell states
(/00 + |11))

2(/00) — |11))
7z (01 +[10)
2 (j01) — |10)

(They form a maximally entangled basis, known as the Bell basis, of the
four-dimensional Hilbert space for two qubits.)
e Superposition states
+) = 25 (10) + 1))
=) =25 (10) = 1))
e Sometimes one writes |®1) |®3), which is short hand for |®1) @ |®5).
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Quantum evolution

Postulate 2 [Nielsen and Chuang(2000), page 81]

The evolution of a closed quantum system is described by a unitary transformation. That
is, the state |®) of the system at time t1 is related to the state |®’) of the system at time
t2 by a unitary operator U which depends only on the times t1 and t2,

') =U|®) (10)
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Operations on qubits

An operation applied by a quantum computer, which is also called a gate, to n qubits is a
unitary matrix C2"'*2", J

e A matrix is U unitary, if Ulu = uut = 1.

e Unitary matrices are norm-preserving, i.e., ||U |®) || = || |®) ||. This means that we
get back a quantum state, which is a unit vector.

e Quantum operations are linear.

e Quantum operations are reversible.
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Operations on qubits

An operation applied by a quantum computer, which is also called a gate, to n qubits is a
unitary matrix C2"'*2", J

e A matrix is U unitary, if Ulu = uut = 1.
e Unitary matrices are norm-preserving, i.e., ||U |®) || = || |®) ||. This means that we
get back a quantum state, which is a unit vector.
e Quantum operations are linear.
e Quantum operations are reversible.
This seems restrictive at first, but:
e A universal quantum computer is Turing-complete [Deutsch(1985)].

e All computations (including classical computations) can be madereversible
[Bennett(1973)].
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Notation for quantum circuits

qubit O
Wires represent qubits and gates are operations: qubit 1

qubit 2

Serially wired gates. The state BA |®) is represented as:

)

U

A
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Notation for quantum circuits

qubit O

qubit 1

Parallel gates:

qubit 2

qubit O

qubit 1

qubit 2

I

V

oy
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Notation for quantum circuits

qubit) —— qubit O

qubit 1 —.— ~ qubit 1
qubit 2 qubit2 — v

e If we have a product state [¢)g) ® 1) ® |1)2) then we have
I®URV)[to) @ [¢h1) @ [¢ha) = [tho) @ U [¢h1) @ V [1)2)

Parallel gates:

oy

(11)
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Notation for quantum circuits

qubit) —— qubit O

qubit 1 —.— ~ qubit 1
qubit 2 qubit2 — v

e If we have a product state [¢)g) ® 1) ® |1)2) then we have
I®URV)[to) @ [¢h1) @ [¢ha) = [tho) @ U [¢h1) @ V [1)2) (11)

e But for a general (entangled) state |¥) the action of I ® U ® V cannot be determined
in such a simple way. We need to explicitly calculate the effect of the 2" x 2™ matrix
on the state |¥). This is essentially the reason why we in general need exponential
amounts of memory (or time) to keep track of the full state in 2"-dimensional

complex space.
16 SINTEF
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Examples of 1 qubit gates

1 1
_ 1
Hadamard gate H = 7 <1 1

H> =LH[0) =|+) ,H|1) = |-) H|+) = |0) ,H|-) = |1).

Pauli gates X = oy = <0 1). We have that

> . We have that

10
X? =1,X]0) = |1) axlg =10),X|+) = |4) . X|=) = = [-).
i O

PauligatesY = o, =

0 -1

Phase shift gates Ry = (é ei‘l’)

o

1+i 1—i
1-i 1+1

Square root of NOT gate vX = 1 (

>.WehavethatY2 =LY|0)=1i[1),Y|1) =

Pauligates Z = 0, = (1 0 ).We have that Z2 = I,Z|0) = |0),Z|1) =

—i|0).

—[1).

>. We have that vXv/X = X.
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Examples of 2 qubit gates

1 0 0O e
e controlled not gate CNOT = CX = 0 100 =

0 001 —o—

0 010

It has the effect
CNOT |00) = |00) ,CNOT |01) = |01) ,CNOT |10) = |11) ,CNOT |11) = |10).
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Examples of 2 qubit gates

1 0 0O e
e controlled not gate CNOT = CX = 0 100 =

0 001 —o—

0 010

It has the effect
CNOT |00) = |00) ,CNOT |01) = |01) ,CNOT |10) = |11) ,CNOT |11) = |10).

e controlled U gate CU =

oo o~
ocor o
g oo
o

§ oo
S

|
#{
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Examples of 2 qubit gates

1 0 0O e
e controlled not gate CNOT = CX = 0 100 =

0 001 —o—

0 010

It has the effect
CNOT |00) = |00) ,CNOT |01) = |01) ,CNOT |10) = |11) ,CNOT |11) = |10).

e controlled U gate CU =

oo o~
ocor o
g oo
o

§ oo
S

|
#{

uio Uil
1000
¢ Note that :?: — _ 8 8 (1) é
01 0 O
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Universal quantum gate sets

A set G of quantum gates universal if one can approximate any unitary transformation on
any number of qubits with gates from G to any desired precision ¢, i.e. there is a sequence
of gates g1, . . . gx € G, such that

||U—Uk...U2U1|| <e. (12)

e The operator norm is defined by ||U — U’|| = max{y) wieh||vy|=1 || (U — U") [v) [|.

e U; =1I' ® g; ® I™ with appropriate I, m.
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Universal quantum gate sets

A set G of quantum gates universal if one can approximate any unitary transformation on
any number of qubits with gates from G to any desired precision ¢, i.e. there is a sequence
of gates g1, . . . gx € G, such that

||U—Uk...U2U1|| <e. (12)

e The operator norm is defined by ||U — U’|| = max{y) wieh||vy|=1 || (U — U") [v) [|.

e U; =1I' ® g; ® I™ with appropriate I, m.

Examples of universal gate sets:
e G={CNOT,H,S = Rr/o, T = RW/4}
e (0FM)/205(0/2)  —e (¢=2)/25in(0/2)
e G= {CNOT7 U(07 b, A)}’ where U<0’ ®, )‘) = < el(e=2)/25in(0/2) (M) /26in(0/2) )
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Solovay-Kitaev theorem

Let G be a universal gate set that is closed under inverses (i.e. if g € G then g_1 € G) for
SU(n) and ¢ > 0 a desired accuracy. Then there is a constant c such that for any

U € SU(n) there exits a finite sequence S of gates from G of length O(log®(1/¢)) such
that d(U, S) < e.

This SK algorithm provides a proof of the theorem and provides an algorithm to find the
sequence § efficiently on a classical computer with running time O(log?71(1/¢)).

SINTEF
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Computational complexity

For an efficient algorithm we require that the circuit contains polynomially many gates in
the number of qubits n and each gate has a compact representation in the universal gate
set provided by the quantum computer.
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Gottesman-Knill theorem

Beware! A quantum circuit using only the following elements can be simulated efficiently
on a classical computer:

e Preparation of qubits in computational basis states,

e Quantum gates from the Clifford group (Hadamard gates, controlled NOT gates,
Phase Gate), and

e Measurements in the computational basis.

SINTEF
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How do we obtain information?

SINTEF



23

How do we obtain information?

Postulate 3 [Nielsen and Chuang(2000), page 84]

Quantum measurements are described by a collection {M, } of measurement operators.
[..]If the state of the quantum system is |¢)) immediately before the measurement then
the probability that result m occurs is given by

p(m) = (M} M |v)) (13)

and the state of the system after the measurement is

M [0} | \/p(m)’

The measurement operators satisfy the completeness equation M,Tan =

4

SINTEF
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Measurement

e The completeness equation expresses the fact that probabilities sum to one:

Do p(m) = 3 (HMAMlv) = (613 MMt} = (1) = 1

m

(15)
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Measurement

e The completeness equation expresses the fact that probabilities sum to one:

> pm) = (W|MhMy|p) = wrZM*M W) = (@l) =1 (15)

m

e Animportant example is "measurement of a qubit in the computational basis”:
My = |0) (0], M; = |1) (1]. Notice M| = M;, and MiM; = M; for i € {0, 1}.
Given a state |¢)) = a |0) + b|1), we have that

- p(0) = (Y|M{Mo|)) = (¥Mo|e)) = (1[0} (0]4) =@ (0]0) (0[0) a = |a|?, and the
state after measurement is My |¢) /|a| = a/|a| |0) = €% |0).
- p(1) = |b|? and the resulting state is b/|b| |1) = €' |1)
e Measurement w.rt. to the |+) basis.

My =1/v2 (é é),fx[l =1/V2 (2 _01>

- p(0) = 1/2(a + b)(a + b), and the state after measurement is —2_ |0).

’ /2p(0)
- p(1) = 1/2(a — b)(a — b) and the resulting state is m (1) SINTEF
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Measurement

e Let’s say we want to measure a state |¢) in the basis given by a set of orthonormal
vectors u;.

e However, we can only "physically” measure in the computational basis P; = |i) (i|.
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Measurement

e Let’s say we want to measure a state |¢) in the basis given by a set of orthonormal
vectors u;.
e However, we can only "physically” measure in the computational basis P; = |i) (i|.

Idea: Apply basis change to computational basis before measurement.
The way to achieve this is to construct the unitary matrix U, where the columns consist of
the vectors u; and apply the inverse of U before measurement.

pu(m) = (Y|UPLPRUT ) = (¢'|PhPuly’),  with [¢/) = UT [y). (16)

25 SINTEF



Measurement

e Let’s say we want to measure a state |¢) in the basis given by a set of orthonormal

vectors u;.
e However, we can only "physically” measure in the computational basis P; = |i) (i|.

Idea: Apply basis change to computational basis before measurement.
The way to achieve this is to construct the unitary matrix U, where the columns consist of

the vectors u; and apply the inverse of U before measurement.
pu(m) = (P|UPLPuUT|0) = (' [PLPnl¢),  with [o/) =UT|g).  (16)

This is how we ended up with the matrices 1\70, 1\71 on the previous slide.

SINTEF
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Measurement

e A word of caution: It is wrong to think of a quantum state as a probability
distribution.

e Coefficients are complex numbers unrestricted in sign, but probabilities are real,
positive numbers.

e A quantum state induces a probability distribution through measurement.
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26

Measurement

A word of caution: It is wrong to think of a quantum state as a probability
distribution.

Coefficients are complex numbers unrestricted in sign, but probabilities are real,
positive numbers.

A quantum state induces a probability distribution through measurement.
Measurement is irreversible.
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Measurement

e A word of caution: It is wrong to think of a quantum state as a probability
distribution.

e Coefficients are complex numbers unrestricted in sign, but probabilities are real,
positive numbers.

e A quantum state induces a probability distribution through measurement.
e Measurement is irreversible.
e Global phase: Consider |¢) = e~ [)). Then we have

p(m) = (M} Mn|o) = € (| M Mne ™™ [9)) = (16| M Mpn|1)) (17)

SINTEF
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Expectation value of an observable

Given a state |¢) and an observable A, the expectation value of A in the state ¢ is given by

(A)p = (9| Alg) = ZMW, . (18)

Here, A is a self-adjoint operator on the Hilbert space C*", and {\;, [1/;)} is the set of
eigenvalues and eigenvectors of A.

SINTEF



No-cloning principle
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No-cloning principle

Let |¢) be an arbitrary quantum state on n qubits.
3 a unitary matrix that maps |¢) ® |0) to |¢) ® |¢).

Proof.
Suppose there exists such a U. Then we have

Ulp1) ®|0) = [¢1) @ |¢1)
Ulga) ®@[0) = |p2) ® |¢2)
It follows that
(¢1]¢2) = (¢1]¢2) (0]0) = ((¢1] ® (0[)(|¢2) ® [0)) (
= ((¢1] © (0)UTU(|62) ® |0)) = ((¢1] @ (@1])(|92) @ [d2)) = (d1]b2)”

This is only true if (¢1]¢2) is 0 or 1. So |¢1), |¢p2) are not general states.

20)
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How to solve combinatorial optimization problems on quantum computers
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Quantum evolution

30

Postulate 2 [Nielsen and Chuang(2000), page 81]

The evolution of a closed quantum system is described by a unitary transformation. That
is, the state |®) of the system at time t; is related to the state |®’) of the system at time ty
by a unitary operator U which depends only on the times t; and t9,

") =U|®) (21)

Let us derive the postulate.
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Schrodinger Equation

The evolution of an isolated pure quantum state |®) is described by the Schrédinger
equation (A = 1)

i% |®(t)) = H|D(t)), (22)

where H is the Hamiltonian of the system.
The Hamiltonian H is a Hermitian matrix, i.e., H = HT.

SINTEF



31

Schrodinger Equation

The evolution of an isolated pure quantum state |®) is described by the Schrédinger
equation (A = 1)

i% |®(t)) = H|D(t)), (22)

where H is the Hamiltonian of the system.
The Hamiltonian H is a Hermitian matrix, i.e., H = Hf. The solution is given by

|@(t)) = ™ |2(0)). (23)
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31

Schrodinger Equation

The evolution of an isolated pure quantum state |®) is described by the Schrédinger
equation (A = 1)

i% |®(t)) = H|D(t)), (22)

where H is the Hamiltonian of the system.
The Hamiltonian H is a Hermitian matrix, i.e., H = Hf. The solution is given by

|@(t)) = ™ |2(0)). (23)

What does e to the power of a (Hermitian) matrix mean?

SINTEF
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Exponentials of matrices

Exponential of a matrix defined through standard Taylor series
0 k
A A

e = F
k=0

SINTEF
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Exponentials of matrices

Exponential of a matrix defined through standard Taylor series

o0 4k
et = Z 7 (24)
k=0
Example: Easy, if A is a diagonal matrix
A1
eM
e An/ (25)
et
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Exponentials of matrices

Exponential of a matrix defined through standard Taylor series

Xk
et =) 4 (24)
223

Example: Easy, if A is a diagonal matrix
A1
A1

e A/ (25)

An

What about general Hermitian matrices?

32 SINTEF



Exponentials of Hermitian matrices

33

Theorem

For a Hermitian matrix H € C"*" there exist n orthonomal eigenvectors and all
eigenvalues are real. The matrix H admits the eigendecomposition

H = VAV!,

where the columns of V consist of the n orthonormal eigenvectors of A and the diagonal

entries of A are given by the corresponding eigenvalues.

(26)
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Exponentials of Hermitian matrices

33

Theorem

For a Hermitian matrix H € C"*" there exist n orthonomal eigenvectors and all
eigenvalues are real. The matrix H admits the eigendecomposition

H = VAV!,

where the columns of V consist of the n orthonormal eigenvectors of A and the diagonal

entries of A are given by the corresponding eigenvalues.

(26)

The exponential of a Hermitian matrix H can be calculated as

b s VAV VAR
ot =3 AV S VAT very
k=0 k=0

(27)
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Quantum evolution is unitary.

34

For a Hermitian matrix H and t € R, the matrix U = e
UUt =UU =1

—iHt

is a unitary matrix, i.e.,

SINTEF



Quantum evolution is unitary.

—iHt

For a Hermitian matrix H and t € R, the matrix U = e
UUt =UU =1

is a unitary matrix, i.e.,

Proof: We have that
it (e—th)T _ Ve—irtyt (Ve—iAtVT)T _ Ve-idtytyeittyt — 1

(e—th)T e~ _ .

(28)
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Can we find a Hamiltonian for a given unitary matrix?

35

iHt

Given a unitary matrix U we can always find a Hermitian matrix H such that U = e~

SINTEF



Can we find a Hamiltonian for a given unitary matrix?

iHt

Given a unitary matrix U we can always find a Hermitian matrix H such that U = e~

e Diagonalize U = VDV'. For all j find ); such that Djj = e~™t.
e Not unique, since we can multiply with e2"% k € Z.

35 SINTEF



Can we find a Hamiltonian for a given unitary matrix?

iHt

Given a unitary matrix U we can always find a Hermitian matrix H such that U = e~

e Diagonalize U = VDV'. For all j find ); such that Djj = e~™t.
e Not unique, since we can multiply with e2"% k € Z.

e Note that, if \;, |®;) is an eigenpair of H, then et |®;) is an eigenpair of U = e,

35 SINTEF
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Physics jargon

e Physicist call eigenvalues of a Hamiltonian for energies.
- These values are amounts of energy the system can have.
- They are all real and can be order from smallest to largest, A\ < Ay < -+ < A\,
e To each energy ); corresponds to an energy eigenstate.
- The energy eigenstate |v1) corresponding to the lowest energy is called ground state.
- The energy eigenstate |v9) , |[vs), ... are called first excited state, second excited state,
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Physics jargon

e Physicist call eigenvalues of a Hamiltonian for energies.
- These values are amounts of energy the system can have.
- They are all real and can be order from smallest to largest, A\ < Ay < -+ < A\,
e To each energy ); corresponds to an energy eigenstate.
- The energy eigenstate |v1) corresponding to the lowest energy is called ground state.
- The energy eigenstate |v9) , |[vs), ... are called first excited state, second excited state,

Example:

Electron sitting in the lowest shell is in the ground state

First excited state has the electron in the next shell up @

36
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The adiabatic theorem

"A physical system remains in its instantaneous eigenstate if a given perturbation is acting
on it slowly enough and if there is a gap between the eigenvalue and the rest of the
Hamiltonian’s spectrum.”
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The adiabatic theorem

"A physical system remains in its instantaneous eigenstate if a given perturbation is acting
on it slowly enough and if there is a gap between the eigenvalue and the rest of the
Hamiltonian’s spectrum.”

Consider a time dependent Hamiltonian

H(t) <at a > (29)

a —ot

A2 = £4/a% + (at)? (30)

The probability of a diabatic transition is
given by (Landau-Zener)

Pp = e2*/Ia (31)

37




Qauntum annealing

A predecessor of QAOA, quantum annealing (QA) has been widely studied for the purpose
of solving combinatorial optimization problems. To find the MaxCut configuration that
maximizes (H¢), we consider the following simple QA protocol:

Hoa(s) = —(sHc + (1 —s)Hp), s=¢t/T (32)

e Ground state for s = 0 is |+)".

e Ground state for s = 1 corresponds to solution encoded in He.

38 SINTEF



Methods to solve combinatorial optimization problems

¢ In adiabatic QA, the algorithm relies on the adiabatic theorem to remain in the
instantaneous ground state along the annealing path, and solves the computational
problem by finding the ground state at the end. To guarantee success, the necessary
run time of the algorithm typically scalesas T = (’)(l/Azmin), where
Amin = mingeo 1(A2(t) — A1(t)) is the minimum spectral gap. It turns out that for

hard instances, Anin is exponentially small with respect to the problem size.

39 SINTEF



Methods to solve combinatorial optimization problems
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amount of time in the worst case.
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Methods to solve combinatorial optimization problems

¢ In adiabatic QA, the algorithm relies on the adiabatic theorem to remain in the
instantaneous ground state along the annealing path, and solves the computational
problem by finding the ground state at the end. To guarantee success, the necessary
run time of the algorithm typically scalesas T = (’)(l/Azmin), where
Amin = mingeo 1(A2(t) — A1(t)) is the minimum spectral gap. It turns out that for
hard instances, Anin is exponentially small with respect to the problem size.

e Classical simulated annealing mimics adiabatic QA. But also takes exponential

amount of time in the worst case.
e The adiabatic algorithm (QAOA) can (at best) achieve Grover speedup.
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Solving combinatorial optimization problems

Example: weighted MAXCUT
e Given a graph G = (V, E) consisting of vertices V and
edges E width weights w;; > 0, for (i,j) € E.
e A cutis defined as a partition of the vertices V into two
disjoint subsets S, S.

e The cost function to be maximized is the sum of weights
of edges with vertices in the two different subsets.

. —1, ifedgeiisinsetS$S .
Assign x; = ] , then the cost function
+1, otherwise

is given by
=Y wiys 5 (1 %) (33)

(ij)€E
40

v ={0,1,2,3,4}

E ={(0,1,1.0),(0,2,2.0),
(2,3,1.0),(3,1,2.0),
(3,4,1.0), (4,2,1.0)}
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Types of approaches

Solving NP hard optimization problems.

e Heuristic algorithms. No polynomial run time guarantee; appear to perform well on
some instances.

e Approximate algorithms. Efficient and provide provable guarantees.
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M

Types of approaches

Solving NP hard optimization problems.

e Heuristic algorithms. No polynomial run time guarantee; appear to perform well on
some instances.

e Approximate algorithms. Efficient and provide provable guarantees.
With high probability we get a solution x* such that

C(x*)

s, C(x) > a, (34)

where 0 < a < 1 is the approximation ratio.
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Classical solution

e Calculating the cost of all partitions takes exponential time.
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Classical solution

e Calculating the cost of all partitions takes exponential time.

¢ Polynomial time algorithm is randomized partitioning: for each edge (i,j) € E
choose randomly S or § with 50%. Therefore, the expectation value of a cut
produced by random assignment can be written as follows:

Z wij * Pr((i,j) € cut) Zwe (35)

(ij)€E eGE

This produces a cut with expectation value of at least 0.5 times the maximum cut,
since ZeeE We is an upper bound.
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Classical solution

e Calculating the cost of all partitions takes exponential time.

¢ Polynomial time algorithm is randomized partitioning: for each edge (i,j) € E
choose randomly S or S with 50%. Therefore, the expectation value of a cut
produced by random assignment can be written as follows:

Z wij * Pr((i,j) € cut) Zwe (35)

(ij)€E eGE

This produces a cut with expectation value of at least 0.5 times the maximum cut,
since ZeeE We is an upper bound.

e Other polynomial approaches exist that involve semi-definite programming which
give cuts of expected value at least 0.87856 times the maximum cut.
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Express problem as ground state of Hamiltonian

0), if vertexi € §
e For each vertex we define |x;) = ) i _
1), if vertexi € §
e Observe that
07]0) =10
. 10) =10) »
0z 1) = —[1)
e The Hamiltonian encoding our problem is therefore
He= Y wy-(I"-I"@0cia"® 0, a1, (37)
(ij)€EE
where I™ denotes the identity matrix in (C2)®™
SINTEF
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Barbell example
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Barbell example

Observe that, e.g.,
e H.|00) =1/2(I®1— 0, ® 05) |00) = 1/2(|00) — 0,|0) ® 0, |0)) =
1/2(]00) —[0) ® |0)) = 0]00)
e H|01) =1/2(I®I— 0, ®0;)|01) = 1/2(|01) — 0,]|0) ® 0, |1)) =
) ®

1/2(]01) - |0) @ (=[1))) = 1[01)
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Barbell example

Observe that, e.g.,

e H.|00) =1/2(I®1— 0, ® 05) |00) = 1/2(|00) — 0,|0) ® 0, |0)) =
1/2(]00) —[0) ® |0)) = 0]00)
(
) ®

e H |01) =1/2(I®1— 0, ® 0,)|01) = 1/2(|01) — 0, |0) ® 0, |1)) =
1/2(]01) — [0

This means that

(=[1))) = 1/01)

¢ |00), and |11) are eigenkets of —H¢ with eigenvalue 0.
e |01), and |10) are eigenkets of —H¢ with eigenvalue —1.
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QAOA

(weighted) Max-Cut
1 o
H(; = Z iwij (I— O';OJZ)

(,k)EE

e Hcis sum of |E| local terms
e Hc is a diagonal matrix

(38)
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QAOA

(weighted) Max-Cut
1 o
HC = Z iwij (I — O';OJZ) (38)

(,k)EE

Hc is sum of |E| local terms

H¢ is a diagonal matrix

Hp= > o (39)

i€nodes

Hpg has only off-diagonal non-zero entries

Hpg induces a swap operation between neighboring qubits, and thus can move the
excitation around for the purpose of state transfer
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How to find quantum gates for QA?

We need to find gates for
e~ iHoa(s)

)

where
Hoa(s) = —(sH¢+ (1 —s)Hg), s=¢t/T

46
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Adding of Hamiltonians

If Hy, Hy are matrices (Hamiltonians), then

eH1+H2 75 eHl eHz

)

except when H; and Hy commute, i.e., H{Hy = HoH;.
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Adding of Hamiltonians

If Hy, Hy are matrices (Hamiltonians), then

H1+H2 75 eHl Hz

except when H; and Hy commute, i.e., HiHy = HoH;.
Trotterization, (Lie-Trotter-Suzuki product formula[Trotter(1959), Suzuki(1976)])

2
o i(Hi+Hy)t _ (e—lHre—lHr) ) <fn> (43)

First and second order versions
e—i(H1+H2)t _ e—iHlte—int 4 O (tZ)

e—i(H1+H2)t _ e—iHlt/Ze—inte—iHlt/Z + 0 (t3) (44)

47 SINTEF



48

Overall QAOA

1. Using 2p parameters y = v1,...,7, 8 = B1, ..., Bp, prepare state
|\IJ(7’ 5)> = UBpUCp "‘UBlUCI |+>®n> (45)

where the operators have the explicit form
n .
Up, = e~ BiHE _ H e—lﬂld(7
j=1

Ug = e~ iAHe _ H e—iWWj,k/z(I—OJ}U?)’
Uk)eE

2. Obtain (¥ (v, 8)|He|¥ (7, 5)).
3. Run an outer, classical, optimization loop to find v, 8 that minimizes the expectation
value (¥(v, B)|He|¥ (v, B)).
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How to obtain the expectation value

H¢ is a diagonal Hamiltonian, and we have that

Ho= Y C (47)
xe{0,1}n
Therefore,
(Up(7, B)HIY, (@, B)) = (Up(7,8)] Y CRIX)EITy(d, )
xe{0,1}n
= > (W7, B (x|, 5)) = Y Cx)p(x)
x€{0,1}n x€{0,1}"
(48)
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How to obtain the expectation value

H¢ is a diagonal Hamiltonian, and we have that

Ho= Y C (47)
xe{0,1}n
Therefore,
(Up(7, B)HIY, (@, B)) = (Up(7,8)] Y CRIX)EITy(d, )
xe{0,1}n
= > (W7, B (x|, 5)) = Y Cx)p(x)
x€{0,1}n x€{0,1}"
(48)

Remember that, given a random outcome x’, we only need to calculate the cost function
once.
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How to implement with gates efficiently?

j-th qubit
e~ Wi/2(-039%) can be implemented as k-th qubit S R, (—yw 1) |—
e Observe that e ™%ix/2l is 3 global phase and can be ignored
.
1 0 0O " 1 0 0 O
-
eaeroe= g oo 110 1)2 ("0 ) |0 00 1
0 010 0 010

_ e—iG/ZUZUZ

50 SINTEF
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How to implement with gates efficiently?

e~14% can be implemented as j-th qubit —— R«(203;) —
_( cos(0/2) —isin(0/2)
Rx(0) = <—isin(9/2) cos(6/2) > =0
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Error mitigation for NISQ devices
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Errors and what to do about it

¢ Inherent noise in quantum devices leads to wrong estimates of the expectation
values of observables (as we have seen during the coding sessions).

e Getting rid of (most of) the noise inherent in quantum computing is a critical step
toward making it useful for practical applications.

e Quantum error correction (QEC) can only be achieved by increasing quantum
resources (ancillary qubits). The first scheme was proposed by [Shor(1995)] and
many other schemes were proposed since then, e.g., the class called stabilizer codes,
see [Gottesman(1997)].

e However, the number of ancillary qubits needed to achieve QEC depends intrinsically
on the error rates and is out of reach for NISQ devices.

e Quantum error mitigation (QEM), on the other hand can be achieved with additional
classical resources only and is therefore applicable to NISQ devices.

SINTEF
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Density matrices

In finite dimensional space, the density operator is of the form

p=>_ pilvn) W, (51)
]

where the coefficients p; are non-negative and add up to one. The expectation value of an
operator A can be calculated through

A>:ij<¢j|A|¢J ijtr |5) 7/{1|A Ztr pilvy) ¢J|A)
J

(52)
> pilw) (WlA | = tr(pA),
j
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Error mitigation

The ideal action of a gate is given by a unitary operator U transforming a state |¢) into

Uld).
e Coherent noise means that a small perturbation U of U is executed, where U is still
unitary and preserves the purity of the input state |¢).

SINTEF
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Error mitigation

The ideal action of a gate is given by a unitary operator U transforming a state |¢) into
Ulg). ) )
e Coherent noise means that a small perturbation U of U is executed, where U is still
unitary and preserves the purity of the input state |¢).
An example is a slight over-rotation.
e Incoherent noise does not preserve the purity of the state. This type of noise comes
from the (unwanted) interaction with the environment. In this case the evolution
must be described through density matrices and Kraus operators.
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Error mitigation

The ideal action of a gate is given by a unitary operator U transforming a state |¢) into
Ulg). ) )

e Coherent noise means that a small perturbation U of U is executed, where U is still
unitary and preserves the purity of the input state |¢).
An example is a slight over-rotation.

e Incoherent noise does not preserve the purity of the state. This type of noise comes
from the (unwanted) interaction with the environment. In this case the evolution
must be described through density matrices and Kraus operators.

An example of incoherent noise is amplitude damping modeling relaxation from an
excited state to the ground state. For a single qubit with decay probability p, the
density matrix p = |¢) (¢| is mapped to KOpK(T) + KlpKI with

oo =) 0= %)

SINTEF
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Error mitigation

Different types of techniques have been presented in the literature that can be used to
mitigate the influence of noise on the ideal circuit.

e Probabilistic error cancellation. The main idea is to represent the ideal circuit as a
quasi-probabilistic mixture of noisy ones. The circuit depth and width remain
unchanged with this method.

e Extrapolation techniques. The main idea is to amplify the noise deliberately in a
controlled way. The information of the dependence of the expectation value on the
noise level is used to extrapolate back to the zero noise level. The circuit width
remains unchanged, but the circuit depth is longer (or gate times are prolonged in
case of phase control).
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Probabilistic error cancellation

e [Temme et al.(2017)Temme, Bravyi, and Gambetta] present the method together
with numerical evidence.

e [Song et al.(2019)Song, Cui, Wang, Hao, Feng, and Li] demonstrate an error
mitigation protocol based on gate set tomography and quasi probability
decomposition. One- and two-qubit circuits are tested on a superconducting device,
and computation errors are successfully suppressed.

e Process tomography is not feasible for more than a few qubits since it scales
exponentially with the number of qubits.

¢ In addition, process tomography is sensitive to state preparation and measurement
(SPAM) errors. Gate set tomography can take these errors into account, but the
scaling becomes even worse.
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Extrapolation techniques

e [Temme et al.(2017)Temme, Bravyi, and Gambetta] and [Li and Benjamin(2017)]
introduced the technique and provide numerical evidence.

e [Endo et al.(2018)Endo, Benjamin, and Li] extend the work in order to design efficient
QEM circuits.

e [Kandala et al.(2019)Kandala, Temme, Corcoles, Mezzacapo, Chow, and Gambetta]
demonstrate tremendous improvements in the accuracy of VQE on real quantum
hardware. They use pulse control.

58 SINTEF
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Quantum Poker

e Shortage of talent predicted. = Design fun game to increase interest.
e Available at https://github.com/sintefmath/QuantumPoker and
[Fuchs et al.(2019)Fuchs, Falch, and Johnsen]

SINTEF


https://github.com/sintefmath/QuantumPoker

Quantum Poker

Deck:

Your Hand:
e e
20 0

Bets: 20

Money left: 80 80 100 80

1 2 3

Face bEt:_

> Place a bet or fold.

100) = |11)

01) 110)

20/20

e Resembles Texas Hold 'em Poker using 5 qubits as community cards and quantum
gates as player cards
e At the end, your qubits are measured, and your score is the number of 1's measured

60 SINTEF



Quantum Poker

Your Hand: Deck:
e e
20 0 1

Bets: 20

Money left: 80 80 100 80

4
100) %11)

01) 110)

1 2 3
Place bet _ 2020

> Place a bet or fold.

e Resembles Texas Hold 'em Poker using 5 qubits as community cards and quantum
gates as player cards

e At the end, your qubits are measured, and your score is the number of 1's measured
= apply gates s.t. your qubits are likely to collapse to |1).

60 SINTEF



An example of a "hand”

"community cards”

qo:10) = X |

q1:10) =+ X |

q2 : |0)

0s:10 2]

0s:10)

61

S

, . "Max’s cards”
I 1 fAAEE _~|
] pa A e :
: \u U i A |
: b :

1
. 7} (e

! 1

1

1

1

T

1
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Ideal Simulator

The state that Max creates is given by |dmax) = %(]01101) +]11111)).
Asstate [¢) = >, a; |i) induces a probability distribution P4 (i) = |a|?.

For Max’s circuit this distribution is thus given by a 50% chance of being in either
state [01101) and [11111).

The expectation value for Max’s circuit is thus (4),4,,..) = 4.
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Observable

To match the objective of our game, we need to define an observable A such that (4) is
equal to the expected number of ones in the computational basis. This can be done by
choosing

25
A=>b(i)P, (53)
i=1
where b(i) is a function returning the number of ones of the binary representation of i,

and P; = |i) (i| is the measurement operator in the computational basis. A is a diagonal
matrix with eigensystem {b(i), |i) }.
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Observable

The matrix A can also be constructed via the number operator in the second quantization
(a formalism used to describe and analyze quantum many-body systems), which is given
by
A= ZN,-, where N; = ajai. (54)
1

The creation and annihilation operators are given by

aj —#n-i-lg ot g O,;@i’

‘ , (55)
a; = I®n_l_1 X O_ ® O_g@l’
and the raising and lowering operator is given by
1 .
Q:t = 92 (O'x + lUy) ) (56)
. n 01 _ 0 . . . .
i.e, Q" = 0 0 ,07 = 1 0) As an example, for two qubits A is a diagonal matrix

64 With entries (0, 1, 1, 2), from upper left to lower right. SINTEF
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How to get the expectation value

Since A is diagonal, it is straight forward to calculate the expectation value as

25
(D|A|D) = @\Zb Zb i) ({[®) = > b(i)p(i). (57)
i=1

This means we can measure the state |®) in the computational basis and multiply the
resulting bit strings with b(i) to get the expectation value.

SINTEF
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Circuit Mapping

only a subset of qubits are physically connected

on IBM’s QX devices CNOT gates can only be applied to qubits that are connected by
a bus resonator

additional gates, such as SWAP or BRIDGE gates, need be used to transform the
circuit into an equivalent one that obeys the connectivity graph.

Inserting one SWAP or BRIDGE gate increases the number of CNOT gates by three.
the noise level of two-qubit gate (CNOT) times and error rates are one order of
magnitude higher than for single qubit gates

One therefore wishes to find a mapping with the lowest number of CNOT gates.

In general, the problem of finding an optimal mapping is N/P-complete
problem[Wille et al.(2019)Wille, Burgholzer, and Zulehner].

For Max’s circuit it is easy to find an optimal mapping manually, using only one extra
SWAP gate.
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Equivalent circuit matching IBM’s QX2

Readout Error (%)

i CNOT error rate (%) [Avg. = 1.816]
o [ —
i 15 20 25 30
!
H
H
1I :
H
H
H
i
i
2 i
i
i
i

3 - H error rate (%) [Avg. = 0.082]
i N
.: 004 008 012 0ls
1
i
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Transpiled circuits
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The effect of noise on quantum computation

e Noise is inherent to quantum computers.

e Qiskit provides methods for automatic generation of approximate noise models
matching a given hardware device.

e This enables us to simulate the effects of realistic noise on our computation before
We run our circuits on a real quantum computer.

e Due to the influence of noise, the resulting expectation values converge to a value
around 3.85 for the simulated noise model and 3.54 on the IBM QX2 device.
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Expectation values

125 E sim

EEl sim noise original circuit
I sim noise adapted circuit

100

75

50

25

3.7 3.8 3.9 4.0 4.1
Expectation value

Figure: Distribution of sequence averages for
1024 repetitions with 1024 shots each.
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Figure: Convergence of sequence averages to the
expectation value with respect to number of
repetitions. Each repetition uses 1024 shots.
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Error mitigation |

Basic assumption: the expectation value of an observable depends smoothly on a small
noise parameter A < 1 and admits the following power series,

(A1) () = () + Y aX + O, (58)
i=1

where <A>:;s is the zero noise value we are trying to recover.



Error mitigation Il

e A better estimate of (A):’;j is then constructed by combining these values in such a
way that the lowest order terms in the power series cancel.

e Clearly, using r; = 1 generates the expectation value with the least noise.

e Amplification of noise with the factors r; > 1 can either be achieved directly through
pulse control or through modifying the circuit by adding certain extra gates.

e For IBM’s QX devices pulse control is only accessible for their customers, which
leaves us with the second possibility.
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Pauli twirling

e Convert non-stochastic errors of CNOT gates into stochastic errors, see e.g.

[Li and Benjamin(2017), section VII].
e One way to achieve this is to apply Pauli-twirling.
e Inour case gates 0%, o, o¢, o4 are inserted before and after each CNOT gate A,
where o' is chosen from the twirling set consisting of the Pauli gates {1, 0%, 0¥, 0%}.

e After randomly choosing 0@, o the gates o¢, o are then chosen to satisfy
o @0l =e?A(0% ® o)A (59)

e The method is applicable, if the qualities of single-qubit gates are an order of
magnitude smaller than two-qubit gates.
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Pauli twirling

125

100

75

50

25

I IBM QX2
3 gasm sim noise model
[ gasm sim

3.2

3.4 3.6 3.8 4.0
Expectation value

Figure: Transpiled circuit without Pauli twirling.
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Figure: Transpiled circuit with Pauli twirling.
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Expectation values
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Noise amplification

e In order to amplify the strength of the noise, we will apply random Pauli gates with a
probability proportional to the error rate of the CNOT gate between a given pair of
qubits.

e More precisely this is means applying gates ¢, of randomly chosen form the set of
Pauli gates {1, 0%, 0¥, 0%} after the twirled CNOT gates with probability (r — 1)e;;.

e Here, ¢;; is the two-qubit gate error rate between qubits g; and g;.

e On average this increases the error rate to the desired value
€new = €ij + (T‘ — 1)6,’J = T€ij.
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Dependence on the noise amplification factor.
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Effect of noise amplification factor
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Error mitigation of measurement noise |

e Measurement or read-out error is another major source of error.
e Here we use the model that assumes spatially uncorrelated errors of a bit flip.

e We compute the probability that the state |j) is observed if the state |i) is prepared,
i.e. the conditional probability P([i) | [j)).

e In the absence of errors P(Ji) | |j)) = ¢;;, but we can see that there are off-diagonal
nonzero entries.

e |n order for the method to work, measurement errors must be at least one order of
magnitude larger than state preparation and the execution of the X gate.

e requires an exponential amount (in the number of qubits) of states to be prepared
and measured.
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Error mitigation of measurement noise Il

e Given P(]i) | |j)), one can construct a filter to counteract the effect of measurement
noise.

e Qiskit provides an implementation.
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Example of error mitigation of measurement noise
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Measurement mitigation for Max’
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Expectation value

Expectation value

Richardson extrapolation for Max'’s circuit
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Relative error [%]

no Pauli twirling

with Pauli twirling

E1 | R(E2,E4) | R(E1,E2) | R(E1,E2,E4)

E1 [ R(E2,E4) | R(E1,E2) [ R(E1,E2,E4)

orig gasm 3.8 1.5 0.2 0.2 3.8 1.6 0.8 0.5
adap gasm 3.6 0.6 0.8 0.9 3.5 1.2 0.0 0.4
orig QX2 11.5 3.1 10.0 12.4 11.2 7.8 8.5 8.8
adap QX2 14.6 12.6 10.6 9.9 15.2 15.8 10.2 8.4
orig gasm filter || 2.0 0.4 17 2.2 1.9 0.4 1.3 1.6
adap gqasm filter || 1.6 1.5 1.3 1.3 1.5 0.9 2.2 2.6
orig QX2 filter 10.0 1.2 8.5 10.9 9.6 6.1 6.9 7.2
adap QX2 filter 13.1 111 8.9 8.2 13.8 14.4 8.6 6.6
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