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Overview	
I.  Introduc/on	

1  Feature	based	visualiza/on	
2  Topology	–	a	mathema/cal	discipline	
3  Topology	–	a	concept	for	data	analysis	

II.  Scalar	field	topology	
III.  Vector	field	topology	
IV.  (Tensor	field	topology)	
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I	Topological	methods	for	visualiza/on	-	Introduc/on	

Ingrid	Hotz	

1	Feature	based	visualiza/on	

One	(a	few)	image(s)	say(s)	more	than	a	thousand	words	(numbers)	

Images: Petz, Zuse Institute Berlin (ZIB) , Amira 
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1	Feature	based	visualiza/on	

One	(a	few)	image(s)	say(s)	more	than	a	thousand	words	(numbers)	

Always	true?	

Images: Kasten, Kratz, IB, Amira  
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1	Feature	based	visualiza/on	

Challenge	

•  Too	much	and/or	too	complex	
data	to	be	shown	all	at	once	

•  Find	the	“important”	
•  Need	for	explicit	structures	that	
can	be	used	for	further	analysis	

Feature	based	visualiza6on	

•  Data	reduc/on	tailored	to	specific	
needs,	ques6ons	or	interests	

•  Extrac/on	of	structure,	whatever	
this	means	

There	are	many	steps	involved	from	

feature	defini6on	to	extrac6on	
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Analysis 
Abstraction Rendering Perception 

Cognition

Data Model Image Knowledge

Experiment

Simulation

Reality

InteractionExploration - Driving Questions

Specifications

1	Feature	based	visualiza/on	

Complexity reduction 
Concepts – Techniques – Algorithms 

Specific to questions 
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1	Feature	based	visualiza/on		

!"#$%"&'#()*&+,&%&-.+/"+,0&1)2&

3,()/0#+,0&4#/2)5&6/)%7(#., 
89&:)2;&<=>6?&6)/"+,@?&A9&B$)/")+2C,)/&<D3&6)/"+,@?&'9&-+)$)/&<D3&6)/"+,@?&89&E9&E%F)/+&<D3&6)/"+,@?&&

89&B9&:%*GC)/)+2&<D3&6)/"+,@?&>9&HF0,%,*7+&<3,+I)/*+2F&#J&K/+;#,%@?&69&L9&E#%G7&<>,*M2N2&:O?&8EL-?&:#+M)/*@?&

P9Q89P)0)&<=>6?&6)/"+,@&

We consider experimental data of a turbulent swirling jet undergoing vortex breakdown. The jet is 
discharged from a round nozzle into steady ambient fluid. The dynamics of the flow are dominated 
by large scale oscillations that arise from a super-critical Hopf bifurcation to a global mode.  
Visualizations are based on the three-dimensional phase-averaged velocity field (Re=20000) that is 
constructed from uncorrelated 2D PIV snapshots. Thereby the focus is placed on three flow features: 
the internal recirculation zone that is characteristic for vortex breakdown (semi-transparent gray 
pathline-surface in the center); the meandering vortex core that acts as the pacemaker for the global 
oscillations (central streak-lines and bluish streak-surface); helical waves in the outer shear layer that 
amplify near the nozzle and roll up to spiral vortices (semi-transparent greenish streak-surface).  R"#.&4+*N%"+;%M#,&<L)STUVV@&

Image:	Petz,	ZIB,	Amira	

Example	–	flow	visualiza/on	 Task:	Impart	knowledge	

•  Telling	stories	
•  Presenta/on	
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1	Feature	based	visualiza/on	

Data: Luciano Rezzolla, AEI Potsdam 
Image: KastenZIB 

Example	–	rela/vis/c	hydrodynamics	 Task:	Understand	and	analyze	

Knowledge	discovery	
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1.	Feature	Iden/fica/on										
–	Intui/ve	no/on		

4.	Visual	Representa/on	and	Verifica/on	

1	From	Feature	Defini/on	to	Extrac/on	

Domain	Specific	Guidelines	
E.g.	vortex	structures	

E.g.	Some	invariance	

2.	Mathema/cal	Descrip/on		
–	Precise	defini/on	

3.	Extrac/on	from	the	Data			
–	Algorithmic	realiza/on	 Algorithmic	Guidelines	

Mathema/cal	Framework	
E.g.	maxima	in	vor/city	field	

E.g.	Scalar	field	topology	

E.g.	Robustness	against		
noise	

Visualiza/on	Guidelines	
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1	Feature	based	visualiza/on	–	possible	views	

E.g. vortex extraction 

Closed	Form	Feature	
Defini/on		

target	known	
Query Response 

Feature	as	Paiern	
Visual	Selec/on	

E.g. tensor field  
analysis 

Explora/ve	Feature	
Defini/on	

target	not	known	
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1	Mo/va/on	

Challenge	

•  Too	much	and/or	too	complex	
data	to	be	shown	all	at	once	

•  Find	the	“important”	
•  Need	for	explicit	structures	that	
can	be	used	for	further	analysis	

Feature	extrac6on	

•  Data	reduc/on	tailored	to	specific	
needs,	ques6ons	or	interests	

•  Automa/c	extrac/on	of	structure	

Topology provides 
one way to approach 

this challenge 



2	Topology	–	a	mathema/cal	discipline	
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Ingrid	Hotz	

2	Topology	–	a	mathema/cal	discipline	

What is topology? – Intuition 
•  Greek:	topos	-		place,	logos	–	study	
•  “Rubber	sheet	geometry”	
•  “Qualita/ve	Geometry”	
•  Study	of	shape	proper/es	invariant	under	con6nuous	

deforma6on	

•  No	cukng	
•  No	merging	
•  No	poking	
•  No	sealing	holes	
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2	Topology	–	a	mathema/cal	discipline	

Defini6on	

A	topological	space	is		
•  a	set	X	together		
•  collec/on	of	subsets	of	X	

(open	sets)		

Sa/sfying	some	axioms	

•  Refers	to	concepts	of	
neighborhood,	con/nuity,	
connectedness,	convergence	

•  Defines	which	points	are	near	each	
other	without	specifying	the	

distance	between	them.		

Topological spaces – Definition 
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Ingrid	Hotz	

2	Topology	–	a	mathema/cal	discipline	

BeC	Numbers	

b0:	Number	of	components	
b1:	Number	of	tunnels	
b2:	Number	of	voids	

….	

Algebraic Topology – Homology 

Analyzes manifolds 
according to topological 
invariants 

b0 b1 
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2	Topology	–	a	mathema/cal	discipline	

Selected	spotlights	in	context	with	data	analysis	

•  Morse	theory	establishes	a	link	between	differen/able	func/on	on	
manifolds	and	the	manifold’s	topology	

•  Topological	dynamics	studies	qualita/ve,	asympto/c	proper/es	of	
dynamical	systems	from	the	viewpoint	of	general	topology	

•  Computa6onal	topology	deals	with	prac/cal	solu/ons	for	solving	
topological	problems	developing	efficient	algorithms		

18	
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2	Topology	–	a	mathema/cal	discipline	

Literature	–	introduc6on	to	algebraic,	computa6onal	topology	

•  Allen	Hatcher,	Algebraic	Topology,	Camebridge,	2002		
•  Herbert	Edelsbrunner:	Geometry	and	topology	for	mesh	genera;on	

•  H.	Edelsbrunner,	J.	Hare:	Computa;onal	Topology	An	Introduc;on,	American	
Mathema/cal	Society,	2010	

•  J.	J.	Sánchez-Gabites,	Dynamical	systems	and	shapes,	RACSAM:	Geometry	and	
Topology,	2008	

•  R	Forman,	Morse	Theory	for	Cell	Complexes,	Advances	in	Mathema/cs,	1998	
•  R	Forman,	A	user's	guide	to	discrete	Morse	theory,	Applied	Mathema/cs,	2001	



3	Topology	–	a	concept	for	data	analysis	
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Ingrid	Hotz	

1	Mo/va/on	

Challenge	

•  Too	much	and/or	too	complex	
data	to	be	shown	all	at	once	

•  Find	the	“important”	
•  Need	for	explicit	structures	that	
can	be	used	for	further	analysis	

Feature	extrac6on	

•  Data	reduc/on	tailored	to	specific	
needs,	ques6ons	or	interests	

•  Automa/c	extrac/on	of	structure	

Topology provides 
one way to approach 

this challenge 
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3	Topology	–	a	concept	for	data	analysis	

•  Brings	structure	in	the	data		

•  Provides	a	summary	of	shape	and	field	proper/es	

•  Many	applica/ons	in	Visualiza/on:	
�  Iso-suraface	characterisa/on	
�  Extremal	structure	extrac/on	
�  Feature	preserving	smoothing	-	simplifica/on	
�  Segmenta/on	–	scalar,	vector,	and	tensor	fields	
�  Skeleton	computa/on	
�  Mesh	genera/on	from	point	samples	
�  …….	
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Ingrid	Hotz	

Scalar	Aiributes	

x 

y

D 

3	Topology	–	a	concept	for	data	analysis	

(x, y)∈ D | s(x, y) = w{ }= s−1(w)

Height	field	+	contours	

Recall	-	Contours	(isosurfaces)		

Set	of	points	to	given	scalar	value	w	�	R	

Example	
Scalar	field	visualiza6on	
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3	Topology	–	a	concept	for	data	analysis	

Contour	Tree	
•  Equivalence	classes	for	

contours	

Example	
Scalar	field	visualiza6on	
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I	Topological	methods	for	visualiza/on	-	Introduc/on	

Ingrid	Hotz	

3	Topology	–	a	concept	for	data	analysis	

Topological	graph	
•  Equivalence	classes	for	

streamlines	

Example	
Vector	field	visualiza6on	
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3	Topology	–	a	concept	for	data	analysis	

Topological	graph	
•  Equivalence	classes	for	

tensorlines	

Example	
Tensor	field	visualiza6on	
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3	Topology	–	a	concept	for	data	analysis	

Subfields	

-  Scalar	field	topology	 	à	computa/onal	discrete	Morse	theory	
-  Vector	field	topology		à	dynamical	systems	
-  Tensor	field	topology	

These	are	related	topics,	however	have	different	focus	in	research	and	
applica/ons	



Overview	

I.  Introduc/on	
II.   Scalar	field	topology	

1.   Contour	tree	
2.   Cri6cal	points	
3.   Morse	Smale	complex	

4.   Extremal	structures	

5.   Simplifica6on	

6.   From	analy6cal	concepts	to	discrete	realiza6ons	

7.   Examples	from	flow	visualiza6on	

III.  Vector	field	topology	
IV. Tensor	field	topology	

2	Contour	tree	
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2	Contour	tree	

 

(x, y,z)∈D | s(x, y,z) = w{ } = s−1(w)
D⊂ !3

Contours	or	isosurfaces		
(also	level-sets,	or	implicit	surface	)	

Set	of	points	to	given	scalar	value	w	�	R	

Nested	contours		in	the		
2D	domain	

Nested	isosurfaces	in	a	3D	volume	

One	of	the	major	challenges:	

•  Is	there	a	set	of	iso-values	that	
provides	a	‘complete’	picture	of	the	
data?	

•  If	yes	how	can	we	find	it?	
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2	Contour	tree	

 

(x, y,z)∈D | s(x, y,z) = w{ } = s−1(w)
D⊂ !3

Contours	or	isosurfaces		
(also	level-sets,	or	implicit	surface	)	

Set	of	points	to	given	scalar	value	w	�	R	

Nested	contours		in	the		
2D	domain	

Nested	isosurfaces	in	a	3D	volume	

Note:	In	the	following	we	use	the	terminology	
independent	from	the	dimension:		
•  Level	set	for	s-1(w)		
•  Contour	for	one	connected	component	of	

s-1(w)	
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2	Contour	Tree	-	Illustra/ve	Example	

1

S

0	

Scalar	Aiributes	

Example:	
2D	Scalar	func/on.	
	

 

S :D→ !

with D ⊂ !2

Visualiza/on	
§  Height	field	
§  Color	map	
§  Contours	 7	
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1

S

2

2	Contour	Tree	-	Illustra/ve	Example	

+	
−	

2

Contour	appears	

birth 
min 
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1

S

2

3

2	Contour	Tree	-	Illustra/ve	Example	

Contours	merge	

3	

merge 
saddle 
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2	Contour	Tree	-	Illustra/ve	Example	

1

S

2

3
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1

S

2

3

4

2	Contour	Tree	-	Illustra/ve	Example	

Contour	splits	
4	

split 
saddle 
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1

S

2

3

4

2	Contour	Tree	-	Illustra/ve	Example	
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1

S

2

3

4

5

2	Contour	Tree	-	Illustra/ve	Example	

Contour	vanishes	
5	

disappear 
max 
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1

S

2

3

4

5

2	Contour	Tree	-	Illustra/ve	Example	
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1

S

2

3

4

5
6

2	Contour	Tree	-	Illustra/ve	Example	

6	
disappear 

max 

Contour	vanishes	
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2	Contour	Tree	-	Illustra/ve	Example	

Isosurfaces	(3D)	 Contour	lines	(2D)	

When	increasing	the	isovalue	one	can	observe	some	events	where	the	isosurface/
contour	undergoes	characteris6c	changes:		appear,	merge,	split,	disappear	(poke/seal).	

	à	Topological	analysis	keeps	track	of	such	changes.	

	The	loca/ons	where	these	changes	appear	are	called	cri6cal	points,	the	scalar	value	
cri6cal	value	
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2	Contour	Tree	

•  The	contour	tree	keeps	track	of	the	change	of	the	number	of	

components	of	the	contour	(isosurface)	when	changing	the	scalar	
value.	
(Introduced	by	Boyell	and	Ruston	for	the	evolu/on	of	contours	on	a	2D	map).	

•  The	contour	tree	does	not	represent	all	topological	changes,	e.g.,	the	
change	of	topology	of	a	specific	contour	(from	disc	to	torus).		

•  Recorded	events	are	
�  Component	appears,	disappears,	components	merge	and	split.	

Note	
There	are	some	isosurface	
changes		related	to	the	domain	
boundary,	in	our	discussion	we	
will	neglect	boundary	cases.	
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2	Contour	Tree	
Contour class 

•  A	contour	class	is	an	equivalence	
class	of	contours	that	can	be	
smoothly	transformed	into	each	
other		

•  A	contour	class	is	created	or	
destroyed	in	cri/cal	points	

•  Contour	classes	are	represented		
by	arcs	in	the	contour	tree	
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Ingrid	Hotz	

2	Contour	Tree	

Defini6on	
The	contour	tree	is	a	graph	(V,E).		
V	are	nodes	and	E	arcs	

•  The	set	V	contains	a	node	for	each	cri6cal	
point	

•  The	set	E	contains	a	arc		for	each	contour	
	class	

Reference for algorithmic solutions, e.g 
Computing contour trees in all dimensions, Hamish Carr and Jack Snoeyink and Ulrike Axen, 
SODA '00: ACM-SIAM symposium on Discrete algorithms, 2000 

Slide 11
ECS 289L, Spring 2006

Overview

• Introduction to Morse theory

! Morse functions, critical points, Morse Lemma

• Contour tree

! Definition, algorithm, applications

• Betti numbers

! Definition, Euler characteristic,
classifying surfaces

• Augmented contour tree

! Algorithm, topology-assisted exploration

Image: Vijay Natarajan 
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Ingrid	Hotz	

2	Contour	Tree	–	Applica/on	

Determine	interes6ng	isovalues	

•  Guided	explora/on	of	a	data	set	
•  Represent	each	contour	class	

Generate	transfer	func6ons	for	

volume	rendering	

Topology-controlled	Volume	Rendering		
[Fuel	data	set,	Weber	et	al.	TVCG	2006]	



45	

II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

2	Contour	Tree	–	Applica/on	

Scalar	field	topology	

	Topological	landscape	(lew)	–	2d	representa/on	of	the	topology	of	a	
higher	dimension	scalar	fields.	Corresponding	volume	rendering	of	
the	3d	dataset.	

		

Visualizing	nD	Point	Clouds	as	Topological	Landscape	Profiles	to	Guide	Local	Data	
Analysis,	Oesterling	et	al.,	TVCG	2013	

Topological	landscape	

•  Non-overlapping	presenta/on	of	the	topological	structure	as	a	
topological	landscape	profile	(considers	only	first	order	topology)	

•  Is	also	applicable	to	high	dimensional	data	

	
2	Basic	Concept	
Cri/cal	Points	
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3	Basic	Concept	-	Cri/cal	Points		

•  So	far	cri/cal	point	have	been	defined	with	respect	to	topological	
changes	of	level	sets	(global	structures).	

•  However,	while	topology	is	a	global	concept,	cri/cal	points	can	be	
defined	locally.	
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3	Basic	Concept	-	Cri/cal	Points		

Let									

be	a	differen/able	scalar	func/on.	

Critical points – 1D 
 f : I = [a,b]→ !

Definition:	

A	point																				is	called	cri6cal	
point	of		f		if	

The	scalar	value						 		
is	called	cri6cal	value	

 

x0 ∈I

f '(x0 ) = 0
s0 = f (x0 )

Cri/cal	points	can	be	classified	with	
respect	to	the	second	deriva/ve	in	the	
point.		

 f ''
< 0
> 0
= 0

max
min

degenerate

⎧

⎨
⎪

⎩
⎪
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3	Basic	Concept	-	Cri/cal	Points		

•  Degenerate	cri6cal	points	are	not	stable	
under	small	perturba/ons.	

•  Non-degenerate	cri/cal	points	are	stable	
under	small	perturba/ons.	

•  The	func/on	f	is	called	Morse	func6on	if	
none	of	its	cri/cal	points	are	degenerated.		

Critical points – 1D 

Note	
•  Many	algorithms	assume	that	

there	are	no	degenerate	
cri/cal	points	in	the	data	

•  However	this	is	not	a	prac/cal	
problem	
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3	Basic	Concept	-	Cri/cal	Points		

Let									

be	a	differen/able	scalar	func/on.	

Critical points – 2D 
 S :!2 ⊃ D→ !

•  Classified	with	respect	to	the	second	
deriva/ve	the	Hessian		

•  Consider	the	sign	of	its	eigenvalues	
							

∇2S(x0 )
∇2S =

∂2S
∂x2

∂2S
∂x∂y

∂2S
∂y∂x

∂2S
∂y2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Definition:	

A	point																				is	called	cri6cal	

point	of		S		if	

	

x0 ∈D

∇S = ∂S
∂x

∂S
∂y

⎛

⎝
⎜

⎞

⎠
⎟ = 0
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3	Basic	Concept	-	Cri/cal	Points		

Let									

be	a	differen/able	scalar	func/on.	

Critical points – nD 
 S :!n ⊃ D→ !

•  Classified	with	respect	to	the	second	
deriva/ve	the	Hessian		

•  Consider	the	sign	of	its	eigenvalues	
							

∇2S(x0 )

 

∇2S =

∂2S
∂x1

2 !
∂2S

∂x1 ∂xn
" # "

∂2S
∂xn ∂x1

!
∂2S
∂xn

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Definition:	

A	point																				is	called	cri6cal	

point	of		S		if	

	

x0 ∈D

 
∇S = ∂S

∂x1
,…, ∂S

∂xn

⎛
⎝⎜

⎞
⎠⎟
= 0
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Basic	Concept	-	Cri/cal	Points		

Classifica/on	of	cri/cal	points	–	using	an	index	(number	of	nega/ve	coefficients)	

i	-	minimum	 ii	-	maximum	 iii	-	saddle	

Index	 n=1	 n=2	 n=3	

i=0	 		x2	 		x2+y2	 		x2+y2+z2	

i=1	 −x2	 −x2+y2	 −x2+y2+z2	

i=2	 −x2−y2	 −x2−y2+z2	

i=3	 −x2−y2−z2	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Basic	Concept	-	Cri/cal	Points		

S	

Change	of	isosurface	when	passing	a	cri/cal	value	–	2D	field	
Scalar	field	S	represented	as	height	field,		

Contour	
	
		

Isovalue		

<		
cri/cal	value	

Isovalue		
>	

	cri/cal	value	

S	

Maximum 
disappears 

Minimum 
appears 

Saddle 
changes connectivity 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Basic	Concept	-	Cri/cal	Points		

Change	of	isosurface	when	passing	a	cri/cal	value	–	2D	field	
Projec/on	in	domain,	color	represents	scalar	value	with	respect	to	cri/cal	value		

Contour	
	
		

Maximum 
disappears 

Minimum 
appears 

Saddle 
changes connectivity 

Isovalue		
<		

cri/cal	value	

Isovalue		
>	

	cri/cal	value	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Basic	Concept	-	Cri/cal	Points		

Gradient	lines	-2D	field.	

Saddle 	 								Minimum 													 	Maximum	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Basic	Concept	-	Cri/cal	Points		

Change	of	isosurface	when	passing	a	cri/cal	value	–	3D	field.	

Isovalue		
<		

cri/cal	value	

Isovalue		
>	

	cri/cal	value	

Maximum	
disappear	

Minimum	
appear 

Saddle	1	
local	merge	

Saddle	2	
local	split	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Basic	Concept	-	Cri/cal	Points		

Gradient	lines	-3D	field.	

Minimum	 								Maximum 																Saddle	1 																				Saddle	2	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Basic	Concept	-	Cri/cal	Points		

Point	classifica/ons	–	overview	

Regular	Point					Minimum 			Maximum											Saddle	1 					Saddle	2										Degenerate	CP		

1D	

2D	

3D	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

+

3	Basic	Concept	-	Cri/cal	Points		

Higher	order	degenerate	points	are	not	stable	
E.G	Splikng	saddles:		

2D	

3D	

3	Morse	Smale	complex	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Morse	Smale	complex	

Consider	gradient	vector	field	

•  Gradient	in	cri/cal	points	is	zero	
•  Integral	lines	/	streamlines	maximal	

open	curve	tangen/al	to	the	
gradient	

	Proper6es	of	integral	lines	
•  They	cover	all	regular	points	in	

domain	
•  They	‘start’	and	‘end’	in	cri/cal	

points	
•  They	are	monotonic	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Morse	Smale	complex	

Gradient	vector	field	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Morse	Smale	complex	

Gradient	vector	field	

•  Cri/cal	point	and	its	descending	
manifold	

Descending	manifold:	
Set	of	points	that	converge	toward	
the	cri/cal	point 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Morse	Smale	complex	

Gradient	vector	field	

•  Cri/cal	point	and	its	ascending	
manifold	
	

Ascending	manifold:	
Set	of	points	that	emerge	from	the	
cri/cal	point 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Morse	Smale	complex	

Gradient	vector	field	

•  Cri/cal	points	and	its	
descending	/	ascending	
manifold	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Morse	Smale	complex	

Gradient	vector	field	

•  One	Morse	cell	
	

Morse	cell	

•  Set	of	points	that	emerge	from	
one	cri/cal	point	converging	two	
a	second	cri/cal	point	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Morse	Smale	complex	

For	all	integral	curves	in	one	cell		
•  Joined	origin	=	minimum	
•  Joined	des/na/on	=	maximum	
à	Equivalence	classes	of	integral	
curves	

Morse	Smale	complex		
•  Decomposi/on	/	segmenta/on	of	

the	domain	into	monotonic		
quadrangular	regions	by	
connec/ng	cri/cal	points	with	
lines	of	steepest	descent	
(separatrices)	

Images: V. Natarajan 

68	

II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

3	Morse	Smale	complex	

Images: V. Natarajan 

Ascending	manifold	 Descending	manifold	 Morse	cell	

Morse	cells	in	3D	



4	Extremal	structures	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

4	Extremal	structures	

Two	co-rota/ng	Oseen	Vor/ces,	images:	Jens	Kasten	
Height	and	color	–	accelera/on	magnitude	

Example	–	vortex	extrac6on	

•  Vortex	core,	accelera/on	minima	
•  Vortex	region	corresponding	basin	
à  There	is	no	appropriate	iso-value	to	cover	the	features	as	contours	
à  Features	are	extremal	structures	of	accelera/on	field	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

4	Extremal	structures	

Extremal	structures	

-  a	simplified	substructure	of	the	Morse-Smale	complex	that	encodes	
how	neighboring	extrema	are	connected	via	“ridge”-	or	“valley”-like	
saddle	points.		
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

4	Extremal	structures	

Example	-	Extrac/on	of	ridges	and	valleys	as	surface	features	
		

Data:	Height	field	of	the	Mar/an		surface	form	imaging	
Image:	Gunther,	ZIB	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

4	Extremal	structures	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

4	Extremal	structures	

Symmetry in scalar field topology. Thomas and Natarajan.  
TVCG (Vis 2011), 17(12), 2011, 2035-2044. 

Topologically defined symmetries 
•  Lew:	temperature	distribu/on	in	a	

vortex	flow	simula/on,		
•  Center:	cryo-electron	microscopy	

image	of	a	virus,		
•  Right:	CT	scan	image	of	a	pair	of	

knees.		

Symmetry-aware	transfer	func/on	
(boiom)	

•  Lew:	iden/fying	similar	subtrees	of	
the	contour	tree,		

•  Center:	comparing	distances	between	
extrema	using	extremum	graph,		

•  Right:	clustering	contours	in	a	high	
dimensional	shape	descriptor	space.		



5	Simplifica/on	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

In	real	data	sets	the	feature	density	is	owen	very	high	
-  Can	we	dis/nguish	real	feature	from	spurious	noise	related	features?	
-  Is	there	a	way	to	measure	the	relevance	of	features	even	beyond	

noise.	

Example: Noisy gradient vector field  
Images: Reininghaus, ZIB 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Ques/on:	What	are	relevant	features?	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Ques/on:	What	are	relevant	features?	

Relevance	of	cri/cal	points	cannot	be	locally	decided	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Topological	persistence	[Edelsbrunner	2002]	
•  Idea:	consider	“life/me”	of	a	feature	

Upward	sweep	
�  birth	
�  birth	
�  birth	
�  death	
�  death	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Topological	persistence	
•  Idea:	consider	“life/me”	of	a	feature	

Upward	sweep	
�  birth	
�  birth	
�  birth	
�  death	
�  death	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Topological	persistence	
•  Idea:	consider	“life/me”	of	a	feature	

Upward	sweep	
�  birth	
�  birth	
�  birth	
�  death	
�  death	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Topological	persistence	
•  Idea:	consider	“life/me”	of	a	feature	

Upward	sweep	
�  birth	
�  birth	
�  birth	
�  death	
�  death	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Upward	sweep	
�  birth	
�  birth	
�  birth	
�  death	
�  death	

Topological	persistence	
•  Idea:	consider	“life/me”	of	a	feature	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Topological	persistence	
•  Idea:	consider	“life6me”	of	a	feature	
à  pairing	of	cri6cal	points	with	respect	to	

birth	and	death	
à  Assign	persistence	(life/me)	value	as	

importance	measure	to	pairs,	absolute	
difference	of	their	func/on	values	

Upward	sweep	
�  birth	
�  birth	
�  birth	
�  death	
�  death	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Contour	tree	simplifica/on	
	

Order	the	pairs	of	cri/cal	points	based	on	their	persistence	

1

2

3

4

5

6
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Order	the	pairs	of	cri/cal	points	based	on	their	persistence	

1

3

4

5

6

Contour	tree	simplifica/on	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Order	the	pairs	of	cri/cal	points	based	on	their	persistence	

1

3

4

6

Contour	tree	simplifica/on	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

5	Simplifica/on	

Images: V. Natarajan 

Cancella/on	for	saddle	extremum	pairs	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

Simplified	version	reflects	
dominant	structures	

Topological	Features	of	
the	original	field	

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
2

10
4

simplification threshold

c
ri
ti
c
a
l 
p
o
in

ts

 

 

original data

pertubed data Number	of	cri/cal	points	in	dependence	
from	hierarchy	level.	
The	transi/on	from	noisy	to	real	features	is	
clearly	visible	as	change	of	slope	

Features	associated	with	
noise	are	removed	

Example:	Noisy	gradient	vector	field	

5	Simplifica/on	

Images: Reininghaus 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

4.1.9	Morse	Smale	Complex	-	Cancella/on		

Example:	

Images: V. Natarajan 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

4.1.9	Morse	Smale	Complex	–	Descending	Manifold	

Images: V. Natarajan 

	

Feature	based	visualiza/on	
Topology	in	Visualiza/on	–	An	Introduc/on	

January	2016	

Geilo	winter	School	–	Scien/fic	Visualiza/on	
	
	
	

Ingrid	Hotz	–	Linköping	University	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

Overview	

I.  Introduc/on	
II.   Scalar	field	topology	

1.  Contour	tree	
2.  Cri/cal	points	
3.  Morse	Smale	complex	
4.  Extremal	structures	
5.  Simplifica/on	
6.   From	analy6cal	concepts	to	discrete	realiza6ons	

7.   Examples	from	flow	visualiza6on	

III.  Vector	field	topology	
IV. Tensor	field	topology	

6	From	analy/cal	concepts	to	discrete	realiza/ons	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

	
§  In	general	our	data	sets	are	given	as	samples.	

§  Domain	is	mostly	represented	by	a	mesh	(triangula/on,	tetrahedriza/on,	…)	
§  Func/on	values	are	only	available	at	discrete	points	

§  Defini6ons	so	far	are	based	on	differen6able	func6ons		
	

Two	op/ons	
à Use	interpola6on	to	define	func/on	everywhere	
à Defini/ons	have	to	be	generalized	to	fit	into	the	discrete	seCng	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

Simplest	solu/on:	consider	piecewise	linear	func6ons 

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Minima	and	maxima	of	piecewise	linearly	interpolated	func/ons	always	
lay	on	ver/ces	

x

f(x) maximum

minimum

x

f(x) maximum

minimum
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Simplest	solu/on:	consider	piecewise	linear	func6ons	
§  Cri/cal	points	defined	by	behavior	in	neighborhood	
§  How	is	neighborhood	defined?	

Especially	cri/cal	when	moving	to	higher	dimensions	(In	1D	is	easy)	
	

x

f(x) maximum

minimum

regular point
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Simplest	solu/on:	consider	piecewise	linear	func6ons 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Simplest	solu/on:	consider	piecewise	linear	func6ons 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Classifica6on	

•  Con6nuous	steCng:	Sign	of	eigenvalues	of	Hessian	
•  Discrete	seCng:	Number	of	connected	components	(oceans)	of	posi/ve	rep.	

nega/ve	“neighborhood	regions”.  

Reference:	Topology-based	Simplifica;on	for	Feature	Extrac;on	from	3D	Scalar	Fields,	Gyulassy	et	al.	
Proceedings	of	IEEE	Visualiza/on,2005	

minimum	maximum	 saddle	

+

+

+

+

+

+

+

-
-

-

-

-

-

-

++

-

-
-

--

+

+

+

-
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Minimum	 								Maximum 																Saddle	1 																				Saddle	2	

Classifica6on	

•  Con6nuous	steCng:	Sign	of	eigenvalues	of	Hessian	
•  Discrete	seCng:	Number	of	connected	components	(oceans)	of	posi/ve	rep.	

nega/ve	“neighborhood	regions”.  

Reference:	Topology-based	Simplifica;on	for	Feature	Extrac;on	from	3D	Scalar	Fields,	Gyulassy	et	al.	
Proceedings	of	IEEE	Visualiza/on,2005	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Piecewise	linearly	interpolated		
•  Theory	and	algorithms	for	the	extrac/on	can	nicely	be	formulated	within	the	

context	of	simplicial	complexes	

•  This	sekng	makes	it	possible	to	deal	with	the	con/nuously	defined	func/on	f	
using	a	combinatorial	approach	

•  Simplifica6on,	persistence	computa6on	boils	down	to	matrix	opera6ons	

•  However:	Cri/cal	point	detec/on	in	higher	dimension	is	gekng	more	and	
more	complex	up	to	bining	infeasible	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Triangula)on
Ver)ces/and/Edges

Simplicial
Graph/

Nodes/and/Links

p=2

p=1

p=0

2

1

0

1

0

1

0

2

1

0

1

0

1

0

Combinatorial
Vector/Field

MatchingBipar)te/Graph

Combinatorial	Vector	Fields	
[R. Forman, 1995, 1998] 

Alternative: discrete Morse theory (outlook) 

Applica;ons	of	Forman's	Discrete	Morse	Theory	to	Topology	Visualiza;on	and	Mesh	Compression,	
Thomas	Lewiner	and	Helio	Lopes	and	Geovan	Tavares,	TVCG	2004	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	From	analy/cal	concepts	to	discrete	realiza/ons	

Remarks:	
•  Correctness	of	the	result	can	be	guaranteed	(with	respect	to	the	given	data)	
•  For	combinatorial	approaches	the	geometric	embedding	of	separatrices	is	not	

very	accurate		

	

standard randomized 

Reference: Combinatorial Gradient Fields for 2D Images with Empirically 
Convergent Separatrices, Reininghaus, Günther, Weinkauf, Seidel, Hotz 



6	Examples	from	flow	visualiza/on	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

Streamlines	 		

Vor/city	 	 	 		

λ2	

Accelera/on		
magnitude 	 		

6	Examples	from	flow	visualiza/on	

Derived	scalar	fields	as	feature	iden/fiers	–	flow	behind	a	cylinder	
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

Extremal structures of scalar vortex identifier for vortex core extraction 

6	Examples	from	flow	visualiza/on	

Extremal structure, streamlines in its vicinity Streamline visualization, random seeding 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	Examples	from	flow	visualiza/on	

Data from Hydrodynamics Simulation 
Luciano Rezzolla, AEI Potsdam 

T=2		 	 	 	 	 	T=7	

Extremal structures of scalar vortex identifier for vortex core extraction 

Full extremal structure Full extremal structure 

Persistence based simplification 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

T=2	 	 	 	 	 	 	 	 	
			T=7	

Statistical Analysis + Exploration 
E.g. Scatterplots,  

     Histograms 

Feature	Extrac/on	–		Flow	Analysis	(Vortex	Extrac/on)	

Ingrid Hotz - Scientific Visualizaiton 109 

Feature guided visualization 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

,		

•  Vortex	core-lines	(red)		
•  Associated	vortex	regions	(blue)	
•  Volume	rendering	of	accelera/on	magnitude	
•  Path	lines	

Topological	tracking	of	vor/ces	and	vortex	regions	 

Flow	over	a	Cavity 

Two-dimensional Time-dependent Vortex Regions based on the Acceleration Magnitude  
Kasten, Reininghaus, Hotz, Hege, TVCG (2011) 
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II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

6	Examples	from	flow	visualiza/on	

Topological	tracking	of	vor/ces	in	2D	flow	simula/on	data	provides	explicit	
merge	trees	for	the	development	of	vor/ces	

Data: relativistic hydrodynamics simulation 
Luciano Rezzolla, AEI Potsdam 

Data: P. Comte, University of Poirtier, Francee 

Vortex Merge Graphs in Two-dimensional Unsteady Flow Fields, Kasten, Noack, Hege, 
Hotz, Proceedings of Eurovis Short Papers, 2012 
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6	Examples	from	flow	visualiza/on	

Selected	vortex	Merge	Graph	
Comparison	of	different	feature	iden/fiers	

t 

λ2 

Vorticity  

Acceleration  

112 

color – time merge	trees Explora/on	of	the	neighborhood	of	
vortex	core	 

Analysis of vortex merge graphs Kasten, Zoufahl, Hege, Hotz; Vision, Modeling, and 
Visualization (VMV'12), 2012 
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6	Examples	from	flow	visualiza/on	

t 

λ2 

Vorticity  

Acceleration  

color – time merge	trees Explora/on	of	the	neighborhood	of	
vortex	core	 

Selected	vortex	Merge	Graph	
Comparison	of	different	feature	iden/fiers	

114	

II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	

Ingrid	Hotz	

Scale-space	Based	Persistence	

6	Examples	other	importance	measures 

Scale-space	Eleva/on	map	of	a	region	on	Mars	 Evolu/on	of	minima	in	scale-space	

Homological	persistence	 Scale-space	life/me	 Scale-space	persistence	

A	Scale	Space	Based	Persistence	Measure	for	Cri;cal	Points	in	2D	Scalar	Fields	Jan	Reininghaus,	
Kotava,	Günther,	Kasten,	Hagen,	Hotz,	TVCG,	2011	
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6	Examples	–	topology	for	automa/c	sketch	genera/on	

Hybrid	

visualiza6on	

(Chen2011)		
•  Hyper-
streamlines		

•  Ellip/cal	glyph	

Automa6cally	generated	sketch	
•  Context	representa/on	as	background		
•  Strongly	expressed	features		as	foreground	

Illustrative representation based on topology 
Simulation of co-seismic displacements 

Hand	drawn	

sketch		

•  drawn	by	
domain	experts	
on	basis	of	the	
visualiza/on	

Automatic, Tensor-Guided Illustrative Vector Field Visualization, Cornelia Auer and Jens 
Kasten, Kratz, Zhang, Hotz, IEEE PacificVis Conference, 2013 

116	

II	Topological	methods	for	visualiza/on	–	Scalar	field	topology	
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6	Examples	–	topology	for	automa/c	sketch	genera/on	

•  Flow	behind	a	cylinder	

•  Time	dependent	simula/on	of	wind	
in	climate	model	(Two	/mes	steps)	
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Scalar	Field	Topology	in	Visualiza/on	–	Wrap	up	

Topology	–	rubber	sheet	geometry	
•  Many	visualiza/on	methods	can	be	built	on	topological	analysis	
•  Contour-tree	is	a	topological	representa/on	keeping	track	of	the	number	of	

contours,	not	other	topological	changes	are	considered.	

•  Extremal	structures	generate	a	skeleton	of	the	data	containing	much	of	the	
relevant	informa/on	

•  Segmenta6on	

•  …..	
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Scalar	Field	Topology	in	Visualiza/on	–	some	notes	

Topology	–	prac/cal	applica/ons	
•  Robust	and	efficient	extrac6on	of	topology	as	well	as	the	use	in	specific	

applica/ons	is	an	ac/ve	research	area	

•  Importance	measures	and	simplifica/on	are	essen/al	for	usability	

•  Some/mes	it	is	necessary	to	relax	the	strict	mathema/cal	context	to	reach	
prac/cal	solu/ons		

•  We	just	scratched	the	surface	of	the	topic	



Overview	

I.  Introduc/on	
II.  Scalar	field	topology	
III.  Vector	field	topology	

1  Some	basic	vector	visualiza6on	methods	

2  Mo6va6on	

3  Introductory	Example	

4  Basic	concepts	

5  Linear	Vector	fields	

6  Outlook	

7  Applica6on	for	streamline	placement	

IV. Tensor	field	topology	
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III	Topological	methods	for	visualiza/on	–	Vector	field	topology	

Ingrid	Hotz	

1	Some	basic	vector	visualiza/on	methods	

 v :D→ !3,    x" v(x),    D⊂ !3



121	

III	Topological	methods	for	visualiza/on	–	Vector	field	topology	

Ingrid	Hotz	

1	Some	basic	vector	visualiza/on	methods	

•  Streamlines	(Integral	line)	
�  Everywhere	tangen/al	to	vector	

field	at	fixed	/me	

Integral curves 

Image: Markus Flatken, DLR, Paraview Image: Tino Weinkauf, ZIB, Amira 
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•  Streaklines		
�  Trace	of	ink	injected	at	a	fixed	

posi/on	

•  Timelines		
�  Propaga/on	of	lines	or	surfaces	

of	mass-less	par/cles	

•  Pathlines	(Integral	line)	
�  Trajectories	of	mass-less	

par/cles	

1	Some	basic	vector	visualiza/on	methods	

•  Streamlines	(Integral	line)	
�  Everywhere	tangen/al	to	vector	

field	at	fixed	/me	 Without picture 

1 

2 

3 

1 

2 

3 

Integral curves 
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III	Topological	methods	for	visualiza/on	–	Vector	field	topology	

Ingrid	Hotz	

1	Some	basic	vector	visualiza/on	methods	

•  Line	integral	convol/on	

Textures 
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1	Some	basic	vector	visualiza/on	methods	

Images: van Wijk, J. J.,Eindhoven       Weiskopf, Uni Stuttgart   Park, UC Davis 

Textures - advaction 
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1	Some	basic	vector	visualiza/on	methods	

Illustra/ve	enhancement,	texture	mapping	

Hummel, M.et al., IRIS: Illustrative Rendering of Integral Surfaces 
IEEE Transactions on Visualization and Computer Graphics (Vis'10), 2010, 16, 1319-1328  

Streamsurfaces 

2	Mo/va/on	–	Why	more	detailed	analysis?	
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2		Mo/va/on	

Flow	around	a	body	(e.g.	car,	
airplane)	
§  Vortex	forma/on	
§  Flow	separa/on	

Typical Questions 
Combus/on	and	fuel	injec/on	into	
engines		

Pollu/on		distribu/on	of	par/cles	in	
the	atmosphere	or		water	systems			

à	Mixing	process	

Medicine	–	flow	in	blood	vessels	
§  Anomalies	
§  Vor/ces	

Mixing	of	a	fluid	–	color	pH	value	of	fluid.		
CAP	Arts	of	Physics,	vis	thymol	blue.	

Vortex	in	blood	flow	in	aneurysm	
Scalar	topology.	Kasten	(ZIB)	

Wing Flow Separation (Stall) 
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2		Mo/va/on 

An/cipated	typical	flow	structures	
§  Rela/on	of		vortex	forma/on	and	separa/on?	
§  Characteris/c	singulari/es	of		the	flow	field?		

Owen	recircula/on	zones	form	behind	obstacles		
Does	separa/on	cause	recircula/on?	

bubble 

Hand drawn sketches 
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2		Mo/va/on	

Separa/on	and	vortex	forma/on		

Hand drawn sketches 

Images:	Dallmann,	German	Aero	Space,	DLR	

Goal: Generate similar images from data 
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2		Mo/va/on	

Obviously	there	is	some	structure	in	most	vector	field	data.	
Feature	extrac/ons	tries	to	make	this	structure	explicit.	

Image: kitware.com 



3	Basic	concept	

132	

III	Topological	methods	for	visualiza/on	–	Vector	field	topology	
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3	Basic	concept	

0                absolute value of thevector field          max 

A	few	streamlines	
	
What	about	the	other	streamlines?		
Can	we	tell	where	they	go?	

à	Topology	answers	this	ques/on	
for	all	streamlines.	
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3	Basic	concept	

A	few	streamlines	
	
What	about	other	streamlines,	can	
we	tell	where	they	go?	

à	Topology	answers	this	ques/on	
for	ALL	streamlines.	

0                absolute value of thevector field          max 
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3	Basic	concept	

v(x, y) = 0
0

!

"
#

$

%
&

Vector	field	topology	
Ingredients	

1.  Cri/cal	points	–	zeros	
�  	Posi/ons	
�  Classifica/on	

2.  Separa/ces	
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3	Basic	concept	

Spiraling	sink	

Saddle	point	

Vector	field	topology	
Ingredients	

1.  Cri/cal	points	–	zeros	
�  	Posi/ons	
�  Classifica/on	

2.  Separa/ces	
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3	Basic	concept	

Spiraling Sink 

Saddle 

à Segmenta/on	of	domain	into	
areas	of	similar	streamline	
behavior 

Vector	field	topology	
Ingredients	

1.  Cri/cal	points	–	zeros	
�  	Posi/ons	
�  Classifica/on	

2.  Separa/ces	
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3	Basic	concept	

Segment	characterized	by	

Streamline	with	“same	origin”	and	“same	end”	

Based	on	ideas	from	Poincaré	over	
qualita/ve	inves/ga/ons	of	differen/al	
equa/ons	(19th	century)	,	
Theory	of	dynamical	systems	

Reference: Helman, J. & Hesselink, L., Representation and Display of Vector Field 
Topology in Fluid Flow Data Sets  Computer, 1989, 22, 27-36  

Vector	field	topology	

à Segmenta/on	of	domain	into	
areas	of	similar	streamline	
behavior 

Sta6c	fields	

Temporal	snapshot	
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3	Basic	concept	

Defini6on		

	α-limit	(ω-limit)	set	to	streamline	cp		through	point	P	
	for	vector	field	

		

 v :D→ !n

!
Α(cp ) := q ∈D | ∃ tn( )n=0

∞ ⊂ R!!!with!! lim
n→∞

tn = −∞,!such!that! lim
n→∞

cp (tn ) = q { }

Streamline	origin	/	des6na6on	

	à	Define	start-set	/	end-set	for	every	streamline	
Idea:	Every	point	P	is	assigned	to	the	start/end	set	of	its	streamline	

!
Ω(cp ) := q ∈D | ∃ tn( )n=0

∞ ⊂ R !with! lim
n→∞

tn = ∞,  !such!that! lim
n→∞

cp (tn ) = q { }
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III	Topological	methods	for	visualiza/on	–	Vector	field	topology	

Ingrid	Hotz	

3	Basic	concept	

à  The	topological	graph	or	skeleton	of	a	planar	2D	vector	field	consists	
of	all	limit	sets	and	separatrices	
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Cri6cal	points:	Zeros	of	the	vector	field	(Local	defini/on)	

3	Basic	concept	
Limit Sets 

Closed	orbits:	attracting or repelling (No local definition) 	

Airac/ng	cycle Repelling	cycle Unstable	cycle	

Extrac/ng	closed	
streamlines	robustly	
is	a	challenging	task	

Alterna6ve	terms:	
singulari/es,	singular	
points,	zeros,	
stagna/on	points	

There	are	also	boundary	contribu/ons	
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3	Basic	concept	

§  Limi/ng	curves	–	Separatrices	connect	the	cri/cal	points	

Separatrices 
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3	Basic	concept	

Why	linear	vector	fields?	

•  Linear	vector	fields	can	be	analyzed	rela/vely	easily	

•  More	complex	vector	fields	can	be	first	order	approximated	by	linear	vector	
fields	(use	Jacobi-Matrix).	

•  On	tetrahedral	grids	with	linear	interpola/on	we	have	linear	fields	

Linear Vector Fields 
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3	Basic	concept	

A	linear	vector	field	is	given		by	
	
	
		
•  A	matrix		

•  A	vector	

 

v :D→ !n

v(x) = A ⋅x + b

Linear Vector Fields 

 A∈!n×n

 b∈!n

The	matrix	A	can	be	used	to	classify	the	behavior	of	the	vector	field	in	
the	neighborhood	a	cri/cal	point.	

[Nielson, Tools for Computing Tangent Curves and Topological Graphs for Visualizing Piecewise Linearly Varying 
Vector Fields, in Scientific Visualization Overviews, Methodologies, Techniques,  

Trace A 

Linear Vector Fields 

Classifica/on	of		
linear	cri/cal	points	

 

 λ1/2 =
tr(A)

2
± Δ

1
4

tr2 (A)− detA

Discriminant Δ
! "## $##
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3	Basic	concept	

§  Separatrices	are	streamlines	entering/leaving	the	saddles	in	direc/on	
of	the	eigenvecotrs	of	the	matrix	A	

Separatrices of linear fields 

146	
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3	Basic	concept	

Linear	saddle	point 	 											Non-linear	saddle	point	

General Vector Fields 



4		Outlook	-	remarks	

•  Simplifica/on	
•  3D	Fields	
•  Discrete	vector	field	topology	
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4		Outlook	-	remarks	

Numerical	Computa6on	

Challenges	

•  No	simple	way	to	deal	with	
noisy	data	

•  High	feature	density	
•  Many	computa/onal	

parameters	
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4		Outlook	

Simplifica6on	and	scaling	of	the	topologic	structure	

à  Strategies	to	consistently	merge	cri/cal	points	
à  So	far	no	consistent	theory,	mostly	heuris/cs,	many	numerical	challenges	

Image: PhD Thesis, Xavier Tricoche, Purdue University 
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4		Outlook	

3D	Topology	–	more	structures	possible	than	for	2D	

à	Separa/ng	surfaces	and	characteris/c	lines	
à	New	possible	limit	sets:		chao/c	airactors,	surfaces 		

Chaotic attractor 
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4		Outlook	

3D	Topology	
Example:	electrosta/c	field	of	a	Benzol	molecule	

Image: Tino Weinkauf, ZIB, Amira 
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4		Outlook	

Combinatorial	vector	field	topology	

•  Some	first	work	
•  Promising	but	s/ll	a	long	way	to	go	

Reference:	Fast	Combinatorial	Vector	Field	
Topology,	Reininghaus,	Löwen,	Hotz	
TVCG,	2011	



153	

III	Topological	methods	for	visualiza/on	–	Vector	field	topology	

Ingrid	Hotz	

!"#"$"%&

'"()*+,-".*,$

/01-".23*0$42

5*0.,.16&2

!"#"$"%&

7

8*(#$*91,:"+

;<0,42-602/0-".90$4;

'.*:1,$2="*+->2?+1"@0.042+"40>

A?(0.*1,$2B0-6"4>

'.*:1,$2="*+->2,.02C0.">2*+2-6023*0$4

D.,#62=.")$*(

E+-0.#"$,:"+

',+10$$,:"+2".2'$?>-0.*+%

E+-."4?1:"+2"F260?.*>:12(0-.*1>

8*(#$*91,:"+

G0*%6-04

8*(#$*1*,$2D.,#6

H*>1.0-02H,-,H*>1.0-02H,-,

'"+:+?"?>2/01-".23*0$42!"#"$"%& '"()*+,-".*,$2/01-".23*0$42!"#"$"%&

'"+:+?"?>2/01-".2

3*0$4

H0>*%+2I#:"+>

=,.,(0-0.>H0>*%+2I#:"+>

=,.,(0-0.>

=,.,(0-0.>

H0>*%+2I#:"+>

=,.,(0-0.>

G0*%6-2'"(#?-,:"+

=,.,(0-0.23.00

'"()*+,-".*,$

154	

III	Topological	methods	for	visualiza/on	–	Vector	field	topology	

Ingrid	Hotz	

Con6nuous	

Vector	field	topology	

Combinatorial	

Vector	field	topology	

Geometric	
Embedding	 +	 Smooth	streamlines	

High	spa/al	precision	 -	 Follows	edges	of	the	graph	

Topological	
Consistency	 -	 Cannot	be	guaranteed	 +	 Always	guaranteed	

(Morse	Inequali/es)	

Robustness	 -	 Problems	with	noise	and	
high	feature	density	 +	 Importance	measure	with	

theore/cal	guaran/es	

Simplicity	 -	 Many	parameters	 +	 Almost	parameter	free	

Run/me	 +	 Reasonable	 o	 Is	gekng	beier	

4		Outlook	



5	Vector	vs.	scalar	field	topology	
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Scalar	fields	 Vector	fields	

Origin	 Morse	theory	 Dynamical	systems	

Cri/cal	points	 Maxima,	Minima,	Saddles	 Sources,	Sinks,	Saddles	

Closed	Orbits	/	
Cycles	

no	 yes	

5	Vector	vs.	scalar	field	topology	

Special	case	of	vector	fields:	
gradient	vector	field,	rota6on	free	
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5	Vector	vs.	scalar	field	topology	

Scalar	fields	

Contour	Tree	
•  Equivalence	classes	for	

contours	(orthogonal	to	
gradient	lines/	streamlines)	

Vector	fields	

Topological	graph	
•  Equivalence	classes	for	

streamlines	

Black	lines	intersect	all	contours	of	the	data	set,						
they	have	no	topological	significance	
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5	Vector	vs.	scalar	field	topology	

Scalar	fields	

Contour	Tree	
•  Equivalence	classes	for	

contours	(orthogonal	to	
gradient	lines/	streamlines)	

Vector	fields	

Topological	graph	
•  Equivalence	classes	for	

streamlines	

Topology	of	gradient	vector	field	with	separtrices		
and	cri/cal	points.	



6	Applica/on:	Streamline	Placement	
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6	Applica/on:	Streamline	Placement	

Typical	placements	

•  Interac/ve	choice	of	single	start	points	
•  Start	streamlines	in	all	mesh	ver/ces	
•  Start	streamlines	at	random	posi/ons	

à  Owen	very	inhomogeneous	coverage	

Goals	

•  Coverage		
•  Uniformity		
•  Con/nuity	
•  Highlight	features	(CPs)		
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6	Applica/on:	Streamline	Placement	

Surface	with	normals	 Tangent	vector	field	

Streamline	placement	
Flexible	streamline	density	

Images: Roswanow, ZIB 

Dual	Seeding	designed	for	tangent	vector	fields	(Roswanow,	et.	al)	
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6	Applica/on:	Streamline	Placement	

Images: Olufemi Rosanwo (ZIB,Amira) 
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Some	Remarks	

However	vector	field	visualiza/on	never	really	took	off	
	
Possible	reasons	
•  No	robust	extrac/on	methods	
•  No	consistent	simplifica/on	strategy	
•  Structures	for	3D	can	become	very	complicated	
•  Interpreta/on	requires	having	the	interest	and	/me	to	become	involved,	and	

this	are	mostly	scien/st	doing	basic	research	
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Some	Remarks	

Maybe	the	most	severe	limita/on	is	
Vector	field	topology	is	not	directly	applicable	to	unsteady	vector	fields	

-  What	is	the	meaning	of	limit	sets?	
-  Only	finite	/me	span	for	flow	available	
-  Not	invariant	with	respect	to	change	in	reference	frame	

 

Eulerian perspective Lagrangian perspective 
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Alterna/ves	for	unsteady	flow	fields	–	Lagrangian	view	

Time	dependent	features	–	highlight	separa6ng	structures	

•  Lagrangian	coherent	structures,	Finite	/me	Lyapunov	Exponent	(FTLE)	

•  Somehow	generaliza/on	of	some	concepts	of	vector	topology	to	/me-
dependent	fields	(not	strictly)	

divergence of
pathlines

t=T

t=T

t=0

References:  
•  Distinguished material surfaces and coherent structures in three-dimensional fluid 

flows, George Haller, Phys. D, 2001 
•  Localized Finite-time Lyapunov Exponent for Unsteady Flow Analysis 

(inproceedings), Kasten, Petz , Hotz, Noack, Hege, Vision, Modeling, and 
Visualization (VMV'09), 2009 
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Alterna/ves	for	unsteady	flow	fields	–	Lagrangian	view	

Feature-extrac6on	

	Emphasize	divergent	and	convergent	flow	behavior	

	

	

	

Method:	‘Finite	Time	Lyapunov	Exponent’		

	Data: Van Kármán vortex street, Mutschke TU Dresden, Images: Jens Kasten, ZIB, Amira 
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continuous
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very general
abstract
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strong guarantees

——
concrete

discrete
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specific
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Summary	

•  Topology	provides	many	powerful	concepts	for	feature	based	vis	
•  Scalar	field	topology	is	a	rapidly	developing	field,	unfortunately	not	yet	

available	in	commercial	tools	


