
D
ra

ft

Non-linear Newton Solver for a Polymer Two-phase
System Using Interface-localized Trust Regions
Ø. S. Klemetsdal1,2, O. Møyner2 K.- A. Lie2

1Norwegian University of Science and Technology, 2SINTEF Digital
https://goo.gl/yZu45s

(1) – Motivation

I Models of polymer flooding account for several processes
such as concentration dependent viscosity, adsorption, in-
complete mixing, inaccessible pore space, and reduced per-
meability effects.

I The resulting nonlinear systems are strongly coupled, and
challenging to solve numerically.

I In this work, we present a method that offers unconditional
convergence for any time step, and demonstrate its appli-
cability to industry grade complexity.

(2) – Model for polymer flooding

I Diluted polymer is modeled through an additional conser-
vation equation:

∂t
(
φbwcSw + ρr(1− φ0)ca

)
+∇ · (cbw~vp) = bwqp.

I Diluted polymer and water is modelled as an immiscible
system using the Todd-Longstaff model:

~vw = − krw(Sw)K
µw ,eff(c)Rk(c)

(∇p − ρwg∇z), ~vp = m(c)~vw .
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I Industry grade polymer model in the MATLAB reservoir
simulation toolbox (MRST) (Bao et al., 2016).

Todd-Longstaff mixing

c Polymer concentration,
0 ≤ c ≤ c∗

ca Adsorption concentration

ω Mixing parameter, 0 ≤ ω ≤ 1

µm Viscosity of fully mixed system

Rk Actual resistance factor
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c

c∗

]−1

(3) – Sequential solution strategy

We introduce a grid consisting of cells Ci and integrate over
each cell in space to obtain finite-volume residual equations for
the water and polymer transport, and the pressure:

Rw ,i(Sw , c) = 0, Rp,i(Sw , c) = 0, Rpres,i(p) = 0.

Solve Rpres = 0 to obtain pressure p

‖∆p‖ < εp

Solve Rw = 0 and Rp = 0 to ob-
tain saturation Sw and concentration c

max{‖∆Sw‖, ‖∆c‖} < εt

t = t + ∆t
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Many wasted
iterations

The industry standard is to heuristically chop the time step
and/or dampen the saturation updates until the Newton solver
converges, which may result in a huge number of wasted iter-
ations.

(4) – Trust-region algorithm

Inflection points and kinks in the residual functions causes con-
vergence problems in the Newton solver. The idea of the trust-
region algorithm (Jenny et al., 2009) is to identify inflection
points/kinks, and use them to determine safe updates.

Sw

f (Sw )

Without TR

With TR

Start

Solution
Inflection point

I Transport problem: Find ξ such that

R(ξ) = 0, where

{
ξ = (S1, . . . , SN , c1, . . . , cN),
R = (Rw ,1, . . . ,Rw ,N ,Rp,1, . . . ,Rp,N).

I Full Newton update:

ξ`+1
i = ξ`i + ∆ξ`i , ∆ξ = −J(ξ)−1R(ξ).

I Find damping factors θi ∈ [0, 1] so that updates do not pass far beyond prob-
lematic points:

ξ`+1
i = ξ`i + θi∆ξ`i .

I Can be reduced to a 1D-problem (Møyner, 2016) by considering possible updates
in the direction d of the Newton update at each interface:

d =
(∆ξi ,∆ξj)

‖(∆ξi ,∆ξj)‖
, ∆ξ` = (∆S`,∆c`).

I Gives damping factors θγ,ij for γ = w , p and all interfaces ij → interface-localized.

Figure 1: Subset of SPE 10 Model 2
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Nt: Number of time steps.

Figure 2: Field model
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(5) – Algorithm improvements

Local vs. global chopping:

I Global approach: Set all damping factors equal to the
smallest: θ = minγ,i ,j{θγ,ij}. May be overly conservative.

I Local approach (Møyner, 2016): Introduce directed graph
C∆ξ, where (C∆ξ)i ,j = 1 if either the saturation or concen-
tration update in cell j has an impact on the saturation or
concentration error in cell i larger than a given threshold.
This is used to assign damping factors to each cell.
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(a) Saturation profile.
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(b) Three cycles, indicated by purple, yellow and
red.
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(c) Sparsity pattern. Cycle cells (diagonal) and
cycle interfaces (off-diagonals) are indicated by
larger dots.
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(d) Sparsity pattern of reordered matrix.

Figure: Cycles and sparsity pattern of directed graph C∆ξ used in local chopping.

Oscillation detection

I If the saturation or concentration update changes sign from
one iteration to the next, we have either passed the solu-
tion, an inflection point/kink, or a local min/max.

I To reduce unnecessary use of the trust-region algorithm,
we only apply it if we detect oscillations in the updates.

(6) – Example: Subset of SPE 10 Model 2

(a) Permeability (b) Porosity

(c) Sw after 1000 days (d) Polymer after 1000 days

I Horizontal layer from the SPE10 model 2.

I Polymer slug injected from 20 % to 40 % of the injection
period.

I Three different simulation schedules with Nt = 100, 20
and 3 time steps, simulated using MRST (Krogstad et al.,
2015).

I The Newton method performs a huge number of wasted
iterations. The number of successful iterations are close
to those of the trust-region method, which has no wasted
iterations (Figure 1).

(7) – Example: Field model

(e) Permeability (f) Porosity

(g) Sw at end of simulation (h) Polymer concentration c and the end of
simulation

I Slightly modified grid model of the Norne oil and gas field,
with artificial well pattern.

I Polymer slug injected from 20 % to 40 % of the injection
period in all injectors, assumed to be fully mixed with water.

I Schedules: Nt = 200, 100 and 20 uniform time steps.

I Trust-region solver is too conservative using 200 time steps,
but uses significantly fewer iterations for 100 and 20 time
steps. Moreover, it has no wasted iterations (Figure 2).
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