GPU Computing with CUDA (and beyond)
Part 5: Advanced Data Exchange

¢ 73

. Jaannes Dangguth
Simufla ResearclFLaboratory




SpMV: more than ELLpack

* SpMYV is one of the most important computational kernels
* Performance depends on the storage format
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Hybrid Format

Combination of ELL and COO formats
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CSR/CSC Format

* The most common storage format for graphs and matrices
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Mean Execution timels)

Performance of the Different Formats

SpMV Performance on Nvidia Quadre RTX 8000
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Can we Predict Performance ?
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Performance 1s connected to irregularity. But how exactly ?
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Profiling L2 Cache with NVProf
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L2 misses are the most costly and most unpredictable factor ;
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stable CSR performance

Merge-based SPMV
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Parallel Programing is Hard

Can we simplify communication instructions ?
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NVSHMEM: Upcoming PGAS system by NVIDIA
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NVSHMEM: CPU based Communication

GPU CPU PCle/Network

cuda_kernel<<<>>>

treamSynchronize<<<>>>

. -

MPI_Isend

MPITVM’
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NVSHMEM : CPU based Communication

CPU GPU Network

cuda_kernel<<<>>>

cudaStreamSIynchroni%‘:I
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Device Initiated Communication/Synchronization
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Device Initiated Communication

__global  void stencil single step (float *u, ...) {
int ix = threadIdx.x, iy = threadIdx.y;
//compute

//data exchange
if (iy == ny) {
shmem float p (u + ny*nx + ix, u + ix, top pe);
}
if (iy == 1) {
shmem float p (u + nx + ix, u+(ny+l)*nx + ix,bottom pe);
}

shmem barrier all();

}
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Stream Ordered Operations: avoid costly Sync

GPUO PCle/Network GPUO

shmem_barrier_all_on_stream
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Virtual Intra-Node Address Space
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Parallel Efficiency

NVSHMEM : Performance (NVIDIA numbers)
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#GPUs

®MPI Overlap = NVSHMEM

Benchmarksetup: DGX-2 with OS 4.0.5, GCC 7.3.0, CUDA 10.0 with 410.104 Driver, CUB 1.8.0, CUDA-aware OpenMPI 4.0.0, NVSHMEM EA2 (0.2.3),
GPUs@1597Mhz AC, Reported Runtime is the minimum of 5 repetitions
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UPC: a PGAS Language

PGAS programing model avoids the complexity of message passing
Many possible performance traps in PGAS implementation

We have some experience with Unified Parallel C (UPC)

UPC Basics:

* Declare shared arrays

e Communication is generated automatically

* Test problem: Sparse Matrix-Vector from last lecture

18
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ELL SpMV Implementation in UPC

shared [BLOCKSIZE] double* Voltage;
shared [BLOCKSIZE] double* NewVoltage;

Voltage = (shared [BLOCKSIZE] double¥)
NewVoltage = (shared [BLOCKSIZE] double¥*)

upc_all alloc(n blocks[0],sizeof (double) *BLOCKSIZE) ;
upc_all alloc(n blocks[0],sizeof (double) *BLOCKSIZE) ;

//Update cell k
NewVoltage[k] = D[k]* Voltage[k]
for (i=0;i<16;i++)
{
NewVoltage[k] += A[k*1l6+i]*Voltage[I[k*16+i]];
}

19
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GFLOPS

UPC: Straightforward Implementation

UPC SpMV Version 0.9

Naive UPC version using global pointers

2.5

0.5
0
16 32 64 128 256 512 1024
Threads
= Small instance D67 === Medium Instance D90.57 Big instance D90.59

Every single memory access must be checked
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GFLOPS
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UPC: Local Pointers

UPC SpMV Version 1.0

Using Local Pointers

e —— —

32 64 128 256 512 1024
Threads
— Small instance D67 === Medium Instance D90.57 Big instance D90.59

Communicates with very small messages
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GFLOPS

UPC: Block Transfers

UPC SpMV Version 1.2.5

Using Local Pointers and blocks for communication

25
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0

16 32 64 128 256 512 1024
Threads
- Small instance D67 = Medium Instance D90.57 Big instance D90.59
Better, but still way too much communication
22
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GFLOPS

UPC: Optimized Communication

UPC SpMV Version 1.3.4

Using exact communication size, communicating only what is needed

140
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0
16 32 64 128 256 512 1024
Threads
= Small instance D67 === Medium Instance D90.57 Big instance D90.59

Back to the MPI version, but with vector replication
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UPC: Lessons Learned

Implicit communication does not work well

Compiler does not aggregate transfers

Program not knowing if a variable is local carries an additional
cost

Maintaining a language is costly
Lesson learned: shift focus to one-sided messaging, RMA, RPC

What to do with such a system ?
Lets look at the communication patterns!

24
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Easy Case: Dense Matrix Dense Vector

Common pattern in scientific computing, deep learning, ML
Data access pattern completely regular

Batches, tiling, blocking, etc. to run from cache

Often compute bound

Balanced communication pattern for distributed memory

25
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Top 500: Dense Problems are “Easy”
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GPUs have lower efficiencies but higher FLOPS/Watt
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Intermediate Case: Sparse Matrix Dense Vector

Unstructured meshes in scientific computing, PageRank
Data access pattern irregular but static

Reordering techniques improve cache usage

Typically memory bandwidth bound

Unbalanced communication pattern in distributed memory

27
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Intermediate Case: Sparse Matrix Dense Vector

Unstructured meshes in scientific computing, PageRank
Data access pattern irregular but static

Reordering techniques improve cache usage

Typically memory bandwidth bound

Unbalanced communication pattern in distributed memory
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Sparse Matrix Dense Vector: Problem Structure Matters

Weak ordering — Strong ordering —
Low performance High performance

Strong ordering complicates programing
Can we increase productivity ?

29
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Sparse Matrix Dense Vector: Problem Structure Matters

UPC vs UPC++ vs MPI ELLpack SpMV
512

256
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32
. /
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GFLOPS

16 32 64 128 256 512 1024
Cores (Sandy Bridge, 16 cores per node)

—UPC —UPC++ MPI+OpenMP with reordering
¢ Large mesSages, message size matters
e Algorithm helps, at the cost of productivity

e Communication system does not (at bandwidth baseline) %0
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Challenging Case: Sparse Matrix Sparse Vector

* Graph algorithms, GNNs, data dependent computation paths
 Data access pattern irregular and dynamic

e Possibility of cache reuse is questionable

e Often latency bound

 Unbalanced communication pattern in distributed memory

31
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The Most Basic Graph Algorithm: BFS

inf

* Basic kernel of the Graph500

GR

* Sequential algorithm trivial

32
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Challenges of Parallel BFS
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Challenges of Parallel BFS can be Overcome

Johannes Langguth, Geilo Winter School 2020

Communication pattern,
volume changes every
round

Rounds impose clear
structure on algorithm

Heavy all-to-all for small
diameter graphs

Number of rounds bounded
by graph diameter

Ultimately, BFS is a simple
graph problem
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BFS: Successful Parallelization
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Scalability! But at what COST?

Frank McSherry Michael Isard Derek G. Murray
Unaffiliated Unaffiliated* Unaffiliated®

Abstract

We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system’s scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDI, and find that many
systems have either a surprisingly large COST, often
hundreds of cores, or simply underperform one thread
for all of their reported configurations.

1 Introduction

“You can have a second computer once you’ve
shown you know how to use the first one.”

—Paul Barham

The published work on big data systems has fetishized
scalability as the most important feature of a distributed
data processing platform. While nearly all such publi-
cations detail their system’s impressive scalability, few
directly evaluate their absolute performance against rea-
sonable benchmarks. To what degree are these systems
truly improving performance, as opposed to parallelizing
overheads that they themselves introduce?

Contrary to the common wisdom that effective scal-
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Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation ‘“‘scales” far better,
despite (or rather, because of) its poor performance.

While this may appear to be a contrived example, we will
argue that many published big data systems more closely
resemble system A than they resemble system B.

1.1 Methodology

In this paper we take several recent graph processing pa-
pers from the systems literature and compare their re-
ported performance against simple, single-threaded im-
plementations on the same datasets using a high-end
2014 laptop. Perhaps surprisingly, many published sys-
tems have unbounded COST—i.e., no configuration out-
performs the best single-threaded implementation—for
all of the problems to which they have been applied.
The comparisons are neither perfect nor always fair,
but the conclusions are sufficiently dramatic that some
concern must be raised. In some cases the single-
threaded implementations are more than an order of mag-

LI A| 11t PR .

Why are Parallel Graph Algorithms still Difficult ?
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Scalability at what COST ?

e Most graph algorithms are

& , more difficult than BFS
510 3 system B -g 100 ¢
1 . . A —_— * Programming models are not
designed for graph
Figure 1: Scaling and performance measurements a pp|IC ations

for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.

The unoptimized implementation ‘“‘scales” far better,
despite (or rather, because of) its poor performance.

e Latency cannot be overcome
inside the application

Contrary to the common wisdom that effective scal-
ing 1s evidence of solid systems building, any system
can scale arbitrarily well with a sufficient lack of care in

its implementation.
37
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