
Johannes Langguth
Simula Research Laboratory

GPU Computing with CUDA (and beyond)
Part 4: Programing Multiple GPU Nodes

Collective Communications

2
Johannes Langguth, Geilo Winter School 2020

NCCL does not have the collective
communications we need, but there
is a system which does: MPI

MPI: Message Passing Interface

MPI has been the standard for supercomputer communication
since the 1990. It is a highly mature system.

MPI is a standard. Several implementations exist.
Current version: MPI 3.0, 4.0 is under discussion.

Message passing programming model

3
Johannes Langguth, Geilo Winter School 2020

u One way to program distributed memory computers is
to use message passing, e.g. MPI

u Processes send and receive messages and have direct
access to local memory only

u Processes share the interconnect
u Dominant control model: all ranks execute the same

program (SPMD) and the number of ranks is fixed

Programming with Message Passing

4
Johannes Langguth, Geilo Winter School 2020

• Programs execute as a set of P processes (user specifies P)

• Each process assumed to run on a different core

u Usually initialized with the same code, but has private
state SPMD = “Same Program Multiple Data”

u Communicates with other processes by passing messages

u Executes instructions at its own rate according to its rank
(0:P-1) and the messages it sends and receives

Node 0

P0 P1

P2 P3

Node 1

P4 P5

P6 P7

5
Johannes Langguth, Geilo Winter School 2020

• There are two kinds of communication patterns:
• Point-to-point communication:

a single pair of communicating processes copy data between
address space

• Collective communication: all the processors participate,
possibly exchanging information

Programming with Message Passing

A Hello World in MPI

6
Johannes Langguth, Geilo Winter School 2020

#include "mpi.h�
int main(int argc, char **argv){

MPI_Init(&argc, &argv);
int rank, size;
MPI_Comm_size(MPI_COMM_WORLD,&size);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
printf("Hello, world! I am process %d of %d.\n”,
rank, size);
MPI_Finalize();
return(0);

}

A Hello World in MPI

7
Johannes Langguth, Geilo Winter School 2020

mpicc hello.c –o hello
mpirun –np 4 ./hello

Hello, world! I am process 2 of 4.
Hello, world! I am process 0 of 4.
Hello, world! I am process 3 of 4.
Hello, world! I am process 1 of 4.

MPI processes (called ranks) are OS processes. They do not share
memory. They can run on separate computers over a network,
but we will stay on the DGX-2 for now.

Messaging in MPI

8
Johannes Langguth, Geilo Winter School 2020

Basic MPI communication is 2-sided. Sender and receiver must
do something to move the data.
OpenMP:

cudaMemcpyAsynch(V[sep[i][j]],V[sep[i][j]],
sepsize, cudaMemcpyDeviceToDevice);

MPI:

if (rank == i)
MPI_Send();

if (rank == j)
MPI_Recv();

Send and Recv

9
Johannes Langguth, Geilo Winter School 2020

const int Tag=99;
int msg[2] = { rank, rank * rank};
if (rank == 0) {

MPI_Status status;
MPI_Recv(msg, 2,

MPI_INT, 1,
Tag, MPI_COMM_WORLD, &status);

}
else MPI_Send(msg, 2,

MPI_INT, 0,
Tag, MPI_COMM_WORLD);

Message Buffer

Message length

SOURCE Process ID

Destination Process ID

Communicator Message Tag

10
Johannes Langguth, Geilo Winter School 2020

• A communicator is a name-space (or a context) describing a
set of processes that may communicate

• MPI defines a default communicator MPI_COMM_WORLD
containing all processes

• MPI provides the means of generating uniquely named
subsets

• A mechanism for screening or filtering messages

Communicators

11
Johannes Langguth, Geilo Winter School 2020

• Tags enable processes to organize or screen messages
• Each sent message is accompanied by a user-defined integer

tag:
u Receiving process can use this information to organize or
filter messages

u MPI_ANY_TAG inhibits tag filtering

MPI Tags

12
Johannes Langguth, Geilo Winter School 2020

MPI Datatypes

• MPI messages have a specified length
• The unit depends on the type of the data

u The length in bytes is sizeof(type) � # elements
u We don’t specify length as the # byte

• MPI specifies a set of built-in types for each of the primitive
types of the language

• In C: MPI_INT, MPI_FLOAT, MPI_DOUBLE,
MPI_CHAR, MPI_LONG,
MPI_UNSIGNED, MPI_BYTE,…

• Also defined types, e.g. structs

Messaging for our Application

13
Johannes Langguth, Geilo Winter School 2020

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
if (rank == j)

MPI_Recv(&V[sep[i][j]], sepsize, MPI_DOUBLE,
i, tag, MPI_COMM_WORLD, &status);

if (rank == i)
MPI_Send(&V[sep[i][j]], sepsize, MPI_DOUBLE,

j, tag, MPI_COMM_WORLD);

Asynchronous versions of Send and Recv are available.
With these, we can replicate the OpenMP version
It could even run on multiple nodes.
But we can do better!

Collective Communications in MPI

14
Johannes Langguth, Geilo Winter School 2020

We can replace communication by:
int MPI_Alltoallv(V, sepsize, sep[myrank], MPI_DOUBLE,
Vdest, sepsize, sep_recv[myrank], MPI_ DOUBLE,
MPI_COMM_WORLD);

Collective Communications in MPI

15
Johannes Langguth, Geilo Winter School 2020

MPI collective communication:
int MPI_Alltoallv(V, sepsize, sep[myrank], MPI_DOUBLE,
Vdest, sepsize, sep_recv[myrank], MPI_ DOUBLE,
MPI_COMM_WORLD);

GPU 0 GPU 1

sep[1][0]

sep[0][1]
U
K
W

Z
S
T

sep[0][2]

GPU 2

sep_recv[1]

Collective Communications in MPI

16
Johannes Langguth, Geilo Winter School 2020

11

Modern example of a hypercube:
NVIDIA DGX-1

Johannes Langguth, ACACES Summer School 2018

Main advantage of collective communications: the system decides.

DGX-1 DGX-2

• Match communication patterns to network topology
• Avoid hand-optimizing communication

More Collective Communications in MPI

17
Johannes Langguth, Geilo Winter School 2020

Broadcast: distribute data one process to all the others
Reduce: combine data from all processes on the root process
Scatter: spread array among all other ranks
Gather: collect elements from each rank in one array on root
Allgather: each rank collects the array

Scatter, Gather, and Allgather have variable length (v) versions

All collectives have nonblocking versions.

CUDA-aware MPI

18
Johannes Langguth, Geilo Winter School 2020

Problem: MPI collectives are nice, but they happen on the CPU...

Remember: copying data between CPU and GPU is costly.
(unless your application is communication-light)

Can we use MPI to move data through the NVSwitch ?

CUDA-aware MPI

19
Johannes Langguth, Geilo Winter School 2020

• CUDA-aware MPI communication between GPUs
• use Nvlink etc. within a node.
• Unified Virtual Adressing to specify location.

int MPI_Alltoallv(V, sepsize, sep[myrank], MPI_DOUBLE,
Vdest, sepsize, sep_recv[myrank], MPI_ DOUBLE,
MPI_COMM_WORLD);

Remember Unified Virtual Adressing

20
Johannes Langguth, Geilo Winter School 2020

• Unified Virtual Adressing to points MPI to GPU memory

int MPI_Alltoallv(V, sepsize, sep[rank], MPI_DOUBLE,
Vdest, sepsize, sep_recv, MPI_ DOUBLE,
MPI_COMM_WORLD);

CUDA-aware MPI

21
Johannes Langguth, Geilo Winter School 2020

CUDA-aware MPI implementations:
MVAPICH2 1.8/1.9b
OpenMPI 1.7 (beta)
CRAY MPI (MPT 5.6.2)
IBM Platform MPI (8.3)
SGI MPI (1.08)

http://mvapich.cse.ohio-state.edu/
http://www.open-mpi.org/
http://www.cray.com/
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/mpi/index.html
https://www.sgi.com/products/software/sps.html

CUDA-aware MPI: MVAPICH2-GDR

22
Johannes Langguth, Geilo Winter School 2020

GTC 2019 37Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)
• Optimized designs in MVAPICH2-GDR 2.3.1 offer better/comparable performance for most cases

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)

1

10

100

1000

10000

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-GDR 2.3.1 NCCL-2.3

~1.7X better

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

0

10

20

30

40

50

60

8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-GDR 2.3.1 NCCL-2.3

~2.5X better

Next Step: CUDA on Supercomputers

23
Johannes Langguth, Geilo Winter School 2020

• DGX-2 is powerful, but cannot be extended
• Need to connect multiple machines
• Each machine is an independent compute node
• Multiple nodes + highspeed interconnect

=Supercomputer

Top 500: The List of Supercomputers

24
Johannes Langguth, Geilo Winter School 2020

Top 500: The List of Supercomputers

25
Johannes Langguth, Geilo Winter School 2020

HPCG 500: The List that Matters

26
Johannes Langguth, Geilo Winter School 2020

HPCG 500: The List that Matters

27
Johannes Langguth, Geilo Winter School 2020

Summit: the Top of Top 500

28
Johannes Langguth, Geilo Winter School 2020

Summit: the Top of Top 500

29
Johannes Langguth, Geilo Winter School 2020

• Many Supercomputers follow the Summit design
• 2 groups with 1 CPU and 3 GPUs per node
• Unlike DGX-2, CPU-GPU and GPU-GPU is equal
• GPUs not connected to other group

How to distribute computation among GPUs ?

Traditional Partitioning for Multiple Nodes

30
Johannes Langguth, Geilo Winter School 2020

MPI
separator

Node
interior

part

MPI
separator

Node
interior

part
Global

problem

Traditional Partitioning for Multiple Nodes

31
Johannes Langguth, Geilo Winter School 2020

MPI
separator

Node
interior

part

MPI
separator

Node
interior

part
Global

problem

Again we use the graph partitioner METIS (this time for its traditional
purpose) to partition this graph into k partitions, where k is the number of
GPUs, such that the communication volume is minimised. The partitions
should ideally be of the same size, but we do not need them to be exactly
equal in size, so we specify a load imbalance factor, LIF > 1, that imposes
a bound on how much larger the largest partition can be compared to
the mean partition size. Lynx has been using LIF = 1.03, and we did
not change that value. METIS gives back an array with a mapping for
each tetrahedron to its partition index. This array is used to reorder the
tetrahedra such that the tetrahedra belonging to partition 0 comes first, then
comes the tetrahedra belonging to partition 1, and so on. Let Pp denote
the set of tetrahedra belonging to partition p. Figure 4.4 shows a mesh
partitioned into 16 parts.

Figure 4.4: Mesh with 16 partitions.

46

Separators

32
Johannes Langguth, Geilo Winter School 2020

Separators

0

BBBBBB@

* * *
* * *
* * * *

* * * *
* * *
* * *

1

CCCCCCA

Block

Separator

Block

Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

Separator: set of vertices whose
removal makes graph disconnected

Graph communicators in MPI-3

33
Johannes Langguth, Geilo Winter School 2020

MPI_Dist_graph_create_adjacent(MPI_COMM_WORLD,
neighbourcount, graphneighbours, (int *)MPI_UNWEIGHTED,
neighbourcount, graphneighbours, (int *)MPI_UNWEIGHTED,

MPI_INFO_NULL, 0, graphcomm_cl);

MPI_Neighbor_alltoallv(V, sendsizes, senddisps,
MPI_DOUBLE, V+mysize, recvsizes, recvdisps, MPI_DOUBLE,

*(graphcomm_cl));

Neighbor
values Communication

GPU 0 GPU 1

Problem: Mixed adjacency elements

34
Johannes Langguth, Geilo Winter School 2020

for (int i = 0; i < sendcount_mixed; i ++) {
sendbuffer[i] = newV[sendidx_mixed[i]];

}
MPI_Neighbor_alltoallv(sendbuffer, sendsizes_mixed,
senddisps_mixed, MPI_DOUBLE,
newV+mysize+remoteVcount_clean, recvsizes_mixed,

recvdisps_mixed, MPI_DOUBLE, *graphcomm_mixed);}

Mixed neighbor values

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	

0	

50000	

100000	

150000	

200000	

250000	

300000	

4	 8	 16	 32	 64	 128	

TF
LO

Ps
	

Nodes	

Communica3on	Performance	Metrics	

Max	node	volume	 Avg	node	volume	

Total	volume	(scaled	down	100x)	 Max	message	size	

Performance	limit	(in	TFLOPs)	

Homogeneous Communication

35
Johannes Langguth, Geilo Winter School 2020

FDR InfiniBand,
115 million elements

Separators Become Comparatively Heavy

36
Johannes Langguth, Geilo Winter School 2020

Separ
ator

Interior

4 Nodes, No GPUs

Separ
ator

Interior

4 Nodes, 4 GPUs
MPIPacking

MPIPacking

Separators Become Comparatively Heavy

37
Johannes Langguth, Geilo Winter School 2020

Separ
ator

Interior

4 Nodes, No GPUs

Separ
ator

Interior

4 Nodes, 4 GPUs

Separ
ator Interior

16 Nodes, No GPUs

Separ
ator Int.

16 Nodes, 16 GPU

MPIPacking

MPIPacking

MPIPacking

MPIPacking

CUDA-aware MPI: RDMA Transfers

38
Johannes Langguth, Geilo Winter School 2020

• GPUDirect RDMA allows send/recv directly from the GPU
• Subject to limitations due to GPU memory

Alternative: Hierarchical Partitioning

39
Johannes Langguth, Geilo Winter School 2020

GPU 1 separator

GPU 1
interior part

GPU 0 separator

GPU 0
interior part

MPI
separator

CPU
interior part

CPU-GPU
separator

MPI
separator

Node
interior

part

Stampede, 1 GPU, strong CPUs

40
Johannes Langguth, Geilo Winter School 2020

Experimental Results on Stampede (TACC)

0"

500"

1000"

1500"

2000"

2500"

3000"

16" 32" 64" 128"

GF
LO

Ps
'

GPU"only" Heterogeneous" Communica=on"Disabled"

Wilkes 2 GPUs, weak CPUs

41
Johannes Langguth, Geilo Winter School 2020

Experimental Results on Wilkes (Cambridge)

0"

500"

1000"

1500"

2000"

2500"

8" 16" 32" 64"

GF
LO

Ps
'

GPU"only" Heterogeneous" Communica=on"Disabled"

Summary on Multi Node Multi GPU

42
Johannes Langguth, Geilo Winter School 2020

• Multiple GPU is comparatively easy
• GPU-heavy machines give lots of power easily
• NCCL collectives still missing
• MPI can be used for single and multiple node
• Collectives are a good way of organizing communication
• Scalable multi-node codes are hard
• Distributing irregular problems on Supercomputers is

even harder

References

43
Johannes Langguth, Geilo Winter School 2020

Langguth, J., Sourouri, M., Lines, G. T., Baden, S. B., & Cai, X. (2015). Scalable heterogeneous CPU-
GPU computations for unstructured tetrahedral meshes. IEEE Micro, 35(4), 6-15.

Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone
Image source: wikipedia.org, top500.org, ornl.gov, mvapich.cse..ohio-state.edu
Contains material from ACACES 2018 summer school, originally designed by Scott Baden

https://developer.nvidia.com/cuda-zone

