GPU Computing with CUDA (and beyond)
Part 5: Advanced Data Exchange

¢ 73

. Jaannes Dangguth
Simufla ResearclFLaboratory

SpMV: more than ELLpack

* SpMYV is one of the most important computational kernels
* Performance depends on the storage format

1005 1 5 = 0 3 =

3 2 4 01 3

A_3204 9 % 0 % %
| 9000 49 || 13+
val = Indices

0409 ELL format

row=(0 (0|1 |11 (21]3]3

col=10 3]0 |1]|3|0]1]3

val=|1 (5131214914]9
COO format

Johannes Langguth, Geilo Winter School 2020

Hybrid Format

Combination of ELL and COO formats

1 0 05

3 2 0 4
A=

9 0 0 0

04 009

o O O

1

3
1
*

3

"~ Indices

1

row

HYB format

col

val

Johannes Langguth, Geilo Winter School 2020

CSR/CSC Format

* The most common storage format for graphs and matrices

100 5 rptr = 0125|618

A = 32 0 14 col=1013|0[1([3]|0]1]3
2000 val=11 (513214194]9
0409 CSR format

Johannes Langguth, Geilo Winter School 2020

Mean Execution timels)

Performance of the Different Formats

SpMV Performance on Nvidia Quadre RTX 8000

e
forna
0 | @ W
® ¥ = -
. o »
](f * "b -
O
107
107
0"
10"
]

12" 10 3 1t 10° Y o
Non-Zeros

Johannes Langguth, Geilo Winter School 2020

Can we Predict Performance ?

€eeeee
- 00000¢
LSBCVT
~TTTTTT
60606
- €¢69L
99999
- §GS9SS
11814
- T9¥8¢E
0SCTE
- T¥9S¢
9/LCT¢C
- S0LYT
80CT
~ 0000T
98
- ¢089
6799
199
918¢
_ V81¢
1€9¢
~ELTC
S6LT
€81
9lll
- 10T
8€8
- 69
LS
~ [6E
9/C
~ 16l

30

LN
(@

o LN o
o i —

(Sd0149) @duew.o0)i3d

Blocksize

==CPU 16 cores =—K20m GPU

Performance 1s connected to irregularity. But how exactly ?

Johannes Langguth, Geilo Winter School 2020

Profiling L2 Cache with NVProf

w
(@)
~

N

o

T
(@)

o
<
<
<
<
<
<
<
4
4
<
<
<
4
<
<
<
L
<
<
-
|
N

(Oa]
w
L2 operations per tetrahedron

Performance (GFLOPS)
oG o
N

(92
T
-

0 rrrrrrrrrrrrrrrrrrr1rrrr1rrrrr1rrr1rrrrrrrrrrrrrrTI1I T TTT T T T T T T T T TT T TT T T T T TT T TT TT T IT T TIT TITITTTITITITTTITITT O
N AN 1D N O O W A < on. N W 0 00 OO OO OO N O 00 O Vv o
- AN N = N N O = N O O N 1 00 N O 00 O N O OV O
A AN < N =1 O N < A NN O A 00 O O 0w o
- = N MO 1N N O O N - O 41 O VU O
—I a4 N O IO N O O O
- <« N
Blocksize

Performance <#~L2 read accesses =L2 misses =*L2 writes

L2 misses are the most costly and most unpredictable factor ;

Johannes Langguth, Geilo Winter School 2020

stable CSR performance

Merge-based SPMV

NSNS
. ety
*

S%e.
~0$0
PR 24

3
&

0¥ %,
* *g
Qog

ehin

Merge-based
i e

+ CUSPARSE

.

1000 -+

100 -
10
1
0.1 -

0.01

(sw) awn Suiuuny

0.001

Matrices by size

Johannes Langguth, Geilo Winter School 2020

Parallel Programing is Hard

Can we simplify communication instructions ?

Johannes Langguth, Geilo Winter School 2020

NVSHMEM: Upcoming PGAS system by NVIDIA

s N O 2 s o
GPU O GPU 1 GPUn
(PE 0) (PE 1) (PE n)
- B
O3
Um
QO wn
59
- O _—
o)
I . i -
\ J

\ J J

10

Johannes Langguth, Geilo Winter School 2020

NVSHMEM: CPU based Communication

GPU CPU PCle/Network

cuda_kernel<<<>>>

treamSynchronize<<<>>>

. -

MPI_Isend

MPITVM’

11

Johannes Langguth, Geilo Winter School 2020

NVSHMEM : CPU based Communication

CPU GPU Network

cuda_kernel<<<>>>

cudaStreamSIynchroni%‘:I

12

Johannes Langguth, Geilo Winter School 2020

Device Initiated Communication/Synchronization

PE i-1

PEi

[
»

RO

]

13

Johannes Langguth, Geilo Winter School 2020

Device Initiated Communication

__global void stencil single step (float *u, ...) {
int ix = threadIdx.x, iy = threadIdx.y;
//compute

//data exchange
if (iy == ny) {
shmem float p (u + ny*nx + ix, u + ix, top pe);
}
if (iy == 1) {
shmem float p (u + nx + ix, u+(ny+l)*nx + ix,bottom pe);
}

shmem barrier all();

}

14
Johannes Langguth, Geilo Winter School 2020

Stream Ordered Operations: avoid costly Sync

GPUO PCle/Network GPUO

shmem_barrier_all_on_stream

15

Johannes Langguth, Geilo Winter School 2020

Virtual Intra-Node Address Space

GPUO GPU 1 GPU 2

Virtual Physical Virtual Physical Virtual Physical
Address Address Address Address Address Address
-~
s - -
7 P A~ -
Y4 P “ -
s -~
” -~
-~ -~
A -~ P -~ -~
7 7 - - - 4 - ” -
V4 A .’] P d p ~ P i
7/ L -’ > y
s 4 ” -~
” ~ -~ ~
- -~ - -~
” - -
-~ 7 -~
” - -~
L - s - ~
L, ~ ~ - -
\ L~ Phe
v e P L
” - -~
-~ 8
~ -
- - ”~ <
-~
-~
-
-
-~
-
-
-~
-~
|~

16

Johannes Langguth, Geilo Winter School 2020

Parallel Efficiency

NVSHMEM : Performance (NVIDIA numbers)

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00% T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#GPUs

®MPI Overlap = NVSHMEM

Benchmarksetup: DGX-2 with OS 4.0.5, GCC 7.3.0, CUDA 10.0 with 410.104 Driver, CUB 1.8.0, CUDA-aware OpenMPI 4.0.0, NVSHMEM EA2 (0.2.3),
GPUs@1597Mhz AC, Reported Runtime is the minimum of 5 repetitions

17

Johannes Langguth, Geilo Winter School 2020

UPC: a PGAS Language

PGAS programing model avoids the complexity of message passing
Many possible performance traps in PGAS implementation

We have some experience with Unified Parallel C (UPC)

UPC Basics:

* Declare shared arrays

e Communication is generated automatically

* Test problem: Sparse Matrix-Vector from last lecture

18

Johannes Langguth, Geilo Winter School 2020

ELL SpMV Implementation in UPC

shared [BLOCKSIZE] double* Voltage;
shared [BLOCKSIZE] double* NewVoltage;

Voltage = (shared [BLOCKSIZE] double¥)
NewVoltage = (shared [BLOCKSIZE] double¥*)

upc_all alloc(n blocks[0],sizeof (double) *BLOCKSIZE) ;
upc_all alloc(n blocks[0],sizeof (double) *BLOCKSIZE) ;

//Update cell k
NewVoltage[k] = D[k]* Voltage[k]
for (i=0;i<16;i++)
{
NewVoltage[k] += A[k*1l6+i]*Voltage[I[k*16+i]];
}

19

Johannes Langguth, Geilo Winter School 2020

GFLOPS

UPC: Straightforward Implementation

UPC SpMV Version 0.9

Naive UPC version using global pointers

2.5

0.5
0
16 32 64 128 256 512 1024
Threads
= Small instance D67 === Medium Instance D90.57 Big instance D90.59

Every single memory access must be checked

20

Johannes Langguth, Geilo Winter School 2020

GFLOPS

0w o

-J

16

UPC: Local Pointers

UPC SpMV Version 1.0

Using Local Pointers

e —— —

32 64 128 256 512 1024
Threads
— Small instance D67 === Medium Instance D90.57 Big instance D90.59

Communicates with very small messages

21

Johannes Langguth, Geilo Winter School 2020

GFLOPS

UPC: Block Transfers

UPC SpMV Version 1.2.5

Using Local Pointers and blocks for communication

25
20 —
15
10

5

0

16 32 64 128 256 512 1024
Threads
- Small instance D67 = Medium Instance D90.57 Big instance D90.59
Better, but still way too much communication
22

Johannes Langguth, Geilo Winter School 2020

GFLOPS

UPC: Optimized Communication

UPC SpMV Version 1.3.4

Using exact communication size, communicating only what is needed

140
120
100

80

0
16 32 64 128 256 512 1024
Threads
= Small instance D67 === Medium Instance D90.57 Big instance D90.59

Back to the MPI version, but with vector replication

23

Johannes Langguth, Geilo Winter School 2020

UPC: Lessons Learned

Implicit communication does not work well

Compiler does not aggregate transfers

Program not knowing if a variable is local carries an additional
cost

Maintaining a language is costly
Lesson learned: shift focus to one-sided messaging, RMA, RPC

What to do with such a system ?
Lets look at the communication patterns!

24

Johannes Langguth, Geilo Winter School 2020

Easy Case: Dense Matrix Dense Vector

Common pattern in scientific computing, deep learning, ML
Data access pattern completely regular

Batches, tiling, blocking, etc. to run from cache

Often compute bound

Balanced communication pattern for distributed memory

25

Johannes Langguth, Geilo Winter School 2020

95

90

85

80

75

70

65

Efficiency (%)

60

55

50

Top 500: Dense Problems are “Easy”

Cray XC40, Xeon E5- 2695 18C 2.1GHz, Aries interconnect A
Rank: 45
Efficiency: 94% A
A AA A
A A
A
A, A A A
AA
A A A N . A n
. A A A A A
A A A
A A A, N A A ' A
A A A A A AA A A
A e A A aoas s
A A
A) Uy A
A A
LA AA X X AdA
A
A
A . A
A A A, o 4., L,
20 40 60 80 100 120
NVIDIA Tesla
Xeon processors with fast networks reach > 90% efficiency Intel Xeon

GPUs have lower efficiencies but higher FLOPS/Watt

Johannes Langguth, Geilo Winter School 2020

26

Intermediate Case: Sparse Matrix Dense Vector

Unstructured meshes in scientific computing, PageRank
Data access pattern irregular but static

Reordering techniques improve cache usage

Typically memory bandwidth bound

Unbalanced communication pattern in distributed memory

27

Johannes Langguth, Geilo Winter School 2020

Intermediate Case: Sparse Matrix Dense Vector

Unstructured meshes in scientific computing, PageRank
Data access pattern irregular but static

Reordering techniques improve cache usage

Typically memory bandwidth bound

Unbalanced communication pattern in distributed memory

28

Johannes Langguth, Geilo Winter School 2020

Sparse Matrix Dense Vector: Problem Structure Matters

Weak ordering — Strong ordering —
Low performance High performance

Strong ordering complicates programing
Can we increase productivity ?

29

Johannes Langguth, Geilo Winter School 2020

Sparse Matrix Dense Vector: Problem Structure Matters

UPC vs UPC++ vs MPI ELLpack SpMV
512

256
128
64
32
. /

8

GFLOPS

16 32 64 128 256 512 1024
Cores (Sandy Bridge, 16 cores per node)

—UPC —UPC++ MPI+OpenMP with reordering
¢ Large mesSages, message size matters
e Algorithm helps, at the cost of productivity

e Communication system does not (at bandwidth baseline) %0

Johannes Langguth, Geilo Winter School 2020

Challenging Case: Sparse Matrix Sparse Vector

* Graph algorithms, GNNs, data dependent computation paths
 Data access pattern irregular and dynamic

e Possibility of cache reuse is questionable

e Often latency bound

 Unbalanced communication pattern in distributed memory

31

Johannes Langguth, Geilo Winter School 2020

The Most Basic Graph Algorithm: BFS

inf

* Basic kernel of the Graph500

GR

* Sequential algorithm trivial

32

Johannes Langguth, Geilo Winter School 2020

Challenges of Parallel BFS

Johannes Langguth, Geilo Winter School 2020

33

Challenges of Parallel BFS can be Overcome

Johannes Langguth, Geilo Winter School 2020

Communication pattern,
volume changes every
round

Rounds impose clear
structure on algorithm

Heavy all-to-all for small
diameter graphs

Number of rounds bounded
by graph diameter

Ultimately, BFS is a simple
graph problem

34

BFS: Successful Parallelization

-!-l'II>

9th Graph 500: Tre

nds --

TEPS

1 1]

—_
o
(&)

3
E

—

(o]
Py

|

—_

o
w

—

Search Rate (GTEPS)
o

1

|

|

T

1] 1

— Sum|-
—o # |
@ #8 |:

|

| |

Nov Jun Nov Jun Nov

Jun Nov Jun Nov

2010 2011 2011 2012 2012 2013 2013 2014 2014

Slide credit: Scott Beamer

& v

Georgia
Tech

MATIONAL LEBSEATONY

Johannes Langguth, Geilo Winter School 2020

35

Scalability! But at what COST?

Frank McSherry Michael Isard Derek G. Murray
Unaffiliated Unaffiliated* Unaffiliated®

Abstract

We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system’s scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDI, and find that many
systems have either a surprisingly large COST, often
hundreds of cores, or simply underperform one thread
for all of their reported configurations.

1 Introduction

“You can have a second computer once you’ve
shown you know how to use the first one.”

—Paul Barham

The published work on big data systems has fetishized
scalability as the most important feature of a distributed
data processing platform. While nearly all such publi-
cations detail their system’s impressive scalability, few
directly evaluate their absolute performance against rea-
sonable benchmarks. To what degree are these systems
truly improving performance, as opposed to parallelizing
overheads that they themselves introduce?

Contrary to the common wisdom that effective scal-

Johannes Langguth, Geilo Winter School 2020

1000

system B 100

seconds

1 1‘0 1(;0 31‘)0 1 1‘0 1l;0 3(‘)0
Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation ‘“‘scales” far better,
despite (or rather, because of) its poor performance.

While this may appear to be a contrived example, we will
argue that many published big data systems more closely
resemble system A than they resemble system B.

1.1 Methodology

In this paper we take several recent graph processing pa-
pers from the systems literature and compare their re-
ported performance against simple, single-threaded im-
plementations on the same datasets using a high-end
2014 laptop. Perhaps surprisingly, many published sys-
tems have unbounded COST—i.e., no configuration out-
performs the best single-threaded implementation—for
all of the problems to which they have been applied.
The comparisons are neither perfect nor always fair,
but the conclusions are sufficiently dramatic that some
concern must be raised. In some cases the single-
threaded implementations are more than an order of mag-

LI A| 11t PR .

Why are Parallel Graph Algorithms still Difficult ?

36

Scalability at what COST ?

e Most graph algorithms are

& , more difficult than BFS
510 3 system B -g 100 ¢
1 . . A —_— * Programming models are not
designed for graph
Figure 1: Scaling and performance measurements a pp|IC ations

for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.

The unoptimized implementation ‘“‘scales” far better,
despite (or rather, because of) its poor performance.

e Latency cannot be overcome
inside the application

Contrary to the common wisdom that effective scal-
ing 1s evidence of solid systems building, any system
can scale arbitrarily well with a sufficient lack of care in

its implementation.
37

Johannes Langguth, Geilo Winter School 2020

References

Bell, N., & Garland, M. (2009, November). Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In Proceedings of the conference on high performance computing
networking, storage and analysis (pp. 1-11).

Merrill, D., & Garland, M. (2016). Merge-based sparse matrix-vector multiplication (SpMV) using the
CSR storage format. ACM SIGPLAN Notices, 51(8), 1-2.

Langguth, J., Wu, N., Chai, J., & Cai, X. (2015). Parallel performance modeling of irregular
applications in cell-centered finite volume methods over unstructured tetrahedral meshes. Journal of
Parallel and Distributed Computing, 76, 120-131.

McSherry, F., Isard, M., & Murray, D. G. (2015). Scalability! But at what {COST}?. In 15th Workshop
on Hot Topics in Operating Systems (HotOS {XV}).

Awan, A. A., Hamidouche, K., Venkatesh, A., & Panda, D. K. (2016, September). Efficient large
message broadcast using NCCL and CUDA-aware MPI for deep learning. In Proceedings of the 23rd
European MPI Users' Group Meeting (pp. 15-22).

Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone
Image source: wikipedia.org, graph500.org, ornl.gov, mvapich.cse.ohio-state.edu
Contains material from ACACES 2018 summer school, originally designed by Scott Baden

38

Johannes Langguth, Geilo Winter School 2020

https://developer.nvidia.com/cuda-zone

