
DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 1 of 16

DT-FOF-05-2019 (870148)

User Manual Report

Deliverable ID D5.3 Version V1
Deliverable name User Manual Report

Lead beneficiary RDIUP
Contributors Dah DIARRA (RDIUP), Habib NASSER(RDIUP)
Due date 28-02-2021
Date of final version 27-02-2021
Dissemination level PU
Deliverable type R: Document, report (excluding the periodic and final reports)
Document approval Chandana Ratnayake 27.02.2021

The DIY4U project has received funding from the European Union’s Horizon
2020 research and innovation programme under GA No. 870148

PROPRIETARY RIGHTS STATEMENT

This document contains information which is proprietary to the DIY4U consortium. The document or the content of it shall
not be communicated by any means to any third party except with prior written approval of the DIY4U consortium.

Open Innovation Digital Platform and Fablabs for Collaborative Design
and Production of personalised/customised FMCG

Ref. Ares(2021)1533898 - 27/02/2021

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 2 of 16

Deliverable details

Deliverable ID: D 5.3

Deliverable name: User Manual Report

Responsible partner: RDIUP

Contributors: Dah DIARRA (RDIUP) and Habib NASSER (RDIUP)

Reviewed by: Alexandru BUTEAN (EFF), Mark TAYLOR (CPI)

Due date: 28/02/2021

Delivery date: 27/02/2021

Version Authors Date Status

First draft Dah DIARRA (RDIUP), Habib
NASSER (RDIUP)

18-02-2021 To be reviewed

Review Alexandru BUTEAN (EFF),
Mark TAYLOR (CPI)

23-02-2021 To be improved

Final Version Dah DIARRA (RDIUP), Habib
NASSER (RDIUP)

26-02-2021 To be submitted

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 3 of 16

Table of Contents

1. Executive Summary .. 3

2. Introduction: .. 4

3. API description ... 4

4. Authentication .. 7

5. Resources ... 9

6. Management of resources .. 14

7. Conclusion .. 16

Figure 1: Overview of our solution ... 4
Figure 2 : The main features of the data analytics module .. 5
Figure 3 : Interaction between modules .. 5
Figure 4 : Presentation Layer .. 6
Figure 5 : Application Layer architecture ... 7
Figure 6: Data access layer architecture ... 7
Figure 7: The authentification process .. 8
Figure 8: Authorisation and interaction process... 8
Figure 9: CURL Method .. 9

Abbreviation:

API: Application Programming Interface
EF: Extension Functionalities
FMCG: Fast Moving Consumer Goods
HTTP: Hypertext Transfer Protocol
JSON: JavaScript Object Notation

JWT: JSON Web Token
OIP: Open Innovation Platform
P&G: Procter and Gamble
REST: Representational State Transfer
URL: Uniform Resource Locator

1. Executive Summary

DIY4U has the ambition to be a leader in the digital customization of FMCG. To reach this goal, WP5
proposes Extension Functionalities (EFs) to better understand the behaviors and personalised needs of
consumers, extract meaningful information and recommend formula in an effective and secure manner.
The data analytics API will interact with other modules in the an Open Innovation Platform (OIP) which
explains the importance of a user manual for key technical partners to facilitate their development
activities in WP4 and WP5. The user manual contains the following 6 sections:

1. An introduction: will be defined to deliver a technical overview about the user manual.
2. API description: An introductive documentation and graphics are provided to present the data

analytics structure and different layers.
3. Authentication and authorization: In this report, a method will be presented and detailed to

support technical partners use and test their linked modules.

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 4 of 16

4. Resources: The main resources will be provided and presented to define each parameter and
attribute and understand the associations between them.

5. Management of resources: includes the HTTP or HTTPs requests to be used by other WPs to
interact with our data analytics modules.

6. A brief and clear conclusion about the user manual and further perspectives will be reported.

This report will be utilized as a guide in WP4, WP5 and open calls to support key stakeholders
developing their tools.

2. Introduction:
This Deliverable (D5.3) aims to create an intuitive, and appealing user manual. It consists of the
definition of a guide to support DIY4U’s partners using and interacting with our Back-end modules
developed in the Task 5.2. This report will first introduce the structure, the architecture and the different
layers of our modules. Then, it will present the authentication methods proposed in this DIY4U’s API,
the postman tool and all available resources. The User Manual clearly explains how the resources will
be managed to help partners learn how to use the data analytics module, and provide a short description
of each resource and linked request. The User Manual will be written using technical and non-technical
terminology and will include the key features and functions developed in D5.2 “Data analytics
application and results report”.

3. API description

DIY4U EFs is an API (Application Programming Interface) built around REST (Representational State
Transfer) specifications. The application has predefined URLs for its resources accessed by the client
application, It accepts JSON-encoded format in the request body and returns response in JSON format.
These predefined URLs are used over HTTPS or HTTP with http verbs (GET, POST, PUT, DELETE
and PATCH) to interact with the API. As the API has restricted access and secure, authentication is
required. A user can generate an authorization token in order to discover and manage the API features.
Read the authentication section for deep understanding.

Figure 1: Overview of our solution

The database of the APIs was developed using MongoDB which is a flexible and scalable database
management system. Data is structured in the database in the form of many collections and each
collection contains many documents of the same structure. Each single collection of the database is
considered as a resource that needs to be managed during the application lifecycle. The resource section
will describe the contains of each resource and the management of resources describes how to manage

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 5 of 16

it during the resources lifecycle. The Figure 2 shows the main features (Consultation, Data collection,
Data analytics and order/feedback) of our tool. Moreover, RDIUP has defined a web-based
documentation interface to introduce our solutions https://diy4u-
frontend.herokuapp.com/docs/api/introduction

Figure 2 : The main features of the data analytics module

The following subsections present the main structure and layers (presentation, application and data
access layer) of our Back-end API.

Modules Interactions: As Django has its own style of
architecture, it provides an effective way to define many
small applications within the project. these small
applications act as one module in the present
architecture. The different modules can interact
between them by exchange data between each other.
The core module is the one that provide implementation
of primary resource. It is used by all modules to access
some implementation. This module does not required
other module to work. Consultation, Analytics, and
orders are datasets that provide specific of the
application. These modules focus on their own features
and they are totally dependent to the core module.

Module Architecture: The architecture is very
important to build a great software. There are many type
of architecture developed in the literature such
as Multitier, Monolithic, Microservices, Event
Driven etc.. The three-tier architecture which is a Multitier architecture was the one used in this project.
It has three main layers (Presentation, application, data access) where communication goes from top
layer to bottom layer for incoming request and reverse direction for answer. Each layer manages a
specific and different tasks of the application.
Presentation layer is the top level layer which is responsible for the interaction with users or other
program that interact with the app. For REST API all related code in this layer are focusing on routing
incoming request and call the appropriate application layer code to get result and return this result as

Figure 3 : Interaction between modules

https://diy4u-frontend.herokuapp.com/docs/api/introduction
https://diy4u-frontend.herokuapp.com/docs/api/introduction
https://diy4u-frontend.herokuapp.com/docs/api/introduction
https://en.wikipedia.org/wiki/Multitier_architecture
https://en.wikipedia.org/wiki/Monolithic_application
https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Event-driven_architecture
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 6 of 16

request response. Application layer is the middle level layer, it contain the business logic of the app.
These business logic are class or functions that contain implementation of the application features. It is
used by the presentation layer to treat request and use the data access layer to get data. Data
Access layer is the bottom level layer that contains code for reading and writing in the data
base.

Presentation Layer: Since our app is REST API,
this layer is responsible for request routing,
respond request, error handling, authentication
and authorization. Incoming requests are first
handle by the built-in django router , which call
the appropriate view class and method based on
pre-configure URL and the incoming request
(method, URL, parameters etc..). For example
POST https://diy4u-efs.herokuapp.com/ is
different to PUT https://diy4u-
efs.herokuapp.com/. When the corresponding
view is called by the router, it checks whether the
request is authenticate and the user
has authorization access. It returns an
authentication error if the request is not
authenticate or user is not authorized, otherwise it
calls application layer to get result of the treatment
of the request and returns it as response. The
application layer can raise an error, so it return a
well formatted error response.

Application Layer: This layer is the one that
describes the behaviour of the system by
implementing all features or services of the
system or the module. It ensures that all required
policies are respected and validated during
service or feature execution. As this layer
provides a set of service or features, they are
imported and used inside the presentation layer.
During the service execution, they can access to
the data access layer to get or save data. It also
handles its own execution error and provides one
unique customized error to the view.
Serializers are also used by this layer to validate
data (this is more specific to Django technology),
save data and convert data from python object to
JSON format and vice-versa. Utils class and
functions are also part of the layer to reduce
service class and function size.

Figure 4 : Presentation Layer

https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://www.django-rest-framework.org/api-guide/routers/
https://www.django-rest-framework.org/api-guide/routers/
https://diy4u-efs.herokuapp.com/
https://diy4u-efs.herokuapp.com/
https://diy4u-efs.herokuapp.com/
https://diy4u-efs.herokuapp.com/
https://diy4u-efs.herokuapp.com/
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://diy4u-frontend.herokuapp.com/docs/api/architecture/%23
https://www.django-rest-framework.org/api-guide/serializers/

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 7 of 16

Data Access Layer: This layer is responsible
for handling database access for write and
reading data. It Contains class and method that
handle write and read operation. As there no
business policies in this layer to check data
integrity, this layer is only available to the
application layer which guaranteed the
integrity of data.
The business key object are defined as model
that extends Mongoengine package document
class which provide implementation of write
and read operation on the database. Each model
should contain attribute and their type,
mongoengine will automatically create
collections and documents in database when
needed for those model. The Database used in
the DIY4U project MongoDB which is a
document based database system. This type of
database allows to store an object
in BSON format. It is hosted in MongoDB
Atlas : a cloud service for database hosting.

4. Authentication
As the API is private and secure, an authentication is required to give access to each resource. As The
JSON Web Token (JWT) is one of the most common and robust authentication systems used by big
companies, users can generate an access token and add it to the header of each request in the
“Authorization” key. Note that by default, the generate token is validated for next 24h. Clients or users
can get access tokens by login, as the API can be accessed by HTTP or HTTPs call, there are many
methods to get a token. In order to demonstrate the authentication process, we start by presenting the
Postman application method (for testing) and then the CURL command method which works with bash.
Note: Actually only Michael from P&G has an account and can access to our web-based interface.

4.1 Postman App
In order to get an authentication token using postman you should follow the steps.

1. Set the request URL to https://diy4u-efs.herokuapp.com/accounts/users/auth/login
2. Set the request method to POST
3. Define request body content type by selecting raw and JSON as data encoding.
4. Add user email and password in the body.
5. Finally, send the request by clicking in the send button and you should get in return a token if

the user information are correct otherwise you get an error message for invalid credentials.

 Figure 5 : Application Layer architecture

Figure 6: Data access layer architecture

http://mongoengine.org/
http://mongoengine.org/
https://www.mongodb.com/
https://www.mongodb.com/
https://en.wikipedia.org/wiki/BSON
https://en.wikipedia.org/wiki/BSON
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://diy4u-efs.herokuapp.com/accounts/users/auth/login

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 8 of 16

Figure 7: The authentification process

After generating a token, you need to add it in the request header, for that users have to follow these
steps:

1. Select the headers tab
2. Add new Authorization key
3. Set the Authorization key value to your new generated token.
4. Do it for each request in order to authenticate your request. Note that if you did not change the

tab postman will keep the same header, so not need to do it each time.

Figure 8: Authorisation and interaction process

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 9 of 16

4.2. CURL command

In order to get an access token with the CURL method, users have to execute this command in a bash
environment. Note that the “Authorization” key is not required in the login request.

curl -v -X POST https://diy4u-efs.herokuapp.com/accounts/users/auth/login
-H "Content-Type: application/json" \
-H "Authorization: Not matter" \
-d '{
 "email": "your.email@example.domain",
 "password": “My strong password”
}'

Figure 9: CURL Method

If the password and email match properly, users will receive their information and the access token in
a JSON format.

5. Resources
5.1. Accounts

The account module is reserved to persons resources management. It contains three (03) main resources
such organizations, customers, and users. These three resources are presented and detailed in the
subsections below.

5.1.1. Customers

This collection contains information about each customer that is used in data analytics and later in the
customization services to produce a better recommendation engine. The customer collection includes
the following attributes in each document.

- full_name: the customer full name.
- id (provided by the API): a unique identifier generated by the API to identify the customer.
- external_id : a unique identifier that identifies the customer in the organization system.
- email (optional): the email of the customer
- phone (optional): the phone number of the customer
- owner_id (provided by the API): used to identify each customer organization. This value is

retrieved from the user authentication token during the customer creation, no need to manually
add it.

- descriptors: contains extra information about the customer as plain objects. Accepted
attributes are gender, age, washer and profession. Example {gender: "men", profession:
“doctor”}

- address: contains information about customer addresses as plain objects. Accepted attributes
are country, state, city, zip_code, line, line_2, longitude, latitude. Example {country:
“France”}

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 10 of 16

5.1.2. Users

Users are the API clients and can use our modules to manage, and secure their resources database. Users
can also be DIY4U stakeholders, to easily access our API resources. The user contains the following
attributes in each document.

- id (provided by the API): a unique identifier generated by the API to identify the user.
- organization_id (Provided by the API): the unique identifier of the organization to which the

client belongs.
- full_name: the user full name.
- email: the email of the user. it should be unique.
- role: the role of the user. Possible value are “admin” or “client”
- api_key (optional): a unique key generated for long time usage.
- api_key_prefix(optional): a prefix to identified the API key

5.1.3. Organizations

The organizations provide a way to group users together in order to share the same resource. This feature
allows the DIY4U stakeholders to have their own resources and give access to their selected clients.
The organization must contain at least one user. All resources belong to the organization and not the
client who created it. The organization contains the following attributes in each created document.

- id (provided by the API): a unique identifier generated by the API to identify the user.
- name: the name of the organization. It should be unique.
- email: the email address to contact the organization.

5.2. Core
The core modules contain the main resource of our API. Core resources are basically all resources
gathered and stored during the data collection task. These resources are used by machine learning for
recommendation and data analytics resources. Resources such as raw materials, formulas, questions and
adjustment rules are part of the core modules that are presented and detailed in the following
subsections.

5.2.1. Raw materials

Raw materials are the base component used to create formulas. This resource allows us to maintain a
single raw material and use it for all formulas that contain it. The raw material collection contains these
following attributes in each document it contains.

- id (provided by the API): a unique identifier generated by the API to identify the raw material.
- name: the name of the raw materials (not required to be unique but recommended)
- formula_type (optional): define the type formula for which the raw material is used. The

default value is “detergent”
- formula_state: define whether the raw material is used only for liquid, powder or both

formulas. Possible value are “liquid”, “powder” and “both”
- is_suspended (optional): this flag is used to inform whether the raw material is active or

disable. The default value is false. If true the raw material is considered as deleted and will not
be used for any operation.

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 11 of 16

- calc_method: define whether the raw material is used has parts of the formula or used to
balance the formula. Possible value are “parts” and “balance”

- uop: define the type of component the raw material is. Possible values are “admix” and
“sprayon”.

- owner_id: used to identify each user raw materials. This value is retrieved from the user
authentication token during the raw materials creation, no need to manually add it.

- usage_tag (optional): defined which the properties of the formula the raw material affect. It is
used during recommendation based on feedback. Possible values are “other”, “scent”, “stain”,
“color”.

- unit_price: define the raw material per unit.
- co2_prod (optional): define the carbon footprint generated during the production per unit.
- co2_transport (optional): define the carbon footprint generated during the transport per unit.

5.2.2. Formulas
The formula collection contains all validated and basic formulas used to create new products. The
formula collection operates by maintaining a reference of all raw material needed for the creation. The
formula collection contains the following attributes :

- id (provided by the API): a unique identifier generated by the API to identify the formula
- name: the name of the formula (not required to be unique but recommended).
- formula_type (optional): define the type products for which the formula is used. The default

value is “detergent”
- formula_state: define whether the formula is used for liquid or powder formulas. Possible

values are “liquid”, and “powder” .
- is_suspended (optional): this flag is used to inform whether the formula is active or disable.

The default value is false. If true the formula is considered as deleted and will not be used for
any further operations.

- owner_id: used to identify each user’s formula. This value is retrieved from the user
authentication token during the formula creation, no need to manually add it.

- is_basic (optional): define whether the formula is basic or not. the default value is false.
- adjustustment_rules_id (optional): defined to determine the adjustment rules to be used

during the recommendation for a given basic formula. This field is default to null and is only
required for the basic formula.

- constituents: a list of objects that contains each raw material id and their weight in the formula.
Example [{rms_id: weight}, {rms: weight} ...] . Note that the sum of all weights must be 1.

5.2.3. Questions
Define all possible questions that can be asked to the customer during the quiz. These questions will be
used in the adjustment rules to define the adjustment level to be applied. The question collection
contains these following attributes in each document it contains.

- id (provided by the API): a unique identifier generated by the API to identify the question.
- formula_type (optional): define the type formula for which the question is used. The default

value is “detergent”

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 12 of 16

- formula_state: define whether the question is used only for liquid, powder or both formulas.
Possible value are “liquid”, “powder” and “both”

- title: the title of the question (not required to be unique but recommended).
- tag: a short title that best describes the question.
- description (optional): a text which best describes the question purpose and utilities.
- owner_id: used to identify each user question. This value is retrieved from the user

authentication token during the question creation, no need to manually add it.
- is_suspended (optional): this flag is used to inform whether the question is active or disable.

The default value is false. If true the question is considered as deleted and will not be used for
any operation.

- choices: a list of possible choices or answers. Each choice should have the following structure.
- choice_id (provided by the API): a unique identifier generated by the API to identify

the question choice
- title: the title of the question choice(not required to be unique but recommended).
- description: a text which best describes the question choice purpose and utilities
- is_suspended (optional): this flag is used to inform whether the question choice is

active or disable. The default value is false. If true the question choice is considered as
deleted and will not be used for any operation.

5.2.4. Adjustment rules

Adjustment rules are used to define which percentage of each raw material should be kept in a given
basic formula to find a theoretical formula that properly meets the customer requirements during the
recommendation process. The adjustment rules collection contains the following attributes in each
document.

- id (provided by the API): a unique identifier generated by the API to identify the adjustment
rules.

- formula_type (optional): define the type formula for which the adjustment rules is used. The
default value is “detergent”

- formula_state: define whether the adjustment rule is used for liquid or powder formulas.
Possible value are “liquid”, “powder”.

- title: the title of the adjustment rule(not required to be unique but recommended).
- owner_id: used to identify each user adjustment rule. This value is retrieved from the user

authentication token during the raw materials creation, no need to manually add it.

5.3. Analytics
The analytics module contains resources and analytic results generated during the client interactions
with API. It includes resources such as consultations, orders and feedback. The module handles the
management of the resource for each API organization. These resources are presented and detailed in
the following subsections.

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 13 of 16

5.3.1. Consultations

Consultation contains information that is generated when customers take quizzes and request for
recommended formulation based on their needs and expectations. The consultation resource provides a
way to manage this kind of information and contain the following attributes in each document :

- id (provided by the API): a unique identifier generated by the API to identify the consultation.
- formula_type (optional): define the type of formula requested by the customer during the quiz.

The default value is “detergent”
- formula_state: define whether customer requests for liquid or powder formula. Possible value

are “liquid”, “powder”
- owner_id (Provide by the API): The id of the organization in which the customer or the user

belongs.
- quiz_answers: an object that contains the customers’ choice quiz. Example: {“question_id”:

“choice_id” , ...}
- customer_id: The id of the customer who did the consultation.
- create_at: define when the consultations are occurred.
- result (Provided by the API): an object that includes all data generated when the API is

processing the request. The result information can be:
- theoretical_formula: contains the theoretical formula obtained from the formula

recommendation algorithm. Example: {“rms_id”: percentage, ...}
- basic_formula_id: define the unique identifier of the basic formulation used to create

the theoretical formula.
- recommendation: contain the list of three sorted list of formulations to be

recommended to the customer. Example: [{“formula_id”: value, “score”: value},]

5.3.2. Orders

After Quizzes, the API will recommend a formulation, and the costumer can confirm the order or not.
If he confirms the order, then, the information related to the order is saved in the API in this organization
to be used later for analytics purposes. Every order should refer to a unique consultation. The orders
collection contains these following attributes :

- id (provided by the API): a unique identifier generated by the API to identify the order.
- customer_id: The id of the customer who ordered.
- owner_id (Provide by the API): The id of the organization in which the customer or the user

belongs.
- consultation_id: the identifier of the consultation that was confirmed by the customer.
- create_at(Provide by the API): the time when the customer confirms the order.
- item: an object that contains information about the ordered product. It contains attributes such

as.
- item_id: the identifier of the formulation chosen.
- quantity: the quantity ordered in g.
- income: the total income generated via the order.
- amount: the total amount paid by the customer including shipment, tax, fees etc ….

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 14 of 16

5.3.3. Feedback

As the recommended formulation may not meet customer needs, RDIUP has defined and implemented
a feedback system to gather customer feedback in order enhance the recommendation algorithm and
also analyse this feedback to prioritise formulation and modify the weighted scores. The feedback
collection comprises the following attributes:

- id (provided by the API): a unique identifier generated by the API to identify the feedback.
- customer_id: The id of the customer who gives the feedback.
- order_id: the identifier of the order that is the origin of the feedback.
- stain_evaluation: define how good was the stain removal capacity. Accepted values are (“very-

weak”, “weak”, “perfect”, “strong”, “very-strong”)
- scent_evaluation: define the level of the scent intensity. Accepted values are (“very-weak”,

“weak”, “perfect”, “strong”, “very-strong”)
- satisfied: determine whether the customer is satisfied or not. Accepted values are (“true”,

“false”)
- comment: a text that describes the customer feelings and experiences.

6. Management of resources
Managing resources allows to make HTTP or HTTPs requests to the API in order to make change, get
data or add new data to the resources. The API contains two main modules, the core that contains
primary resources, accounts that contains user account related to resources and analytics which contains
resources related to the features and analytic results. Each resource URL contains the module name
before the resource name.

6.1. Manage Accounts resources

The account module contains resources that are prefixed by accounts keyword. All resources available
on the accounts module are users, and customers. To manage each resource, clients need to replace the
{resource-name} by the corresponding name and hosted by https://diy4u-efs.herokuapp.com/. Note
that the body of each request should contain validated data for the given resource, all attributes are
described in the resource sections.

Request
Type

Request URL Body Action Return Data

POST host/accounts/organ
ization

organization name and
email plus main user data

Create organization
with a given user

Return user and
auth token

POST host/accounts/users/
auth/register

user object in JSON add new users to the
organization

The new user

POST host/accounts/users/
auth/login

email and password login user User information
and a token

GET host/accounts/{reso - Retrieve all item of All item of a

https://diy4u-efs.herokuapp.com/

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 15 of 16

urce-name} a given resource given resource (
only for the user)

GET host/accounts/{reso
urce-name}/id

- Retrieve an item of a
given resource by it
id

An item of a given
resource

POST (only
for
customer)

host/accounts/{reso
urce-name}

resource object in JSON create new resource
item

The new created
resource

PUT host/accounts/{reso
urce-name}

resource object in JSON Update item of the
resource

Error if failed or
204 status code if
success

DELETE host/accounts/{reso
urce-name}/id

- Delete an item of the
resource by the item
id

Error if failed and
204 status

6.2. Manage core resources

The core module contains many resources that are prefixed by the core keyword. All resources available
on the core module are raw-materials, formulas, questions, adjustment-rules. To manage each
resource, users have to replace the {resource-name} by the corresponding name hosted by
https://diy4u-efs.herokuapp.com/ . Note that the body of each request should contain validated
data for the given resource, all attributes are described in the resource sections.

Request
Method

Request URL Request Body Return Data Action

GET host/core/{resource-
name}

- All item of a given
resource (only for the
user)

Retrieve all item of a
given resource

GET host/core/{resource-
name}/id

- An item of a given
resource

Retrieve an item of a
given resource by it id

POST host/core/{resource-
name}

resource object in
JSON

 The new created
resource

Create new resource
item

PUT host/core/{resource-
name}

resource object in
JSON

Error if failed or 204
status code if success

Update item of the
resource

DELETE host/core/{resource-
name}/id

- Error if failed and 204
status code if success

Delete an item of the
resource by the item id

https://diy4u-efs.herokuapp.com/

DT-FOF-05-2019 (870148) Deliverable D5.3

Classification Public Page 16 of 16

6.3. Manage analytics resource

The analytics module contains many resources that are prefixed by the analytics keyword. All resources
available on the core module are consultations, orders, feedback. To manage each resource replace
the {resource-name} by the corresponding name and hosted by https://diy4u-efs.herokuapp.com/ .

Request
Method

Request URL Request Body Return Data Action

GET host/analytics/{resource
-name}

- All item of a given
resource (only for the
user)

Retrieve all item of a
given resource

GET host/analytics/{resource
-name}/id

- An item of a given
resource

Retrieve an item of a
given resource by it id

POST host/analytics/{resource
-name}

resource object in
JSON

 The new created
resource

Create new resource
item

PUT host/analytics/{resource
-name}

resource object in
JSON

Error if failed or 204
status code if success

Update item of the
resource

DELETE host/analytics/{resource
-name}/id

- Error if failed and 204
status code if success

Delete an item of the
resource by the item id

7. Conclusion
The DIY4U EFs functionalities develops by DIY4U was built based on the well REST API that
facilitate the communication with the modules of the DIY4U platform. This document describes how
to interact with the developed API. As the API is protected and secure, an authentication JSON Web
token is required to get access, two methods of access token generation were defined. All resources of
the API were described in detail and the way to manage them was also presented. The user interface
defined by RDIUP has allowed to demonstrate and test these services, features and Functions. For the
future demonstrations in real condition, our API has to be hosted in a performant cloud server and the
database will be extended for multi-users.

https://diy4u-efs.herokuapp.com/

	1. Executive Summary
	2. Introduction:
	3. API description
	4. Authentication
	5. Resources
	5.1. Accounts
	5.1.1. Customers
	5.1.2. Users
	5.1.3. Organizations

	5.2. Core
	5.2.1. Raw materials
	5.2.2. Formulas
	5.2.3. Questions
	5.2.4. Adjustment rules

	5.3. Analytics
	5.3.1. Consultations
	5.3.2. Orders
	5.3.3. Feedback

	6. Management of resources
	6.1. Manage Accounts resources
	6.2. Manage core resources
	6.3. Manage analytics resource

	7. Conclusion

