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Objective

Study molecules placed in strong magnetic fields in order to
understand the quantum mechanism of intramolecular interac-
tions in highly magnetized stellar objects and gain insight into
electronic structure changes on breaking of spin symmetry.

Magnetic Fields: How Strong is “Strong" ?

Figure 1: Brain: pT

=⇒
1 au = 235kT

Figure 2: Neutron Star: GT
Astrochemistry

• The spectra of molecules changes
dramatically in strong magnetic fields

• Computations required to
understand and interpret spectra for
molecular detection in magnetic
white dwarfs

• Currently, field strength is
determined by comparing observed
and predicted atomic lines in the
visible spectrum, eg. ⇒ He atom in
figure

• He2 is predicted to exist in strong
magnetic fields

Figure 3: Spectra of He atom from a
magnetized white dwarf

High-field Analogues in Semi-conductors

At field strength B0, the magnetic cyclotron
energy of the electron is one hartree:

B0 = e3m2
e

(4πε0)2}3 = 2.35× 105T

• In semiconductors, effective mass and
dielectric constant may reduce B0
dramatically. The donated P electron
in Si:P behaves as a hydrogen electron
with B0 = 32.8 T

•Si:P as a laboratory analogue for
hydrogen on high magnetic field
white dwarf stars

B. N. Murdin et al., Nat. Commun. 4, 1469
(2013): “The spectra reproduce the high-field theory for free hydrogen,
with quadratic Zeeman splitting[...] They show the way for experiments on
He and H2 analogues, and for investigation of He2, a bound molecule
predicted under extreme conditions.”

Figure 4: Lyman series
of Si:P vs H2 Theoretical
Spectrum

Insight into DFT and CDFT

• An external B can be used to distort the electronic density in
various ways as a probe to test the DFT exchange-correlation
functionals.

• DFT in magnetic fields requires the introduction of the
paramagnetic current density into the universal
functional ⇒ CDFT. CDFT is still in its infancy.

• Exchange-correlation functionals need to be tested and
improved.

• mGGAs show promise
• CDFT will make it possible to study larger molecules and
semiconductor analogues which ought to show exotic
magnetic behaviour even at laboratory field strengths.

Vignale and Rasolt, PRL, 59, 2360 (1987);
Tellgren, Teale, Furness, Lange, Ekström, and Helgaker, JCP, 140, 034101
(2014)

The LONDON package

• First code for molecules in finite magnetic fields
•Complex wave-function: All MO coefficients, integrals are
complex valued in our general implementation

• Equations were re-derived using complex algebra
• London orbitals used
• HF, FCI, MCSCF, MP2, CCSD(T), DFT capabilities
• Handle non-uniform magnetic fields
•Latest: Linear Response to compute excited states
• EOMCC is interfaced to it (Dr. S. Stopkowicz)
• Other software: BAGEL, QUEST

http://folk.uio.no/eriktel/london/index.html

Linear Response of RHF/UHF/GHF

• The orbitals are optimized in the presence of uniform and
non-uniform magnetic fields.

• For GHF: Spin and Spatial parts of the orbital are
coupled during optimization

• Final orbitals are 2-component with both a spatial
density and a spin density.

• Excitation energies and oscillator strengths are computed using
the Random Phase Approximation (RPA)/Tamm-Dancoff
approximation (TDA or Singles-CI).

• The set of single excitation and de-excitation operators contain
both spin-conserving and spin-flip operators.

• The implementation allows the use of LAOs.
• A general implementation for RHF/UHF/GHF allows access to
states of various spin multiplicities.

C atom

Figure 5: C atom in a uniform field, Luaug-cc-
pCVQZ.

The inset shows the
difference of the energies
of the excited states
between Hartree-Fock
linear response and
EOM-CCSD

H2

-1.50

-1.25

-0.99

-0.74

-0.48

-0.23

0.03

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

¹Σg
³Σᵤ
³Σg
³Πᵤ
³Πᵤ
¹Σᵤ
¹Σg
¹Πᵤ
¹Πᵤ

B|| / B0

En
er

gy
 / 

E H

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

¹Σg
³Σᵤ
³Σg
³Πᵤ
³Πᵤ
¹Σᵤ
¹Σg
¹Πᵤ
¹Πᵤ

B+ / B0

(a) (b)

Figure 6: H2 in a uniform field (a) parallel and (b) perpendicular to the bond
axis, Luaug-cc-pCVQZ

Figure 7: H2, Luaug-cc-pCVQZ, Difference of the energies of the excited states
between Hartree-Fock linear response and EOM-CCSD

BH

Figure 8: BH in a uniform field: parallel to the bond, (a) Luaug-cc-pVDZ
(b) Luaug-cc-pCVQZ and perpendicular to the bond, (c) Luaug-cc-pVDZ
(d) Luaug-cc-pCVQZ

Allowing Spatially Forbidden Transitions
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Figure 9: H2O: Electric Dipole forbidden transition in uniform B

Allowing Spin Forbidden Transitions
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Figure 10: H2O: Spin forbidden transition allowed in non-uniform B

Equivalence of Length and Velocity Gauge
for RPA with complex orbitals

Figure 11: H2: Numerical demonstration of the equivalence of the electric dipole
oscillator strengths in length and velocity gauge for RPA but not the Tamm-
Dancoff approximation with complex orbitals

Tensor-DFT

We present a kinetic energy
tensor (Q) that unifies a scalar
kinetic energy density commonly
used in mGGA functionals (τD)
and the vorticity density (ν)
that appears in CDFT.
Functionals depending on Q
may be naturally placed on the
third rung of Jacob’s ladder.

The Electron Localization
Function (ELF) can
discriminate effective one-orbital
regions from other regions, Q
can discriminate between
one-, two-, three-, and
four-or-more orbital
regions.

Hartree hell

FCI heaven

f1(⇢)LDA

f2(⇢,r⇢)GGA

f3(⇢,r⇢, ⌧D)mGGA

f3+(⇢,r⇢,Q)

f4(⇢,r⇢, ⌧D, ✏x)hybrid

f5({�i}, {�a})gen.RPA

1

Figure 12: Jacob’s Ladder

Figure 13: Benzene in B=[0,0,0] au.
Left: ELF. Right: QELF.
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