
Science-guided Machine Learning (Part 2):
Case Studies, Recent Progress, and Future Prospects

Anuj Karpatne
Assistant Professor, Computer Science

Virginia Tech
karpatne@vt.edu

https://people.cs.vt.edu/karpatne/

1

HDR Grant # 1940247
EAGER Grant # 2026710

https://people.cs.vt.edu/karpatne/


Illustrative Case Studies in SGML
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• Case Study 1: Science-guided Learning and Hybrid-Science-ML Modeling for 
Lake Modeling
– In collaboration with UMN, USGS, U Wisconsin

• Case Study 2: Science-guided Learning for Quantum Mechanics
– In collaboration with SUNY Binghamton

• Case Study 3: Science-guided Architecture for Lake Modeling
– In collaboration with USGS, VT Biological Sciences Dept.

• Case Study 4: Hybrid-Science-ML Modeling for Fluid Dynamics
– In collaboration with VT Mechanical Eng. Dept.

• Case Study 5: Biology-guided NNs for Discovering Phenotyping Traits
– In collaboration with Battelle, Tulane U., Drexel U., UW



• Motivation:

• 1-D Model of Temperature:
Target: Temperature of water at every depth in a lake

Growth and survival of fisheries Harmful Algal Blooms Chemical Constituents:
O2, C, N

Temp
Short-wave Radiation,
Long-wave Radiation,

Air Temperature, …

Input Drivers (observed):General Lake Model1 (GLM)

1Hipsey et al., 2014 4

Case Study 1: Science-guided Learning and 
Hybrid-Science-ML for Lake Modeling

In Collaboration with:
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Can we combine physics-based models (e.g., GLM) with data 
science models to create hybrid-science-ML models?

Hybrid-Science-ML Modeling
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In Collaboration with:Case Study 1: Science-guided Learning and 
Hybrid-Science-ML for Lake Modeling
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A Generic Framework for
Hybrid-Science-ML Modeling:

Input Drivers
(Solar Radiation,
Air Temperature,

Relative Humidity,
Wind Speed, …)

Black-Box Model

PHY
(GLM)

𝒀𝐏𝐇𝐘
(Temperature)

𝒀$%&'
(Temperature)
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Training Hybrid-Science-ML Models
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Labeled Data

Drivers
+

Objective  := Training Loss 𝑌!"#$, 𝑌%"$& + 𝜆 R 𝑊
Regularization (e.g., L1/L2-norm)

𝒀𝐏𝐇𝐘

𝑌%"$& 𝑌!"#$

Challenges:
1. Labels (𝑌!"#$) are scarce

– Difficult to train models with sufficient complexity
– Standard methods for assessing generalization performance break down 

2. 𝑌%"$& may violate physical relationships b/w 𝑌 and other variables

Training Loss
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Denser water is at higher depth
Temperature directly related 

to density of water

How can we ensure that 𝑌$%&' is physically consistent?

Use physics-based loss functions:
Measure violations of monotonic relationships 

b/w density and depth.
Science-guided Learning
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Physics-based Loss for Modeling Temperature

• Does not require labels (𝑌!"#$) !

• Can be evaluated on unlabeled data

𝑑'

𝑑'()

)𝜌'())𝜌'

$
'

ReLU(Δ')

For any consecutive depth pair, 𝑑' < 𝑑'()
Δ' = )𝜌' − )𝜌'() ≤ 0

Physical Violation = ReLU(Δ')

Physics-based Loss 𝑌%"$& =

Physical Constraint: 
#𝜌 should increase with depth

Science-guided Learning
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Physics-guided Neural Network (PGNN)1
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Labeled Data

Drivers
+

Unlabeled Data

Drivers
+

Training 
Loss

𝑌!"#$, 𝑌%"$&
+

𝜆 R 𝑊

Physics-based 
Loss 𝑌%"$&

𝑌%"$&

𝑌%"$&

𝒀𝐏𝐇𝐘

𝒀𝐏𝐇𝐘

Objective Function ∶=
Training Loss 𝑌(%)& , 𝑌$%&' + 𝜆 R 𝑊 +

𝜆*+, Physics-based Loss 𝑌$%&'

1Karpatne et al., “Physics-guided neural networks (PGNN): 
An Application in Lake Temperature Modeling,” arXiv: 1710.11431, 2017.

Science-guided Learning
Hybrid-Science-ML
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Experimental Results
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Experimental Results
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Lake Mendota, Wisconsin
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PGNN ensures Generalizability + Physical Consistency
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Analyzing Physical Inconsistency
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Include physical consistency as another evaluation criterion, 
going beyond standard metrics for test error 18



Alternate Ways of Incorporating Physics in ML

• Other Physics-based Loss Functions:

• Pre-training ML models using Physics-based Simulations

– Train ML methods using physical simulations
– Fine-tune using observational data
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Physical)Constraint:)
Denser&water&is&at&higher&depthPhysical&relationship&b/w&

temperature&and&density

Conservation of Energy in 
Recurrent Neural Networks 

Depth-Density Constraint in 
Multi-layer Perceptron Network

dUt/dt = 
RSW (1- αSW) + RLWin
(1- αLW) - RLWout - E
– H

Science-guided Learning

Physics-guided 
Initialization
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Physics-guided Recurrent Neural Networks 
(PGRNN)

Use of Data
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PGRNN

Jia et al., Physics Guided RNNs for Modeling 
Dynamical Systems: A Case Study in Simulating Lake 
Temperature Profiles, SDM 2019.

Science-guided Learning

20

Physics-guided 
Initialization



• Advantages of physics-guided neural networks (PGNNs) in lake modeling:
– Requires far fewer samples in 𝐷!"
– Better generalizability to novel testing scenarios
– Ensures physical consistency of outputs

• Rapidly growing work on using physics-guided loss in various applications

– Example: physics-informed neural networks (PINNs)

• Construct physics-guided loss to measure consistency with PDE equations
• “Label-free” learning only using physics-guided loss
• Promising results on simplified PDEs

21

Prediction Loss !, !# 	+ 		&	R ( +			&!"#	Physics-guided Loss	 !#

)$% )&

Science-guided Learning:
Recent Progress

Read et al., “Process-guided deep learning 
predictions of lake water temperature." WRR 2019.

See survey by Willard et al. 2020

Raissi et al. 2019



• Can we entirely get rid of labeled data 𝐷!" and solely rely on physics-guided loss?

• How should we sample 𝐷# and 𝐷!" to ensure generalizability on novel testing scenarios?

• How can we trade-off physics-loss and data-loss at different stages of ANN learning using 
adaptive 𝜆$%&?

• How can we deal with multiple physics-guided loss functions, each capturing a different 
(and possibly, competing) physics objective?

22
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Science-guided Learning:
Open Questions



Case Study 2: 
Science-guided Learning for Quantum Mechanics

Goal: Predict ground-state 𝜓 (with lowest energy) given 𝐇

23

In Collaboration with:

Funded by:
EAGER Grant
# 2026710

Bx

Ising Chain Model
Applications: Comp. Chemistry, 

Quantum Computing, …

(magnetic field)

𝐇𝜓 = 𝐸𝜓
Schrodinger’s equation

Hamiltonian Energy Wave Function

𝐇 𝜓ANN
Input Output

Schrodinger Loss (S-Loss):

𝜆!
𝐇 )𝜓 − )𝐸 )𝜓

"

)𝜓# )𝜓

Prediction Loss !,!# 	+ 		&	R ( +			&!"#	Physics-guided Loss	 !#

Energy Loss (E-Loss):
𝜆$ exp( )𝐸)

How can we jointly incorporate 
S-Loss and E-loss in ANN learning 
to ensure generalizability?

Multiple physics objectives:



Learning with Competing Physics Objectives

• S-Loss and E-Loss represent competing physics objectives
– Can produce conflicting directions of gradient descent
– Loss landscape of S-Loss is fraught with its own local minima
– Non-trivial to balance data-loss, S-Loss, and E-Loss during learning

• Key Question: Can we adaptively tune the importance of S-Loss 
and E-Loss at different epochs (𝑡) of ANN learning?

• Solution: PGNN with Competing Physics Objectives (CoPhy-PGNN)

– Annealing 𝜆$(𝑡): Pay higher emphasis on E-Loss early on to avoid 
getting stuck at local minima of S-loss

– Cold-starting 𝜆!(𝑡): Increase importance of S-Loss once we have zoomed 
in close to a generalizable solution 

24
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Elhamod et al., “CoPhy-PGNN: Learning 
Physics-guided Neural Networks 
withCompeting Loss Functions for Solving 
Eigenvalue Problems,” Arxiv 2020



CoPhy-PGNN: Experimental Results

25

Evaluation Setup

• 4-spin system
• Training data 𝐷#% sampled from Bx < 0.5 

(ferromagnetic)
• Test data 𝐷& sampled from Bx > 0.5 

(ferromagnetic + paramagnetic)



CoPhy-PGNN: Experimental Results
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• Evaluating physics-guided loss on unlabeled samples from test scenarios is important
• Adding physics-guided loss with constant trade-off params can sometimes lead to spurious solutions
• CoPhy-PGNN achieves close-to-perfect performance even with 100 training examples



CoPhy-PGNN: Experimental Results
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• Evaluating physics-guided loss on unlabeled samples from test scenarios is important
• Adding physics-guided loss with constant trade-off params can sometimes lead to spurious solutions
• CoPhy-PGNN achieves close-to-perfect performance even with 100 training examples



CoPhy-PGNN: Experimental Results

28

• Evaluating physics-guided loss on unlabeled samples from test scenarios is important
• Adding physics-guided loss with constant trade-off params can sometimes lead to spurious solutions
• CoPhy-PGNN achieves close-to-perfect performance even with 100 training examples

CoPhy-PGNN (Label-free) Cosine Similarity: 0.63

Evaluating generalizability on novel testing scenarios

Training
(Ferromagnetic)

Testing
(Ferromagnetic + Paramagnetic)



Case Study 3: 
Science-guided Architecture for Lake Modeling
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In Collaboration with:

Biological Sciences
Forest Resources and 

Environmental 
Conservation

• Goal: “Bake in” physics in the architecture of neural networks
– Ensure physical consistency during training as well as testing

• In contrast to science-guided learning that only applies to training
– Robust to minor perturbations in model weights

• Critical for uncertainty quantification using MC Dropout

Y
(Outputs)

X
(Input)

… … …… …

… …

PHY PHY

PHY PHY

Z
(Physical Intermediate Variable)

Physics Guided Architecture
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Can we hard-code density-depth physics in ANN models?



Physics-guided Architecture of LSTM models (PGA-LSTM)

30Daw et al., “Physics-Guided Architecture (PGA) of Neural Networks for Quantifying Uncertainty in Lake Temperature Modeling,” SDM 2020.

• Use of physics-guided intermediate variables
– Predict density as an intermediate variable in the ANN pathway

• Physics-guided connections among LSTM nodes
– Monotonicity-preserving LSTMs ensures that density always 

increases with depth

Hard-coding physics in  PGA-LSTM 
produces generalizable and 

physically consistent predictions, 
even after using MC dropout.

(physics-guided learning)



Case Study 4: 
Hybrid-Science-ML Modeling for Fluid Dynamics
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In Collaboration with:

Computer Science, 
Mech. Engineering

• Goal: Modeling drag force on particles suspended in a moving fluid

Particle Resolved Simulations (PRS) of 
pressure, velocity fields at fine scale

Drag forces on 
particles

Applications: Gas separation, CO2 capture, …

Accurate but expensive

Coarse scale simulations of particle positions 
using Discrete Element Method (DEM)

Fast but incomplete

Alternate 
Modeling 
Approach

ANN
Inputs Outputs

Multi-scale Hybrid-Science-ML model

Can we ensure ANN 
produces pressure, 

velocity fields at 
intermediate layers?



Proposed Physics-guided Neural Net Architecture: PhyNet
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Muralidhar et al., “PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly,” SDM 2020.

Input LaǇer ϭ
FullǇͲconnected LaǇer
AcƟvaƟon͗ ELU
Input dimension͗ ϰϳ
Output dimension͗ ϭϮϴ

Shared LaǇers Ϯ
ϰ FullǇͲconnected LaǇers

AcƟvaƟon͗ ELU
Input dimension͗ ϭϮϴ

Output dimension͗ ϭϮϴ

Pressure Field ϯ
FullǇͲconnected LaǇer

AcƟvaƟon͗ ELU
Input dimension͗ ϭϮϴ

Output dimension͗ ϭϬ

VelocitǇ Field ϰ
FullǇͲconnected LaǇer

AcƟvaƟon͗ ELU
Input dimension͗ ϭϮϴ

Output dimension͗ ϭϬ

ConvoluƟon LaǇer ϱ
ϭD ConvoluƟonal LaǇer
AcƟvaƟon͗ Linear
Input dimension͗ ;Ϯ͕ϭϬͿ
Output dimension͗ ;Ϯ͕ ϴͿ

Pooling LaǇer ϲ
ϭD MaxPooling LaǇer
AcƟvaƟon͗ Lineaer
Input dimension͗ ;Ϯ͕ ϴͿ
Output dimension͗ ;Ϯ͕ ϰͿ

Shear Component ϳ
FullǇͲconnected LaǇer

AcƟvaƟon͗ Linear
Input dimension͗ ϰ

Output dimension͗ ϯ

Pressure Component ϴ
FullǇͲconnected LaǇer
AcƟvaƟon͗ Linear
Input dimension͗ ϰ
Output dimension͗ ϯ

Output LaǇer ϵ
FullǇͲconnected LaǇer

AcƟvaƟon͗ Linear
Input dimension͗ ϲ

Output dimension͗ ϭ

Drag Force

Training internal layers to express physically meaningful variables 
results in better generalization with smaller number of samples



Case Study 5: 
Biology-guided Neural Networks for Discovering Phenotypic Traits
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Aims:

• Develop biology-guided 
neural networks (BGNN) for 
species classification and 
trait segmentation

• Apply BGNN to large 
volumes of unlabeled images 
to discover novel biological 
knowledge

Funded by:
HDR Grant
# 1940247 



Species Classification using Phylogeny Tree

34

Species class

…

…

…

Phylogeny Tree

Family

Genus

Species

Genus class
(coarse scale)

Key Idea: Species that belong 
to a common genus share 

similar ANN features

Biology-guided

Using biology leads to better 
classification accuracy



Robustness to Adversarial Attacks
• Adversarial occlusion procedure: incrementally occlude image patches with highest 

contribution to saliency maps

35

Step 1 Step 2Saliency Map

0.80 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.49 0.04 0.04 0.04 0.04 0.08 0.04 0.10 0.04 0.04 0.07 0.09 0.06 0.20 0.07 0.06 0.12 0.07 0.10 0.06 0.07 0.09Black-
box

BGNN 0.88 0.10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.53 0.12 0.08 0.14 0.02 0.04 0.03 0.01 0.00 0.01 0.020.87 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

By forcing ANN features to comply with biological knowledge, 
we can be more robust to adversarial occlusions



Trait Segmentation using Anatomy Ontology (Ongoing)
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• Verify if the predicted traits from the neural network violate known ontological relationships 
and minimize such violations during training (as additional loss functions in objective function)



Other Ongoing Projects in SGML
Physics-guided Learning for Quantum 
Mechanics, Optics, and Radar Physics

Collaborators: Ohio State U., U. Mass. Lowell, SUNY Binghamton

Inverse Modeling of Aerosol Properties 
from Spectroscopy Data

Crack Prediction in Composites using 
Physics-guided ANN Architecture

Collaborators: Civil and Environmental Engineering at VT

37

EAGER Grant
# 2026710

Physics-guided Tracking of Living Cells in 
Mechanobiology

Collaborators: Mechanical Engineering at VT

Collaborators: ECE at VT



Summary

38

• Research Themes in SGML
– Diverse forms of scientific knowledge

• First-principle equations, Model simulations, Ontologies, …

– Diverse ways of integrating scientific knowledge with ML
• Science-guided Learning
• Science-guided Architecture
• Hybrid-science-ML modeling

– Diverse scientific applications
• Lake modeling, Quantum mechanics, Fluid dynamics, Biology (ichthyology)

• Upcoming Activities in SGML:
– AAAI Spring Symposium Series on “Combining Artificial Intelligence and Machine Learning with 

Physical Sciences”, March 22-24, 2021, https://sites.google.com/view/aaai-mlps

– Editing Book on ““Science-guided Machine Learning: Emerging Trends in Combining Scientific 
Knowledge with Data-driven Methods,” CRC Press, to appear in Aug 2021

https://sites.google.com/view/aaai-mlps
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