

Benchmarking of power cycles with CO₂ capture The impact of the chosen framework

4th Trondheim Conference on CO₂ Capture, Transport and Storage

Kristin Jordal, SINTEF Energy Research

SINTEF Energy Research

The benchmarking activity at SINTEF/NTNU within BIG CO2

- Nine different power cycles with CO₂ capture evaluated
- Fuel is natural gas

SINTEF

- Reference case is a gas turbine combined cycle of 386 MW and a thermal efficiency of 56.7%
- The work has been presented at GHGT-7 and in *Energy*

About quantitative benchmarking

- The methodology for general thermodynamic studies of different power cycles is well established - it is known what process conditions give a high thermal efficiency
- CO₂ capture and compression is a new element to be included in power cycles
- Benchmarking of different power cycles with CO₂ capture against a reference case without capture has become an acknowledged method to evaluate the impact of CO₂ capture on power cycle efficiency (and cost)
- The boundary for a power plant with CO₂ capture is more complex than that of a standard power plant

The power plant boundary with CO₂ capture

Framework selection

- Standard boundary conditions or site specific?
 - "Standard" boundary conditions, as far as possible, make the results more of general interest
 - Site-specific boundary conditions give a more true picture for a selected site or geographic area
 - Ambient temperature
 - Ambient temperature
 Cooling water temerature
 Norwegian conditions favourable!
 - Natural gas delivery conditions (LNG or gas?)
 - CO₂ final pressure
 - Oxygen production on site?
- What technology level do we want to reflect?
 - Current (known) technology status previous SINTEF benchmarking
 - Estimated future technology, when CO_2 capture is likely to be generally adopted for new power plants – topic in this presentation
 - Purpose is to present an idea of what could be the development potential of some different capture technologies

Site-specific conditions: impact of cooling water temperature (=condenser pressure)

- Relative gain from reduced cooling water temperature (right picture) based on LP turbine in combined cycle only.
- Value reduced when considering the entire turbine train with multiple steam extractions.

Example of framework selection: Future technology levels

Parameter	Previous benchmarking	~5-10 years (?)	~15-20 years(?)
GT combustor outlet temperature [°C]	1328	1428	1528
GT max blade temperature (rough estimate)	900	940	980
Max steam temperature [°C]	560	600 (done today already)	700 (goal of R&D programs), 656 max in this work
HP/IP steam turbine inlet pressure [bar]	111/27	Result of optimisation	Result of optimisation (HP supercritical?)
Amine re-boiler steam requirement [kJ/kg CO ₂]	3.4 (low figure!)	2.8	1.5 (unrealistic for temp-swing only)

Each new technology level requires a new reference case without CO₂ capture!

Establishing new reference cases (1): Gas turbine modelling, "future technology"

- A realistic generic gas turbine required when increasing the combustion temperature
- Temperature increase possible due to increased materials temperature and better blade cooling
- Pressure ratio adapted for anticipated exhaust temperature

Establishing new reference cases (2): Combined cycle modelling

- For each new gas turbine, a new reference combined cycle must be established
- We cannot compare a CO₂ capture cycle based on advanced power plant data against a reference cycle reflecting older technology

Efficiency optimisation in this case was

done in GTPRO T_g [°C] P_{el} [MW] Efficiency [%] Stear

T _g [°C]	P _{el} [MW]	Efficiency [%]	Steam data [bar/°C/°C]
1328	386	56.7	111/560/560
1428	411	57.9	111/560/560
1428	414	58.2	140/580/580
1528	436	58.8	111/560/560
1528	440	59.4	180/600/600

Post combustion capture – development possibilities

Oxyfuel CC development possibilities

- Capture is more integrated in the oxyfuel CC than in the post combustion cycle.
- More difficult to push performance parameters towards the "extreme" in a computational exercise
- Oxyfuel CC penalised by consistent framework for steam bottoming cycle???

Pre-combustion with ATR

- CO₂ capture in precombustion with ATR even further integrated than in oxyfuel CC
- No benefit (in current process layout) from increasing GT pressure ratio
- Not possible (in current process layout) to use improved steam data from reference CC
- Only technology improvement with positive impact on performance is increased combustor outlet temperature

Chemical Looping potential

Source: Naqvi R., 2006, "Analysis of Natural Gas-Fired Power Cycles with Chemical Looping Combustion for CO2 capture", Doctoral Theses at NTNU, 2006:138.

Summary, future development potential

Conclding remarks, future development potential

- When considering future development potential, the same boundary conditions were applied as in previous benchmarking
- New reference combined cycles were established to reflect the anticipated technology development
- Post combustion capture has a low degree of integration with the power plant, and it is easy to produce theoretical results with increased cycle efficiency, beyond a realistic limit
- It appears from this work that the more integrated the CO₂ capture into the cycle, the more difficult it could actually be to improve cycle efficiency beyond combustor outlet temperature improvements
 - The development potential with evolving technology should be useful to consider for a manufacturer before deciding to pursue the development of a certain technology

Concluding remark: impact of chosen framework for CO₂ capture studies

- Main issue: be careful when presenting results and/or when interpreting results that are presented to you!
 - Is the framework for the study consistent?
 - What is included in the efficiency calculation?
 - What are the boundary conditions? (site specific? ISO standard?)
 - What is the technology level? Is it realistic? Outdated?
 - What is the reference case without CO₂ capture? Does it have the same framework as the case(s) with CO₂ capture?

Thank you for your attention!

SINTEF Energy Research

. . . .

BIG CO2 benchmarking: Stream input data (boundary conditions)

Fuel feed stream		
Composition		
N2	[mole%]	0,9
CO2	[mole%]	0,7
C1	[mole%]	82
C2	[mole%]	9,4
C3	[mole%]	4,7
C4	[mole%]	1,6
C5+	[mole%]	0,7
Properties		
Pressure	[bar a]	50
Temperature	[°C]	15
Molecular weight	[g/mol]	20,05
Density	[kg/Sm3]	0,851
Conditions		
lower heating value	[kJ/Sm3]	40448
lower heating value	[kJ/kg]	47594
Air feed streem		-
Composition		
N2	[mole%]	77,3
CO2	[mole%]	0,03
H2O	[mole%]	1,01
Ar	[mole%]	0,92
02	[mole%]	20,74
Properties		-
Pressure	[bar a]	1,013
Temperature	[°C]	15

Oxygen feed streem				
Composition				
02	[mole%]	95		
N2	[mole%]	2		
Ar	[mole%]	3		
Properties				
Pressure	[bar a]	2,38		
Temperature	[°C]	15		
Conditions				
Energy production requirement	kJ/kgO2	812		
CO2 outlet				
Composition				
CO2 concentration	[mole%]	88,6-99,8		
Properties				
Pressure	[bar a]	200		
Temperature	[°C]	30		

BIG CO2 benchmarking: Computational assumptions (inside the power plant)

leat exchangers		Steam power cycle			
Pressure drop	[%]	3	3 Max steam temperature, pure steam cycle [°C]		560
□T _{min} gas/gas	[°C]	30	HP steam turbine inlet pressure	[bar a]	111
□T _{min} gas/liquid	[°C]	20	IP steam turbine inlet pressure	[bar a]	27
HRSG T steam out/exhaust in	[°C]	20	LP steam turbine inlet pressure	[bar a]	4
HRSG pinch point	[°C]	10	Max temperature WC HP turbine	[°C]	900
CO2 compression intercooler temeprature	[°C]	30	Deaerator pressure	[bar a]	1,2
Gas side pressure drop through HRSG	[mbar]	40	Condenser pressure, pure steam cycle	[bar a]	▲ 0,04
			Condenser pressure, Water Cycle	[bar a]	0,045
Reactors		_	Condenser pressure, Graz cycle	[bar a]	0,046
GT Combustor and reactor pressure drop	[%]	5	Condenser pressure, Oxyfuel CC	[bar a]	1,01
Duct burner pressure drop	[%]	1	Cooling water inlet temperature	[°C]	▼ 8
Combustor outlet temperature (max)	[°C]	1328	Cooling water outlet temperature	[°C]	18
Reactor outlet temperature, CLC and AZEP	[°C]	1200			-
			CO2-capture-specific cycle units		
Turbomachinery efficiencies			CO2 absorption recovery rate, ATR and post combustion	[%]	90
Main GT Compressor polytropic efficiency	[%]	91	CO2 stripper outlet pressure, ATR and post combustion	[bar a]	1,01
Main GT Uncooled turbine polytropic efficiency	[%]	91	Amine re-boiler steam requirement	[MJ/kg CO2]	3,4
Small compressor polytropic efficiency	[%]	87	Pressure drop in absorption column	[mbar]	150
Small turbine polytropic efficiency	[%]	87	Methane conversion MSR-H2	[%]	99.8
CO2 compression isentropic efficiency stage 1	[%]	85	Shift reaction conversion MSR-H2	[%]	99
CO2 compression isentropic efficiency stage 2	[%]	80	80 H2 separation MSR-H2 [%]		99.6
CO2 compression isentropic efficiency stage 3	[%]	75	CLC degree of carrier oxidation	[%]	100
CO2 compression isentropic efficiency stage 4	[%]	75	CLC degree of carrier reduction	[%]	70
SOFC/GT cycle compressor polytropic efficiency	[%]	87,5	CLC degree of fuel utilisation	[%]	100
SOFC/GT cycle turbine polytropic efficiency	[%]	87,5		[,0]	100
AZEP and SOFC/GT recirc compressor polytropic efficiency	[%]	50	Auxiliaries		
HP steam turbine isentropic efficiency	[%]	92	Concrator mechanical efficiency	[%]	98
IP steam turbine isentropic efficiency	[%]	92	O2 and CO2 compression mechanical drive officiency	[76]	90
LP steam turbine isentropic efficiency	[%]	89	Auviliant power requirements (of not plant output)	[/0]	33
Pump efficiency (incl. motor drive)	[%]	75		[70]	1
Note: Small compressor/turbine refers to H2O/CO2 recircualtion compressor, ATR and MSR-H2 fuel compressors, MSR-H2, CLC and AZEP CO2/steam turbines					

Konsept 1a: Eksosgassrensing med amin

Oxy-fuel CC

≈ 90 % recycle

SINTEF Energy Research

Konsept 2a: Reformering av hydrokarboner vha autotermisk reaktor (ATR)

