
Johannes Langguth
Simula Research Laboratory

GPU Computing with CUDA (and beyond)
Part 1: a (gentle) introduction to CUDA

GPUs for Scientific Computing

2
Johannes Langguth, Geilo Winter School 2020

What, you want me to use a toy for scientific computing ?
Galen Gisler, Geilo Winter School, 2008

The Price of a Teraflop

3
Johannes Langguth, Geilo Winter School 2020

1997 ASCI Red: US$ 73M

Simulates explosions

The Price of a Teraflop

4
Johannes Langguth, Geilo Winter School 2020

1997 ASCI Red: US$ 73M 2019 GTX 1650: US$ 149

Simulates explosions

The Price of a Teraflop

5
Johannes Langguth, Geilo Winter School 2020

1997 ASCI Red: US$ 73M

Simulates explosions

2019 GTX 1650: US$ 149

Simulates explosions

A short history of CUDA / GPGPU

6
Johannes Langguth, Geilo Winter School 2020

1999 NVIDIA launches the first GeForce gaming cards
2001 GeForce 3 introduces programable shaders
2006 All GeForce 8 GPUs are CUDA – compatible

B.C. (before CUDA)

2007 CUDA 1.0 launched

2007 First Tesla cards for scientific computing
2010 Tianhe-1A with Fermi GPU becomes fastest supercomputer
2012 Kepler introduces more cache, dynamic parallelism
2015 GPUs for deep learning become big business
2016 Pascal architecture more than 3x faster than Kepler
2018 Summit with Volta becomes the fastest supercomputer

CUDA: Compute Unified Device Architecture

7
Johannes Langguth, Geilo Winter School 2020

What is CUDA ?
a) Parallel computing plattform for NVIDIA GPUs
b) Language extension for C, C++, and Fortran
c) Software ecosystem
d) All of the above

What does CUDA stand for ?
CUDA = Compute Unified Device Architecture

(not commonly spelled out anymore)

CUDA: Compute Unified Device Architecture

8
Johannes Langguth, Geilo Winter School 2020

Why bother with CUDA ?
• Highly mature software
• All NVIDIA GPUs support CUDA
• The majority of GPU applications is written in CUDA
• CUDA allows low-level performance programing

with reasonable productivity
• Cheap teraflops

CUDA: Programming Basics

9
Johannes Langguth, Geilo Winter School 2020

__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
return 0;

}

Kernel

Kernel launch

CUDA functions are called kernels

GPU

CPU

CUDA: Programming Basics

10
Johannes Langguth, Geilo Winter School 2020

__global__ void mykernel(void) {

}

KernelKernel launch

GPU becomes active when called upon by the CPU

int main(void) {

mykernel<<<1,1>>>();
return 0;

}

Device
Host

Compiling CUDA Programs

11
Johannes Langguth, Geilo Winter School 2020

__global__ void mykernel(void) {
}
int main(void) {

mykernel<<<1,1>>>();
return 0;

}

nvcc test.cu

Cuda programs are compiled with nvcc

A more intresting CUDA Program

12
Johannes Langguth, Geilo Winter School 2020

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

We need to allocate space for a, b, and c on the GPU

Moving data between Device and Host

13
Johannes Langguth, Geilo Winter School 2020

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

add<<<1,1>>>(d_a, d_b, d_c);

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

Use cudaMemcpy()to move data

Vector addition in CUDA

14
Johannes Langguth, Geilo Winter School 2020

for(int i=0; i<n; i++)
c[i]=a[i]+b[i];

add<<<n,1>>>(d_a, d_b, d_c);

Kernel is launched on blocks * threads threads

for loop:
CPU programming

kernel launch:
CUDA programming

blocks threads per block

Parallel Vector addition in CUDA

15
Johannes Langguth, Geilo Winter School 2020

for(int i=0; i<n; i++)
c[i]=a[i]+b[i];

add<<<n,1>>>(d_a, d_b, d_c);

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

Use blockIdx.x to index variables in different blocks

C

CUDA

Parallel Vector addition in CUDA

16
Johannes Langguth, Geilo Winter School 2020

add<<<n,1>>>(d_a, d_b, d_c);
__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

add<<<1,n>>>(d_a, d_b, d_c);
__global__ void add(int *a, int *b, int *c) {

c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

Use threadIdx.x to index variables in different threads
within a block

Blocks

Threads

Threads vs Blocks

17
Johannes Langguth, Geilo Winter School 2020

Why differentiate between threads and blocks ?

• Threads are located on a single multiprocessor
• Threads share fast memory
• Threads are executed together
• Threads per block are limited to 1024

Parallel Vector addition with Threads and Blocks

18
Johannes Langguth, Geilo Winter School 2020

add<<<ceil(n/128),128>>>(d_a, d_b, d_c);

__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

In a 1D grid blockDim.x is equal to threads per block

2*6+2

V100 Volta Overview

19
Johannes Langguth, Geilo Winter School 2020

V100 Volta zoomed in

20
Johannes Langguth, Geilo Winter School 2020

80 SMs per GPU

Thread Execution Exampel in CUDA

21
Johannes Langguth, Geilo Winter School 2020

add<<<10080,1024>>>(d_a, d_b, d_c);

• 10000*1024 = 10,321,920 threads in total
• 2 thread blocks per streaming multiprocessor (SM)
• 160 thread blocks / 81,920 threads run in parallel
• 63 consecutive thread block executions

Thread Execution Exampe in CUDA

22
Johannes Langguth, Geilo Winter School 2020

add<<<10080,1024>>>(d_a, d_b, d_c);

• 10000*1024 = 10,321,920 threads in total
• 2 thread blocks per streaming multiprocessor (SM)
• 160 thread blocks / 163,840 threads run in parallel
• 63 consecutive thread block executions

• Advantage: Programmer does not have to worry about
consecutive/concurrent computation

• Disadvantage: Threads in different blocks do not “see”
each other

Thread execution on the SM

23
Johannes Langguth, Geilo Winter School 2020

SIMT – GPU version of SIMD

24
Johannes Langguth, Geilo Winter School 2020

Single Instruction Multiple Thread
• 32 threads execute the same instruction concurrently
• Best to use 64, 128, 256, 512, or 1024 threads per block
• 32 concurrently running threads are called a Warp
• Memory accesses are warp-sized
• SIMT is hidden from the programmer

this leads to two problems

SIMT Problems: Warp Divergence

25
Johannes Langguth, Geilo Winter School 2020

__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if(index == 0)

c[index] = a[index]*2;
else

c[index] = a[index] + b[index];
}

SIMT system cannot execute both paths at the same time.

SIMT Problems: Warp Divergence

26
Johannes Langguth, Geilo Winter School 2020

int index =
threadIdx.x
+ blockIdx.x
* blockDim.x;
if(index == 0)
c[index]=a[index]*2;
else
c[index] = a[index]
+ b[index];
return 0;

Warp

Somewhat improved in Volta generation, but still SIMT (SIMD).

SIMT Problems: Warp Divergence

27
Johannes Langguth, Geilo Winter School 2020

Pre-Volta Volta, Turing, future

SIMT Problems: Coalescing

28
Johannes Langguth, Geilo Winter School 2020

A warp of 32 threads must read 32 contiguous elements
from an array to get the maximum memory bandwidth,
although elements can be swapped between the threads.

Warp

Memory

Thread execution on the GPU

29
Johannes Langguth, Geilo Winter School 2020

GPU code is most efficient when…
• Threads perform the same computation (no else statements)
• Threads read from consecutive memory locations
• Memory accesses are regular
• Enough threads to saturate device

Enough threads to saturate device: Occupancy

30
Johannes Langguth, Geilo Winter School 2020

80 SMs, 2048 threads each = 163,840 concurrent threads

Do we need all of them ?

For FLOPS: perform up to 2 * 32 DP flops per cycle per SM
For memory: each SM needs to request about 6KB constantly

2048 Threads

Enough threads to saturate device: Occupancy

31
Johannes Langguth, Geilo Winter School 2020

80 SMs, 2048 threads each = 163,840 concurrent threads

Do we need all of them ?

For FLOPS: perform up to 2 * 32 DP flops per cycle per SM
For memory: each SM needs to request about 6KB constantly

What does constantly mean ?

Memory latency: ~1000 cycles @ 1.6 GHz = 625ns
800 GB/s = 10 GB/s per SM = 6250 KB
Full occupancy = 2048 threads

6250/2048 ~ 3 Byte/thread

Enough threads to saturate device: Occupancy

32
Johannes Langguth, Geilo Winter School 2020

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Reasons for low occupancy:

• Block size smaller than 64 (maximum of 32 blocks per SM)
• Insufficient shared memory
• Insufficient registers

How many Registers can a Kernel use ?

33
Johannes Langguth, Geilo Winter School 2020

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Volta V100 (same for most GPUs)
• Maximum of 255 registers per thread
• 64k registers of 32 bit (64 bit values take 2 registers.)
• 64k/2048 = 32

How many Registers can a Kernel use ?

34
Johannes Langguth, Geilo Winter School 2020

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Volta V100 (same for most GPUs)
• Maximum of 255 registers per thread
• 64k registers of 32 bit (64 bit values take 2 registers.)
• 64k/2048 = 32

At 2048 threads, each thread can use 32 registers

• Thread blocks must fit entirely in registers.
• 33 register kernel: 1 block of 1024 vs 31 blocks of 64 threads

L1 Cache and Shared Memory

35
Johannes Langguth, Geilo Winter School 2020

• Each SM can use up to 96 KB L1 as
shared memory

• Shared memory is user managed
• 20-40x lower latency than DRAM
• 15x higher bandwidth than DRAM
• No coalescing necessary

17

L2$
6 MB

Load/Store Units
SM

L1$ and Shared Memory
128 KB

VOLTA L1 AND SHARED MEMORY

Volta Streaming L1$:

Unlimited cache misses in flight
Low cache hit latency
4x more bandwidth
5x more capacity

Volta Shared Memory :

Unified storage with L1
Configurable up to 96KB

L1 Cache and Shared Memory

36
Johannes Langguth, Geilo Winter School 2020

• Each SM can use up to 96 KB L1 as
shared memory

• Shared memory is user managed
• 20-40x lower latency than DRAM
• 15x higher bandwidth than DRAM
• No coalescing necessary

2048 threads / 96KB shared memory

~ 21 Byte per thread at
max. occupancy

17

L2$
6 MB

Load/Store Units
SM

L1$ and Shared Memory
128 KB

VOLTA L1 AND SHARED MEMORY

Volta Streaming L1$:

Unlimited cache misses in flight
Low cache hit latency
4x more bandwidth
5x more capacity

Volta Shared Memory :

Unified storage with L1
Configurable up to 96KB

How to check Occupancy: Nvprof profiler

37
Johannes Langguth, Geilo Winter School 2020

More on CUDA: nvcc compiler

38
Johannes Langguth, Geilo Winter School 2020

Part of the CUDA toolkit
Free to download, works with all NVIDIA GPUs
Usage like normal C compiler

nvcc test.cu

Select target GPU generation with:
-gencode arch=compute_xy,code=sm_xy

Switch underlying compiler
-ccbin

More on CUDA: Samples

39
Johannes Langguth, Geilo Winter School 2020

langguth@lizhi:~$ ls /usr/local/cuda-10.1/samples
0_Simple 1_Utilities 2_Graphics 3_Imaging 4_Finance
5_Simulations 6_Advanced 7_CUDALibraries

langguth@lizhi:~$ ls /usr/local/cuda
10.1/samples/0_Simple/
asyncAPI fp16ScalarProduct simpleAssert_nvrtc simpleMPI simpleSurfaceWrite template
cdpSimplePrint immaTensorCoreGemm simpleAtomicIntrinsics simpleMultiCopy simpleTemplates UnifiedMemoryStreams
cdpSimpleQuicksort inlinePTX simpleAtomicIntrinsics_nvrtc simpleMultiGPU simpleTemplates_nvrtc vectorAdd
clock inlinePTX_nvrtc simpleCallback simpleOccupancy simpleTexture vectorAddDrv
clock_nvrtc matrixMul simpleCooperativeGroups simpleP2P simpleTextureDrv vectorAdd_nvrtc
cppIntegration matrixMulCUBLAS simpleCubemapTexture simplePitchLinearTexture simpleVoteIntrinsics
cppOverload matrixMulDrv simpleCudaGraphs simplePrintf simpleVoteIntrinsics_nvrtc
cudaOpenMP matrixMul_nvrtc simpleIPC simpleSeparateCompilation simpleZeroCopy
cudaTensorCoreGemm simpleAssert simpleLayeredTexture simpleStreams systemWideAtomics

vectorAdd

Learning from CUDA Samples: vectorADD

40
Johannes Langguth, Geilo Winter School 2020

__global__ void vectorAdd(const float *A,
const float *B, float *C, int numElements)
{

int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements)
{

C[i] = A[i] + B[i];
}

}

GPU has dedicated cache for constants. Use it.

More on CUDA: Nsight editor

41
Johannes Langguth, Geilo Winter School 2020

More on CUDA: Libraries

42
Johannes Langguth, Geilo Winter School 2020

Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone

