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SpMV: more than ELLpack
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• SpMV is one of the most important computational kernels
• Performance depends on the storage format 
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Figure 1. Example of a few popular sparse matrix storage formats. In HYB format, columns for split is 2.

Matrix NVIDIA K80 NVIDIA GeForce NVIDIA Quadro Xeon Platinum AMD Epyc Cavium Thunder
Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn

mawi_201512012345.mtx HYB 132x HYB 164x HYB 194x CSR 1.0x ELL 1.0x CSR 1.0x
hangGlider_4 HYB 1.33x CSR 1.0x ell 1.31x CSR 1.0x ELL 1.33x CSR 1.0x

Table 1. Performance sensitivity of a CSR-based SpMV kernel across di�erent platforms.

Platform Acc C1C2 C1W2
Acc Max

pair P1-P2 on P1 on P2 Slwdwn(x)
k80-QuadroRTX 93.53 1708 360 79.28 11.55
Quadro-GeForce 92.44 1789 255 83.58 06.02
GeForceGTX-k80 88.60 1666 372 78.73 02.78

Xeon-Cavium 79.74 1555 208 81.27 09.50
AMD-Cavium 86.97 1171 752 58.71 208.65
Xeon-AMD 79.74 1074 689 53.82 11.46

Table 2. Performance of automated SpMV techniques when
trained on platform P1 and tested on a di�erent platform P2.

8000 and GeForce GTX 1080Ti, and three multicore CPU
architectures: Intel Skylake Xeon Platinum 8168, AMD Epyc
7601, and Cavium Thunder X2 CN9980 (see Section 5 for
more details on the test platforms). Table 2 shows results for
�ve pairs of platforms from the following architectures. For
example, Row 3 shows results for automated selection by
training on pro�le data from the Intel Xeon platform and pre-
dicting storage formats for the Cavium Thunder architecture.
Column 2 shows the prediction accuracy of the ML model
on the same platform. Column 3 shows results where the
predictions are correct on both platforms P1 and P2. Column
4 shows results where the predictions are correct on P1 but
are wrong on P2. Column 5 shows the overall accuracy of
the same model for P2. Column 5 highlights the fundamen-
tal problem with existing work on automated SpMV format
selection.

[SB: I am here.]
Most prior techniques ignore portability dimension in

predicting optimal SpMV storage format for any given archi-
tecture. To the best of our knowledge, the CNN-based format
selection technique discusses issues with porting the CNN
model from an Intel architecture to an AMD architecture [25].
The work discusses strategies to incrementally train the CNN
model on a new architecture to achieve reasonable accuracy.

[SB: Discuss the autotuning-based approaches [10,
20, 24].]

We elaborate on these challenges further in Section 4.

3 Automated Sparse Format Selection
Automated sparse storage format selection requires identi-
fying features that are correlated with SpMV performance.
Such feature identi�cation typically ignores domain-speci�c
knowledge such as the type of problem associated with the
matrix since that limits the usefulness to only cases where
such information is readily available. Table 3 shows the more
common statistical features that are used in the literature for
modeling SpMV performance. In the following, we brie�y
discuss popular approaches to automated format selection
that make use of such statistical features.

3.1 Heuristic-Based Format Selection
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Figure 1. Example of a few popular sparse matrix storage formats. In HYB format, columns for split is 2.

Matrix NVIDIA K80 NVIDIA GeForce NVIDIA Quadro Xeon Platinum AMD Epyc Cavium Thunder
Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn

mawi_201512012345.mtx HYB 132x HYB 164x HYB 194x CSR 1.0x ELL 1.0x CSR 1.0x
hangGlider_4 HYB 1.33x CSR 1.0x ell 1.31x CSR 1.0x ELL 1.33x CSR 1.0x

Table 1. Performance sensitivity of a CSR-based SpMV kernel across di�erent platforms.

Platform Acc C1C2 C1W2
Acc Max

pair P1-P2 on P1 on P2 Slwdwn(x)
k80-QuadroRTX 93.53 1708 360 79.28 11.55
Quadro-GeForce 92.44 1789 255 83.58 06.02
GeForceGTX-k80 88.60 1666 372 78.73 02.78

Xeon-Cavium 79.74 1555 208 81.27 09.50
AMD-Cavium 86.97 1171 752 58.71 208.65
Xeon-AMD 79.74 1074 689 53.82 11.46

Table 2. Performance of automated SpMV techniques when
trained on platform P1 and tested on a di�erent platform P2.

8000 and GeForce GTX 1080Ti, and three multicore CPU
architectures: Intel Skylake Xeon Platinum 8168, AMD Epyc
7601, and Cavium Thunder X2 CN9980 (see Section 5 for
more details on the test platforms). Table 2 shows results for
�ve pairs of platforms from the following architectures. For
example, Row 3 shows results for automated selection by
training on pro�le data from the Intel Xeon platform and pre-
dicting storage formats for the Cavium Thunder architecture.
Column 2 shows the prediction accuracy of the ML model
on the same platform. Column 3 shows results where the
predictions are correct on both platforms P1 and P2. Column
4 shows results where the predictions are correct on P1 but
are wrong on P2. Column 5 shows the overall accuracy of
the same model for P2. Column 5 highlights the fundamen-
tal problem with existing work on automated SpMV format
selection.

[SB: I am here.]
Most prior techniques ignore portability dimension in

predicting optimal SpMV storage format for any given archi-
tecture. To the best of our knowledge, the CNN-based format
selection technique discusses issues with porting the CNN
model from an Intel architecture to an AMD architecture [25].
The work discusses strategies to incrementally train the CNN
model on a new architecture to achieve reasonable accuracy.

[SB: Discuss the autotuning-based approaches [10,
20, 24].]

We elaborate on these challenges further in Section 4.

3 Automated Sparse Format Selection
Automated sparse storage format selection requires identi-
fying features that are correlated with SpMV performance.
Such feature identi�cation typically ignores domain-speci�c
knowledge such as the type of problem associated with the
matrix since that limits the usefulness to only cases where
such information is readily available. Table 3 shows the more
common statistical features that are used in the literature for
modeling SpMV performance. In the following, we brie�y
discuss popular approaches to automated format selection
that make use of such statistical features.

3.1 Heuristic-Based Format Selection
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Figure 1. Example of a few popular sparse matrix storage formats. In HYB format, columns for split is 2.

Matrix NVIDIA K80 NVIDIA GeForce NVIDIA Quadro Xeon Platinum AMD Epyc Cavium Thunder
Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn

mawi_201512012345.mtx HYB 132x HYB 164x HYB 194x CSR 1.0x ELL 1.0x CSR 1.0x
hangGlider_4 HYB 1.33x CSR 1.0x ell 1.31x CSR 1.0x ELL 1.33x CSR 1.0x

Table 1. Performance sensitivity of a CSR-based SpMV kernel across di�erent platforms.

Platform Acc C1C2 C1W2
Acc Max

pair P1-P2 on P1 on P2 Slwdwn(x)
k80-QuadroRTX 93.53 1708 360 79.28 11.55
Quadro-GeForce 92.44 1789 255 83.58 06.02
GeForceGTX-k80 88.60 1666 372 78.73 02.78

Xeon-Cavium 79.74 1555 208 81.27 09.50
AMD-Cavium 86.97 1171 752 58.71 208.65
Xeon-AMD 79.74 1074 689 53.82 11.46

Table 2. Performance of automated SpMV techniques when
trained on platform P1 and tested on a di�erent platform P2.

8000 and GeForce GTX 1080Ti, and three multicore CPU
architectures: Intel Skylake Xeon Platinum 8168, AMD Epyc
7601, and Cavium Thunder X2 CN9980 (see Section 5 for
more details on the test platforms). Table 2 shows results for
�ve pairs of platforms from the following architectures. For
example, Row 3 shows results for automated selection by
training on pro�le data from the Intel Xeon platform and pre-
dicting storage formats for the Cavium Thunder architecture.
Column 2 shows the prediction accuracy of the ML model
on the same platform. Column 3 shows results where the
predictions are correct on both platforms P1 and P2. Column
4 shows results where the predictions are correct on P1 but
are wrong on P2. Column 5 shows the overall accuracy of
the same model for P2. Column 5 highlights the fundamen-
tal problem with existing work on automated SpMV format
selection.

[SB: I am here.]
Most prior techniques ignore portability dimension in

predicting optimal SpMV storage format for any given archi-
tecture. To the best of our knowledge, the CNN-based format
selection technique discusses issues with porting the CNN
model from an Intel architecture to an AMD architecture [25].
The work discusses strategies to incrementally train the CNN
model on a new architecture to achieve reasonable accuracy.

[SB: Discuss the autotuning-based approaches [10,
20, 24].]

We elaborate on these challenges further in Section 4.

3 Automated Sparse Format Selection
Automated sparse storage format selection requires identi-
fying features that are correlated with SpMV performance.
Such feature identi�cation typically ignores domain-speci�c
knowledge such as the type of problem associated with the
matrix since that limits the usefulness to only cases where
such information is readily available. Table 3 shows the more
common statistical features that are used in the literature for
modeling SpMV performance. In the following, we brie�y
discuss popular approaches to automated format selection
that make use of such statistical features.

3.1 Heuristic-Based Format Selection
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Hybrid Format

3
Johannes Langguth, Geilo Winter School 2020

• Combination of ELL and COO formats
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Figure 1. Example of a few popular sparse matrix storage formats. In HYB format, columns for split is 2.

Matrix NVIDIA K80 NVIDIA GeForce NVIDIA Quadro Xeon Platinum AMD Epyc Cavium Thunder
Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn

mawi_201512012345.mtx HYB 132x HYB 164x HYB 194x CSR 1.0x ELL 1.0x CSR 1.0x
hangGlider_4 HYB 1.33x CSR 1.0x ell 1.31x CSR 1.0x ELL 1.33x CSR 1.0x

Table 1. Performance sensitivity of a CSR-based SpMV kernel across di�erent platforms.

Platform Acc C1C2 C1W2
Acc Max

pair P1-P2 on P1 on P2 Slwdwn(x)
k80-QuadroRTX 93.53 1708 360 79.28 11.55
Quadro-GeForce 92.44 1789 255 83.58 06.02
GeForceGTX-k80 88.60 1666 372 78.73 02.78

Xeon-Cavium 79.74 1555 208 81.27 09.50
AMD-Cavium 86.97 1171 752 58.71 208.65
Xeon-AMD 79.74 1074 689 53.82 11.46

Table 2. Performance of automated SpMV techniques when
trained on platform P1 and tested on a di�erent platform P2.

8000 and GeForce GTX 1080Ti, and three multicore CPU
architectures: Intel Skylake Xeon Platinum 8168, AMD Epyc
7601, and Cavium Thunder X2 CN9980 (see Section 5 for
more details on the test platforms). Table 2 shows results for
�ve pairs of platforms from the following architectures. For
example, Row 3 shows results for automated selection by
training on pro�le data from the Intel Xeon platform and pre-
dicting storage formats for the Cavium Thunder architecture.
Column 2 shows the prediction accuracy of the ML model
on the same platform. Column 3 shows results where the
predictions are correct on both platforms P1 and P2. Column
4 shows results where the predictions are correct on P1 but
are wrong on P2. Column 5 shows the overall accuracy of
the same model for P2. Column 5 highlights the fundamen-
tal problem with existing work on automated SpMV format
selection.

[SB: I am here.]
Most prior techniques ignore portability dimension in

predicting optimal SpMV storage format for any given archi-
tecture. To the best of our knowledge, the CNN-based format
selection technique discusses issues with porting the CNN
model from an Intel architecture to an AMD architecture [25].
The work discusses strategies to incrementally train the CNN
model on a new architecture to achieve reasonable accuracy.

[SB: Discuss the autotuning-based approaches [10,
20, 24].]

We elaborate on these challenges further in Section 4.

3 Automated Sparse Format Selection
Automated sparse storage format selection requires identi-
fying features that are correlated with SpMV performance.
Such feature identi�cation typically ignores domain-speci�c
knowledge such as the type of problem associated with the
matrix since that limits the usefulness to only cases where
such information is readily available. Table 3 shows the more
common statistical features that are used in the literature for
modeling SpMV performance. In the following, we brie�y
discuss popular approaches to automated format selection
that make use of such statistical features.

3.1 Heuristic-Based Format Selection
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Figure 1. Example of a few popular sparse matrix storage formats. In HYB format, columns for split is 2.

Matrix NVIDIA K80 NVIDIA GeForce NVIDIA Quadro Xeon Platinum AMD Epyc Cavium Thunder
Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn

mawi_201512012345.mtx HYB 132x HYB 164x HYB 194x CSR 1.0x ELL 1.0x CSR 1.0x
hangGlider_4 HYB 1.33x CSR 1.0x ell 1.31x CSR 1.0x ELL 1.33x CSR 1.0x

Table 1. Performance sensitivity of a CSR-based SpMV kernel across di�erent platforms.

Platform Acc C1C2 C1W2
Acc Max

pair P1-P2 on P1 on P2 Slwdwn(x)
k80-QuadroRTX 93.53 1708 360 79.28 11.55
Quadro-GeForce 92.44 1789 255 83.58 06.02
GeForceGTX-k80 88.60 1666 372 78.73 02.78

Xeon-Cavium 79.74 1555 208 81.27 09.50
AMD-Cavium 86.97 1171 752 58.71 208.65
Xeon-AMD 79.74 1074 689 53.82 11.46

Table 2. Performance of automated SpMV techniques when
trained on platform P1 and tested on a di�erent platform P2.

8000 and GeForce GTX 1080Ti, and three multicore CPU
architectures: Intel Skylake Xeon Platinum 8168, AMD Epyc
7601, and Cavium Thunder X2 CN9980 (see Section 5 for
more details on the test platforms). Table 2 shows results for
�ve pairs of platforms from the following architectures. For
example, Row 3 shows results for automated selection by
training on pro�le data from the Intel Xeon platform and pre-
dicting storage formats for the Cavium Thunder architecture.
Column 2 shows the prediction accuracy of the ML model
on the same platform. Column 3 shows results where the
predictions are correct on both platforms P1 and P2. Column
4 shows results where the predictions are correct on P1 but
are wrong on P2. Column 5 shows the overall accuracy of
the same model for P2. Column 5 highlights the fundamen-
tal problem with existing work on automated SpMV format
selection.

[SB: I am here.]
Most prior techniques ignore portability dimension in

predicting optimal SpMV storage format for any given archi-
tecture. To the best of our knowledge, the CNN-based format
selection technique discusses issues with porting the CNN
model from an Intel architecture to an AMD architecture [25].
The work discusses strategies to incrementally train the CNN
model on a new architecture to achieve reasonable accuracy.

[SB: Discuss the autotuning-based approaches [10,
20, 24].]

We elaborate on these challenges further in Section 4.

3 Automated Sparse Format Selection
Automated sparse storage format selection requires identi-
fying features that are correlated with SpMV performance.
Such feature identi�cation typically ignores domain-speci�c
knowledge such as the type of problem associated with the
matrix since that limits the usefulness to only cases where
such information is readily available. Table 3 shows the more
common statistical features that are used in the literature for
modeling SpMV performance. In the following, we brie�y
discuss popular approaches to automated format selection
that make use of such statistical features.

3.1 Heuristic-Based Format Selection

3



CSR/CSC Format

4
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• The most common storage format for graphs and matrices
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Figure 1. Example of a few popular sparse matrix storage formats. In HYB format, columns for split is 2.

Matrix NVIDIA K80 NVIDIA GeForce NVIDIA Quadro Xeon Platinum AMD Epyc Cavium Thunder
Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn Opt Fmt Slwdwn

mawi_201512012345.mtx HYB 132x HYB 164x HYB 194x CSR 1.0x ELL 1.0x CSR 1.0x
hangGlider_4 HYB 1.33x CSR 1.0x ell 1.31x CSR 1.0x ELL 1.33x CSR 1.0x

Table 1. Performance sensitivity of a CSR-based SpMV kernel across di�erent platforms.

Platform Acc C1C2 C1W2
Acc Max

pair P1-P2 on P1 on P2 Slwdwn(x)
k80-QuadroRTX 93.53 1708 360 79.28 11.55
Quadro-GeForce 92.44 1789 255 83.58 06.02
GeForceGTX-k80 88.60 1666 372 78.73 02.78

Xeon-Cavium 79.74 1555 208 81.27 09.50
AMD-Cavium 86.97 1171 752 58.71 208.65
Xeon-AMD 79.74 1074 689 53.82 11.46

Table 2. Performance of automated SpMV techniques when
trained on platform P1 and tested on a di�erent platform P2.

8000 and GeForce GTX 1080Ti, and three multicore CPU
architectures: Intel Skylake Xeon Platinum 8168, AMD Epyc
7601, and Cavium Thunder X2 CN9980 (see Section 5 for
more details on the test platforms). Table 2 shows results for
�ve pairs of platforms from the following architectures. For
example, Row 3 shows results for automated selection by
training on pro�le data from the Intel Xeon platform and pre-
dicting storage formats for the Cavium Thunder architecture.
Column 2 shows the prediction accuracy of the ML model
on the same platform. Column 3 shows results where the
predictions are correct on both platforms P1 and P2. Column
4 shows results where the predictions are correct on P1 but
are wrong on P2. Column 5 shows the overall accuracy of
the same model for P2. Column 5 highlights the fundamen-
tal problem with existing work on automated SpMV format
selection.

[SB: I am here.]
Most prior techniques ignore portability dimension in

predicting optimal SpMV storage format for any given archi-
tecture. To the best of our knowledge, the CNN-based format
selection technique discusses issues with porting the CNN
model from an Intel architecture to an AMD architecture [25].
The work discusses strategies to incrementally train the CNN
model on a new architecture to achieve reasonable accuracy.

[SB: Discuss the autotuning-based approaches [10,
20, 24].]

We elaborate on these challenges further in Section 4.

3 Automated Sparse Format Selection
Automated sparse storage format selection requires identi-
fying features that are correlated with SpMV performance.
Such feature identi�cation typically ignores domain-speci�c
knowledge such as the type of problem associated with the
matrix since that limits the usefulness to only cases where
such information is readily available. Table 3 shows the more
common statistical features that are used in the literature for
modeling SpMV performance. In the following, we brie�y
discuss popular approaches to automated format selection
that make use of such statistical features.

3.1 Heuristic-Based Format Selection
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Table 1. Performance sensitivity of a CSR-based SpMV kernel across di�erent platforms.

Platform Acc C1C2 C1W2
Acc Max

pair P1-P2 on P1 on P2 Slwdwn(x)
k80-QuadroRTX 93.53 1708 360 79.28 11.55
Quadro-GeForce 92.44 1789 255 83.58 06.02
GeForceGTX-k80 88.60 1666 372 78.73 02.78

Xeon-Cavium 79.74 1555 208 81.27 09.50
AMD-Cavium 86.97 1171 752 58.71 208.65
Xeon-AMD 79.74 1074 689 53.82 11.46

Table 2. Performance of automated SpMV techniques when
trained on platform P1 and tested on a di�erent platform P2.

8000 and GeForce GTX 1080Ti, and three multicore CPU
architectures: Intel Skylake Xeon Platinum 8168, AMD Epyc
7601, and Cavium Thunder X2 CN9980 (see Section 5 for
more details on the test platforms). Table 2 shows results for
�ve pairs of platforms from the following architectures. For
example, Row 3 shows results for automated selection by
training on pro�le data from the Intel Xeon platform and pre-
dicting storage formats for the Cavium Thunder architecture.
Column 2 shows the prediction accuracy of the ML model
on the same platform. Column 3 shows results where the
predictions are correct on both platforms P1 and P2. Column
4 shows results where the predictions are correct on P1 but
are wrong on P2. Column 5 shows the overall accuracy of
the same model for P2. Column 5 highlights the fundamen-
tal problem with existing work on automated SpMV format
selection.

[SB: I am here.]
Most prior techniques ignore portability dimension in

predicting optimal SpMV storage format for any given archi-
tecture. To the best of our knowledge, the CNN-based format
selection technique discusses issues with porting the CNN
model from an Intel architecture to an AMD architecture [25].
The work discusses strategies to incrementally train the CNN
model on a new architecture to achieve reasonable accuracy.

[SB: Discuss the autotuning-based approaches [10,
20, 24].]

We elaborate on these challenges further in Section 4.

3 Automated Sparse Format Selection
Automated sparse storage format selection requires identi-
fying features that are correlated with SpMV performance.
Such feature identi�cation typically ignores domain-speci�c
knowledge such as the type of problem associated with the
matrix since that limits the usefulness to only cases where
such information is readily available. Table 3 shows the more
common statistical features that are used in the literature for
modeling SpMV performance. In the following, we brie�y
discuss popular approaches to automated format selection
that make use of such statistical features.

3.1 Heuristic-Based Format Selection
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Can we Predict Performance ?
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Cache Blocking Performance  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Performance is connected to irregularity. But how exactly ?



Profiling L2 Cache with NVProf
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Figure 16: GPU performance, L2 read accesses, L2 write accesses, and memory accesses by
block size b.

768 Byte per cycle capacity at 706 MHz1. However, it can be assumed that its
practically available bandwidth is significantly lower, although this is di�cult
to verify since the exact caching policy is not made publicly known by the
manufacturer.

To study the connection between performance and L2 bandwidth in that
region, we compute the L2 bandwidth that would be required to transfer 32 bytes
per L2 access shown in Figure 16. Multiplying the sum of read and write accesses
by 32 yields the amount of data transfer per tetrahedron in bytes. Performance
in FLOPS divided by 11 yields the number of tetrahedra processed per second.
The product of these numbers is the required L2 bandwidth. The maximum
required L2 bandwidth computed in this way is 394.1 GB/s at b = 13333. For
this block size we measured 5.62 read and 0.25 write accesses, and a performance
of 23.08 GFLOPS.

For Kernel 1, in the region of b between 1, 000 and 80, 000, given an L2
bandwidth of 394.1 GB/s, we found that performance can be reproduced from
the actual number of L2 accesses with less than 3% error. While this data does

1In [1] the L2 cache bandwidth per cycle of the Kepler device is declared to be twice
that of Fermi, i.e. 768 byte per cycle. At 706 MHz clock rate, this amounts to 542 GB/s.
Communication with Nvidia confirmed an L2 bandwidth in the order of twice the memory
bandwidth.

20

L2 misses are the most costly and most unpredictable factor



Merge-based SPMV: stable CSR performance
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Figure 2. Merge-based CsrMV decomposition for three parallel
threads. Inputs are the CSR matrix A from Figure 1 and the vec-
tor x = [1.0, 1.0, 1.0, 1.0]. The output is computed as y =
[2.0, 0.0, 2.0, 4.0].

of the total CsrMV problem among parallel processing elements.
The result is an even utilization of parallel processing elements to
provide predictably-good performance response regardless of row-
irregularity and skew.

As illustrated in Figure 2, we can visualize the CsrMV work list
as a 2-dimensional decision path in which the row_offsets array
is merged with the sequence of natural numbers, which indexes the
non-zeros in the column_indices and values arrays. The deci-
sion path begins in the top-left corner and ends in the bottom-right.
When traced sequentially, the path moves downward when con-
suming indices (accumulating matrix-vector dot-products within
a given row) and rightward when consuming row offset sentinels
(outputting row-aggregates). The path itself is linearly indexed by
the grid diagonals, where diagonals are enumerated from top-left to
bottom-right. The goal of the MergePath parallel decomposition is
to use the diagonals to partition this decision path into equal-length
sections (one section per processing element).

In this example, the path is being split into three sections of
four work items each. The fundamental insight is that each grid
coordinate (i, j) along the path can be found by independent binary
searches along the diagonalk, where k = i+j. Given the diagonal
constraint, we simply find the first (i, j) where row_offsets[i]
is greater than j � 1. In this example, the ninth of the CsrMV work
item begins the third partition, and is located at (row3, nonzero5).

Once a given thread’s starting coordinate (i, j) is found, the re-
mainder of its section can be processed using a sequential CsrMV
algorithm starting at rowi and nonzeroj . Finally, the partial sums
from rows that span multiple threads can be aggregated in a subse-
quent “reduce-value-by-key” pass.

Assuming the number of processors p is a finite constant of the
underlying machine (unrelated to the number of rows or non-zeros),
the searching overhead does not asymptotically affect the total
work complexity, which remains linear O(N). Furthermore, the
decision path can be partitioned hierarchically, trivially enabling
parallelization across multi-scale systems (e.g., GPUs).

We evaluate our method across the approximately 4,400 non-
trivial matrices of the entire Florida Sparse Matrix Collection [1].
Figure 3 and Figure 4 plot runtime vs. dataset size (nonzeros) as
performed by the Intel MKL, the NVIDIA cuSPARSE, and our
merge-based CsrMV implementations. These performance land-

Figure 3. Log-plot comparison of CPU CsrMV running times
(dual-socket Intel e5-2695: 24-core, 48-thread).
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Figure 4. Log-plot comparison of GPU CsrMV running times
(NVIDIA K40).

scapes serve to highlight performance inconsistencies. The pres-
ence of significant outliers is readily apparent for the row-based
parallelizations (MKL, cuSPARSE). In comparison, our merge-
based CsrMV achieves a substantially more consistent performance
response. Statistically, our runtimes are much less anti-correlated
to row variation (-0.07 versus -0.16 on Intel e5-2695x2, and -0.017
versus -0.24 on K40). We demonstrate speedups of up to 16⇥
and 216⇥ on the CPUs and GPU, respectively. Furthermore, we
demonstrate aggregate evaluation times that are 1.1⇥ and 2.9⇥
faster for the entire corpus on the CPUs and GPU, respectively.

References
[1] T. Davis and Y. Hu. University of Florida Sparse Matrix Col-

lection. URL http://www.cise.ufl.edu/research/sparse/
matrices/.

[2] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo. Parallel
tridiagonal equation solvers. ACM Trans. Math. Softw.

[3] S. Odeh, O. Green, Z. Mwassi, O. Shmueli, and Y. Birk. Merge Path
- Parallel Merging Made Simple. In Proceedings of the International
Parallel and Distributed Processing Symposium Workshops and PhD
Forum, pages 1611–1618, May 2012.

[4] R. W. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels.
PhD thesis, 2003. AAI3121741.

[5] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Dem-
mel. Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In Proceedings of the 2007 ACM/IEEE Confer-
ence on Supercomputing, SC ’07, pages 38:1–38:12, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-764-3. doi: 10.1145/1362622.
1362674.



Parallel Programing is Hard
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Can we simplify communication instructions ?



NVSHMEM: Upcoming PGAS system by NVIDIA
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6

WHAT IS NVSHMEM ?

Experimental implementation of OpenSHMEM for NVIDIA GPUs, 1 PE/GPU 

shared memory: shmem_malloc
private memory: cudaMalloc

shmem communication APIs: shared->shared or private->shared



NVSHMEM: CPU based Communication
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3

Compute on GPU
Communication from CPU  
Synchronization at boundaries

Offload latencies in critical path

Hiding increases code complexity 

GPU FOR COMPUTE OFFLOAD

cuda_kernel<<<>>>

GPU CPU PCIe/Network

MPI_Isend

MPI_Wait

cudaStreamSynchronize<<<>>>



NVSHMEM : CPU based Communication
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4

GPU MASTERS COMMUNICATION

cuda_kernel<<<>>>

GPUCPU Network

cudaStreamSynchronize<<<>>>Avoids offload latencies 

Compute – communication overlap

Easier to express algorithms with inline 
communication

Improving performance while making it 
easier to program 

shmem_put

shmem_quiet

shmem_put

shmem_put

shmem_put

shmem_put



Device Initiated Communication/Synchronization
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7

DEVICE-INITIATED COMMUNICATION

PE i

PE i-1

PE i+1

Thread-level communication APIs

Allow finer grained control and overlap

Maps well onto NVLink fabric – DGX-1/DGX-2

__global__ void stencil_single_step (float *u, …) 
{

int ix = threadIdx.x, iy = threadIdx.y; 

//compute

//data exchange
if (iy == ny) {

shmem_float_p (u + ny*nx + ix, u + ix, top_pe);
}
if (iy == 1) {

shmem_float_p (u + nx + ix, u + (ny+1)*nx + ix, bottom_pe);
}

}

ny

nx

9

IN-KERNEL SYNCHRONIZATION

Allows inter-PE synchronization 

Can offload larger portions of application  running CUDA kernels 

PE i

PE i-1

PE i+1

Data transfer +
Synchronization

+

__global__ void stencil_uber (u, …)
{
while (iter=0; iter<N; iter++) {

//compute

//data exchange
shmem_float_put_nbi_block (u + ny*nx, u, nx, top_pe);

shmem_float_put_nbi_block (u + nx, u + (ny+1)*nx, nx, bottom_pe);

shmem_barrier_all();
}

}



Device Initiated Communication
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__global__ void stencil_single_step (float *u, ...) { 
int ix = threadIdx.x, iy = threadIdx.y; 
//compute
//data exchange
if (iy == ny) {

shmem_float_p (u + ny*nx + ix, u + ix, top_pe); 
}
if (iy == 1) { 

shmem_float_p (u + nx + ix, u+(ny+1)*nx + ix,bottom_pe); 
} 

shmem_barrier_all(); 
} 



Stream Ordered Operations: avoid costly Sync
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STREAM-ORDERED OPERATIONS

Not optimal to move all 
communication/synchronization into 
CUDA kernels 

Inter-CTA synchronization latencies can 
be longer than kernel launch latencies

Allows mixing fine-grained 
communication + coarse-grained 
synchronization

GPU 0 GPU 0PCIe/Network

shmem_barrier_all_on_stream



Virtual Intra-Node Address Space
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12

INTRA-NODE IMPLEMENTATION

NVLink or PCIe 

uses CUDA IPC under the hood 

shmem_put/get on device

ld/store

shmem_put/get_on_stream

cudaMemcpyAsync 

GPU 0
Virtual
Address

Physical
Address

GPU 1 GPU 2

Virtual
Address

Physical
Address

Virtual
Address

Physical
Address



NVSHMEM : Performance (NVIDIA numbers)
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UPC: a PGAS Language
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PGAS programing model avoids the complexity of message passing 
Many possible performance traps in PGAS implementation 

We have some experience with Unified Parallel C (UPC)

UPC Basics:
• Declare shared arrays
• Communication is generated automatically
• Test problem: Sparse Matrix-Vector from last lecture



ELL SpMV Implementation in UPC
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shared [BLOCKSIZE] double* Voltage;  
shared [BLOCKSIZE] double* NewVoltage;

Voltage = (shared [BLOCKSIZE] double*) 
NewVoltage = (shared [BLOCKSIZE] double*)

upc_all_alloc(n_blocks[0],sizeof(double)*BLOCKSIZE);
upc_all_alloc(n_blocks[0],sizeof(double)*BLOCKSIZE);

//Update cell k
NewVoltage[k] = D[k]* Voltage[k]
for(i=0;i<16;i++)
{

NewVoltage[k] += A[k*16+i]*Voltage[I[k*16+i]];
}



UPC: Straightforward Implementation
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Every single memory access must be checked



UPC: Local Pointers
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Communicates with very small messages



UPC: Block Transfers
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Better, but still way too much communication



UPC: Optimized Communication
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Back to the MPI version, but with vector replication



UPC: Lessons Learned

24
Johannes Langguth, Geilo Winter School 2020

• Implicit communication does not work well

• Compiler does not aggregate transfers

• Program not knowing if a variable is local carries an additional 
cost

• Maintaining a language is costly

• Lesson learned: shift focus to one-sided messaging, RMA, RPC

What to do with such a system ? 
Lets look at the communication patterns!



Easy Case: Dense Matrix Dense Vector
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x =

• Common pattern in scientific computing, deep learning, ML
• Data access pattern completely regular
• Batches, tiling, blocking, etc. to run from cache
• Often compute bound
• Balanced communication pattern for distributed memory 



Top 500: Dense Problems are “Easy”
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NVIDIA Tesla
Intel XeonXeon processors with fast networks reach > 90% efficiency

GPUs have lower efficiencies but higher FLOPS/Watt



Intermediate Case: Sparse Matrix Dense Vector
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x =

• Unstructured meshes in scientific computing, PageRank
• Data access pattern irregular but static
• Reordering techniques improve cache usage
• Typically memory bandwidth bound
• Unbalanced communication pattern in distributed memory 



Intermediate Case: Sparse Matrix Dense Vector
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x =

• Unstructured meshes in scientific computing, PageRank
• Data access pattern irregular but static
• Reordering techniques improve cache usage
• Typically memory bandwidth bound
• Unbalanced communication pattern in distributed memory 



Sparse Matrix Dense Vector: Problem Structure Matters
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Key to PDE Performance: reduce Blocksize via PartitioningBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

Use KaHIP, PaToH, Metis to find small blocks 

Key to PDE Performance: reduce Blocksize via PartitioningBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

Use KaHIP, PaToH, Metis to find small blocks 

Weak ordering –
Low performance

Strong ordering –
High performance

Strong ordering complicates programing
Can we increase productivity ?



Sparse Matrix Dense Vector: Problem Structure Matters

30
Johannes Langguth, Geilo Winter School 2020

• Large messages, message size matters
• Algorithm helps, at the cost of productivity
• Communication system does not (at bandwidth baseline)

16 32 64 128 256 512 1024
8

16

32

64

128

256

512

Cores (Sandy Bridge, 16 cores per node)

G
FL

O
PS

UPC vs UPC++ vs MPI  ELLpack SpMV

UPC UPC++ MPI+OpenMP with reordering



Challenging Case: Sparse Matrix Sparse Vector
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x =

• Graph algorithms, GNNs, data dependent computation paths
• Data access pattern irregular and dynamic
• Possibility of cache reuse is questionable
• Often latency bound
• Unbalanced communication pattern in distributed memory 



The Most Basic Graph Algorithm: BFS
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Outline Introduction Initialization Sequential Parallel

Scalable Global Relabel
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• Basic kernel of the Graph500

• Sequential algorithm trivial
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Outline Introduction Initialization Sequential Parallel
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• Communication pattern, 
volume changes every
round

• Rounds impose clear
structure on algorithm

• Heavy all-to-all for small
diameter graphs

• Number of rounds bounded
by graph diameter

• Ultimately, BFS is a simple 
graph problem
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Scalability! But at what COST?

Frank McSherry Michael Isard Derek G. Murray
Unaffiliated Unaffiliated⇤ Unaffiliated†

Abstract
We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system’s scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDI, and find that many
systems have either a surprisingly large COST, often
hundreds of cores, or simply underperform one thread
for all of their reported configurations.

1 Introduction
“You can have a second computer once you’ve
shown you know how to use the first one.”

–Paul Barham

The published work on big data systems has fetishized
scalability as the most important feature of a distributed
data processing platform. While nearly all such publi-
cations detail their system’s impressive scalability, few
directly evaluate their absolute performance against rea-
sonable benchmarks. To what degree are these systems
truly improving performance, as opposed to parallelizing
overheads that they themselves introduce?

Contrary to the common wisdom that effective scal-
ing is evidence of solid systems building, any system
can scale arbitrarily well with a sufficient lack of care in
its implementation. The two scaling curves in Figure 1
present the scaling of a Naiad computation before (sys-
tem A) and after (system B) a performance optimization
is applied. The optimization, which removes paralleliz-
able overheads, damages the apparent scalability despite
resulting in improved performance in all configurations.

⇤Michael Isard was employed by Microsoft Research at the time of
his involvement, but is now unaffiliated.

†Derek G. Murray was unaffiliated at the time of his involvement,
but is now employed by Google Inc.
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Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation “scales” far better,
despite (or rather, because of) its poor performance.

While this may appear to be a contrived example, we will
argue that many published big data systems more closely
resemble system A than they resemble system B.

1.1 Methodology
In this paper we take several recent graph processing pa-
pers from the systems literature and compare their re-
ported performance against simple, single-threaded im-
plementations on the same datasets using a high-end
2014 laptop. Perhaps surprisingly, many published sys-
tems have unbounded COST—i.e., no configuration out-
performs the best single-threaded implementation—for
all of the problems to which they have been applied.

The comparisons are neither perfect nor always fair,
but the conclusions are sufficiently dramatic that some
concern must be raised. In some cases the single-
threaded implementations are more than an order of mag-
nitude faster than published results for systems using
hundreds of cores. We identify reasons for these gaps:
some are intrinsic to the domain, some are entirely avoid-
able, and others are good subjects for further research.

We stress that these problems lie not necessarily with
the systems themselves, which may be improved with
time, but rather with the measurements that the authors
provide and the standard that reviewers and readers de-
mand. Our hope is to shed light on this issue so that
future research is directed toward distributed systems
whose scalability comes from advances in system design
rather than poor baselines and low expectations.

1
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Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation “scales” far better,
despite (or rather, because of) its poor performance.

While this may appear to be a contrived example, we will
argue that many published big data systems more closely
resemble system A than they resemble system B.

1.1 Methodology
In this paper we take several recent graph processing pa-
pers from the systems literature and compare their re-
ported performance against simple, single-threaded im-
plementations on the same datasets using a high-end
2014 laptop. Perhaps surprisingly, many published sys-
tems have unbounded COST—i.e., no configuration out-
performs the best single-threaded implementation—for
all of the problems to which they have been applied.

The comparisons are neither perfect nor always fair,
but the conclusions are sufficiently dramatic that some
concern must be raised. In some cases the single-
threaded implementations are more than an order of mag-
nitude faster than published results for systems using
hundreds of cores. We identify reasons for these gaps:
some are intrinsic to the domain, some are entirely avoid-
able, and others are good subjects for further research.

We stress that these problems lie not necessarily with
the systems themselves, which may be improved with
time, but rather with the measurements that the authors
provide and the standard that reviewers and readers de-
mand. Our hope is to shed light on this issue so that
future research is directed toward distributed systems
whose scalability comes from advances in system design
rather than poor baselines and low expectations.
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Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation “scales” far better,
despite (or rather, because of) its poor performance.

While this may appear to be a contrived example, we will
argue that many published big data systems more closely
resemble system A than they resemble system B.

1.1 Methodology
In this paper we take several recent graph processing pa-
pers from the systems literature and compare their re-
ported performance against simple, single-threaded im-
plementations on the same datasets using a high-end
2014 laptop. Perhaps surprisingly, many published sys-
tems have unbounded COST—i.e., no configuration out-
performs the best single-threaded implementation—for
all of the problems to which they have been applied.

The comparisons are neither perfect nor always fair,
but the conclusions are sufficiently dramatic that some
concern must be raised. In some cases the single-
threaded implementations are more than an order of mag-
nitude faster than published results for systems using
hundreds of cores. We identify reasons for these gaps:
some are intrinsic to the domain, some are entirely avoid-
able, and others are good subjects for further research.

We stress that these problems lie not necessarily with
the systems themselves, which may be improved with
time, but rather with the measurements that the authors
provide and the standard that reviewers and readers de-
mand. Our hope is to shed light on this issue so that
future research is directed toward distributed systems
whose scalability comes from advances in system design
rather than poor baselines and low expectations.
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• Most graph algorithms are 
more difficult than BFS

• Programming models are not 
designed for graph 
applications

• Latency cannot be overcome 
inside the application
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