The Application of SafeScrum to IEC
61508-Certifiable Software

by Tor Stalhane, Geir K. Hanssen and Thor Myklebust

Introduction

There is a clear trend for safety-
critical systems in the offshore
and process industry for
functionality to be moved from
hardware to software. The
reasons for this are increasing
hardware performance and an
increasing need for flexibility,
like being able to rapidly
apply new technology and
new requirements. Standard
hardware components can
now be programmed, meaning
less effort on hardware
development and more on
software development. This
means a higher tolerance to
changes in requirements and

An Introduction to
1S026262: Part 3
Continued from Page 13

opportunity to make change.
Hence the importance (and
requirement) of planning and
resourcing these activities in
phase with the development,
and with the necessary
competencies and appropriate
data.

The next article will look at
the development of software
and the steps needed for
integration of the E/E system.

Dave Higham is Head of
Functional Systems at Delphi
Diesel Systems. He may be
contacted at:
<Dave.Higham@delphi.com>

design during the development
process. Large companies,
such as ABB and Autronica
Fire & Security, have products
in which nearly 100% of the
developmentcostsarerelated to
software development. A direct
consequence of this is larger
and more complex software
development projects. Modern
safety-critical software systems
face the same extensive safety
requirements as hardware-
based systems, which again
leads to a need for more
efficient and flexible software
development methods. The
common practice today when
developing safety-critical
software systems is to use a
plan-based and document-
driven development process,
which leads to inflexibility in
requirements change as well
as large costs for producing
documentation to manage
the certification process. An
initial estimate indicates
documentation-related costs
of between 25% and 50% of the
total development costs.

We claim that traditional
plan-driven approaches, which
are commonly used in the
safety domain, donot match the
increasing need for flexibility.
We thus propose a new
approach, called SafeScrum,
for agile development of
safety-critical software
systems. In this, the first article
in a two-part series, we will
look into IEC 61508-3: 2010 and

a handful of issues we have
identified with respect to the
applicability of Scrum [4], one
of the most used agile software
development (ASD) methods
in the software industry today.
We will end this first part with
a basic introduction to -agile
software development. In
the second part we will show
how we can adapt Scrum so
that it can be used to develop
software in a way — SafeScrum
— that is compliant with IEC
61508-3: 2010.

Looking into IEC 61508

The IEC 61508 standard,
‘Functional safety of electrical,
electronic and programmable
electronic (E/E/PE) safety-

related systems’, is an
international standard for
guiding development and

assessment of safety-critical
systems. The development of
this standard started back in
1985 when IEC set up a task
group to assess the viability of
developing a generic standard
for programmable electronic
systems (PES), which led to
setting up a working group
to define a new standard. The
motivation for initiating this
activity was that even if a PES
was implementing relatively
simple safety functions,
its level of complexity was
significantly greater than that
of the hardwired systems that
had traditionally been used [2].
Continued on Page 15

SCSC Newsletter

Page14

The Application of SafeScrum to IEC
61508-Certifiable Software

Continued from Page 14

The overall strategy of IEC
61508 is to control conformance
to a sequential process by
producing extensive proof of
conformance to an external
certification ~ body. This
standard is widely used and
is considered a prerequisite
by both the clients’ and the
suppliers’ side. Although
fulfilling its purpose, the
standard requires -extensive
effort and time, resulting
in 1) inflexibility in the
development process, and 2)
high documentation costs.

In order to investigate
whether principles from
modern software development
processes, such as agile
software development and, in
particular, Scrum canbeapplied
to increase the flexibility and
reduce the documentation
costs, we did a systematic
analysis of the requirements
in Part 3 (Software) of the
standard. Each section of Part 3
was evaluated, asking, “Will we
fulfil this requirement if we use
the Scrum process?’ This was
done by a team of three experts:
anexperton safety and software
engineering, a certified safety
assessor, and an expert on
software engineering and agile
development. Forty-nine issues
needed further investigation,
eventually leading to 15
where we need adaptations or
‘flexibility in order to make the
process acceptable to both the
Scrum team and to the safety
assessors. An overview of these

adaptations, referring to the
relevant clauses in Part 3 of the
standard, is:

e 7.1 - How to structure the
development of the software: 2
out of 9 requirements;

e 7.3-How to develop a plan
for validating the software
safety: 2 out of 25 requirements;
e 742 -~ How to create,
review, select, design and
ensure the safety of the system:
9 out of 50 requirements;

o 747 - Requirements for
software module testing: 1 out
of 4 requirements;

e 79 - How to test and
evaluate the outputs from a
software safety lifecycle: 1 out
of 95 requirements.

Thus, wehavetodealwith15
IEC 61508-3: 2010 requirements
where Scrum and the assessor
have to show some flexibility.
These requirements are mostly
related to documentation and
planning.

Agile Software Development
(ASD) in a Nutshell

ASD is a way of organizing
the development process,
emphasizing direct and
frequent communication,
frequent deliveries of working
software increments, short
iterations, an active customer
engagement throughout the
whole development lifecycle,
and change responsiveness
rather than change avoidance.
This can be seen as a contrast
to waterfall-like models,
which emphasize thorough
and detailed planning, design

upfront, and conformance to
consecutive stages of the plan.
Several agilemethodsareinuse,
whereof extreme programming
[1] and Scrum [4] are the two
most commonly used. Figure
2 explains the basic concepts of
an agile development model.
Two concepts are central when
understanding the Scrum
process — sprint and backlog.

o Asprintisatimebox where
a part of the code is developed
to form a set of work items in
the sprint backlog. Each sprint
builds a part of the system and
this part is integrated with the
previous parts at the end of the
sprint. In this way, the system
(product) is built through a
stepwise building process.

e A backlog is a store of
jobs waiting to be done.
Each job has a cost (usually
person-hours) and a priority.
The priority may and will be
changed during the project.
If errors are discovered, the
problem report, together with
a requirement for correction,
goes back into the backlog.
If an error is discovered in
an already integrated part,
a requirement for correction
of this part goes back into
the backlog, with a cost
estimate and a priority, which
depends on how important the
correction is as compared to
the other items already in the
backlog. There are two types
of backlog — project and sprint.
The former lists all the jobs tobe
done. A sprint backlog contains
those jobs to be carried outina

Continued on Page 16

SCSC Newsletter

Page 15

The Application of SafeScrum to IEC
61508-Certifiable Software

Continued from Page 15

particular ‘sprint’ (see below),
or release.

Each backlog item
(project and sprint) contains
a requirement, a priority and
a cost — denoted by R, P and
C respectively (see Figure 1).
The cost is usually decided
via planning poker — a process
similar to B. Boehm’s version
of the Delphi process.

We need Cn + Cx + Cy +Ca
to be less than or equal to the
amount of resources available
for the next sprint. The total
amount of available resources

‘ Project backlo
Ru, Pn, Cn

Rx, Px, Cx

ily. Py, Cy

=

increment

= Rn, Pn,Cn

(person hours) is the sum of
available person hours from the
members of the development
team in the next sprint and is
known up-front.

The main constructs of the
Scrum process are:
e Initial planning is short
and results in a prioritized
list of requirements for the
system. The requirements
are inserted into the system
(project) backlog — one item per
requirement. Developers also
make a time estimate for each
item.
o Development is organized

SErint backlog

Rx, Px, Cx
Ry, Py, Cy
Ra, Pa, Ca

Terminati !

{afew.days)

—

product

Figure 2: The Basic Agile Software Development Model

as a series of sprints (iterations)
and each sprint usually lasts
one to four weeks. Typically,
developers will wuse test-
driven development [3] where
automated tests are developed
before the code. A work item in
a sprint may be: development

of new code based on
customer requirements, or
redevelopment and error

correction of an item that was
not accepted by the customer
in the previous release.

e Each sprint starts with
a sprint planning meeting
where the top items from the
project backlog are moved to
the sprint backlog — adding
up to the amount of resources
available for the sprint.
These requirements will be
implemented in the sprint
being planned.

e Each working day starts
with a scrum, which is a short
meeting at which (1) each
member of the development
team explains what she/he
did the previous work day, (2)
any impediments or problems
that need to be solved are
addressed, and (3) work is
plarined for the current work
day.

e Each sprint releases an
increment (executable code)
which is a fully functional, or
in other ways demonstrable,
part, of the final system (e.g. a
piece of software that runs on
a simulator). This increment
consists of code developed in
the previous sprints plus the
increment developed in this

Continued on Page 17

SCSC Newsletter

Page 16

The Application of SafeScrum to IEC
61508-Certifiable Software

Continued from Page 16

sprint.

The increment is demon-
strated for the customer(s),
who decides which backlog
items have been resolved and
which will need further work.
Based on the results from the
demonstration, the next sprint
is planned. The project backlog
is revised by the customer
and is potentially changed/
reprioritized. This initiates the
sprint-planning meeting for the
next sprint. When all project
backlog items are resolved
and/or all available resources
are spent, the final product
is released. Final tests — e.g. a
factory acceptance test — will
be run to ensure completeness
and correctness.

We have observed that the
main problem with introducing
an agile development process
in the development of safety-
critical systemsisnotin proving
that it will work but in getting
the product certified. Our focus
will thus be on certification and
not on software development
per se. There is also a need to
write a new set of procedures
and train the developers in
a new way of developing
software, but this problem will
not be discussed here.

The Need for a Revised IEC
61508 Standard

We will, in the next and final
part of this article, present a
Scrum version that is adapted
to development of safety-
critical software. However, this

is just a stop-gap action. We
need a revision of IEC 61508-3:
2010 in order to accommodate
agile development processes
and all the new development
processes that will emerge in
the future. We see two possible
roads ahead: (1) a goal-based
standard, or (2) include the
agile development paradigm
in the standard. While the
first alternative is the most
promising in the long term, the
latter alternative will require
less change and is thus the
simpler option. We will thus
only discuss this alternative.
Our most important
suggestions are:

* Open up the standard to
iterative development. This has
already been done for safety-
critical software in the nuclear
domain, see IEC 60880. It is a
simple change, which would
accommodate not only Scrum
but also many other ways of
working, such as evolutionary

development.

e Increased involvement
of the assessor during
development. This would

enable the project participants
to get a clear idea of which
documents they need to
develop for proof of compliance
(PoC) and in which cases a
simple PoC documentation is
sufficient. A related concept —
assurance driven development
—is under development by Det
norske Veritas.

e Advise development
organizations on how to
develop reusable documents

- what can be reused and
what needs to be developed
separately for each new project.
This should be an informative
annex to the standard.

In the second part of
this article, we will present
SafeScrum. This is an JEC 61508
adapted version of the agile
process presented in this part.
It is also the process that we
will try out in two pilot projects
in Norwegian industry during
the next four years. Stay tuned.
This will be interesting.

References

[1] Beck, K. and Andres,
C., Extreme programming
explained: embrace change
(2nd Edition). 2004, Boston:
Addison-Wesley Professional.
[2] Bell, R. Introduction to IEC
61508. In proceedings of 10th
Australian workshop on Safety
critical systems and software.
2005. Darlinghurst, Australia:
ACM.

[3] Koskella, L., Test Driven.
2008, Greenwich, UK: Manning.
[4] Schwaber, K., Beedle, M,
Agile Software Development
with Scrum. 2001, New Jersey:
Prentice Hall.

Prof. Tor Stdlhane is at the
Norwegian University of Science
and Technology, Dr. Geir K
Hanssen is a Senior Research
Scientist at SINTEF ICT, and
Thor Myklebust is an Assessor
at SINTEF ICT. They may be
contacted at:
<stalhane@idi.ntnu.no>,
<Geir.K.Hanssen@sintef.no> and
<Thor.Myklebust@sintef.no>

SCSC Newsletter

Page 17

