CINCLDI

Centre for intelligent electricity distribution - to empower the future Smart Grid

The CINELDI Testbed for Advanced Distribution Management Systems

CINELDI Webinar 26-09-2022

Merkebu Z. Degefa, SINTEF Energi AS (merkebuzenebe.degefa@sintef.no)

Outline

01001000011010

Grid Modernization Levels

Distribution Network in Norway

CINELDI Smart Grid Operation Focus Areas

DADMS and Testing Needs

The National Smart Grid Laboratory

Testbed for ADMS

Example Test Cases

Grid Modernization Levels

01001000011010

00100001101001

000010010000

0100001

00100100001

Level 0: Manual control and local automation

Distribution networks today where transformer ratio is modified manually according to the load growth or seasonal changes, typically twice a year.

Level 1: Substation automation and remote control Substation voltage regulators and substation capacitor bank are controlled with a rule-based volt/VAR optimization. Active voltage regulation is restricted to the substation.

CIN[©]LDI

Inspired by: Madrigal, Marcelino; Uluski, Robert; Mensan Gaba, Kwawu. 2017. Practical Guidance for Defining a Smart Grid Modernization Strategy. World Bank

Grid Modernization Levels ...

 1
 0
 0
 0
 1
 0
 0
 0
 1

 0
 0
 1
 1
 0
 0
 1
 0
 1
 1
 1

 0
 0
 1
 0
 0
 0
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</td

Level 2: Feeder automation and remote control

Coordinated Voltage control (CVC) can be implemented including switchable capacitor banks and voltage regulators outside of the substation fence.

Level 3: DER integration and control and demand response In addition to the traditional voltage regulating devices, all other DER contributors such as smart inverters are incorporated in the CVC.

CIN[©]LDI

Inspired by: Madrigal, Marcelino; Uluski, Robert; Mensan Gaba, Kwawu. 2017. Practical Guidance for Defining a Smart Grid Modernization Strategy. World Bank Studies;. Washington, DC: World Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/26256 License: CCBY 3.0 IG O.

Distribution Network in Norway

- Large demand response potential in the domestic center
- Large availability of hydropower plants with reservoirs which are fast and easy to control.
- Weak grids with approx. 40% of the supply terminals weaker than the standardized EMC reference impedance
- Quickly growing use of purely battery based electric vehicles
- Well-developed broadband communication and electricity markets

Ref. Fosso, O.B., Molinas, M., Sand, K. and Coldevin, G.H., 2014, May. Moving towards the smart grid: The norwegian case. In 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA) (pp. 1861-1867). IEEE.

Today's Status – Network Operations

Today's network operation:

- Local measurement/regulation
- A measurement a purpose
- Reactive problems are solved as they arise
- Low data availability (silos)

HV/MV

PCC voltage

LV/M

side voltage

measurement

The future network operations:

Reclose

- Continuous monitoring and optimization of operations
- Data is easily accessible

Substation IEDs (Substation tomation Facilities

Demand response facilities

- Proactive operational planning and Predictive maintenance
- Maximum utilization of the network
 - active measures in the network
 - flexibility with network customers

CIN[©]LDI

Canacito

Field Communication networl

Research Areas in CINELDI

Flexible Resources in the Power System

Smart Grids Scenarios and Transition Strategies

Advanced Distribution Management Systems (ADMS)

• What is it?

01100001010

100001101001010110010000010010000

01101000100

10100100011 00000100100 00101000001

1001000010

00110100100

01000

- It is a control room platform
- What are its characterstics?
 - seamless sharing of models, measurement, database values, and control signals among applications
- What is the objective?
 - comprehensive and optimal monitoring and control of distribution systems

Laboratory Based Testing Needs: Example Use Case Activation of Flexibility Service

0100100001101

0010010000

Intended and unintended consequences of activation of flexibility resources.

Testbed for New ADMS Functions

✓ Validation,

010010000110

- ✓ Verification,
- ✓ Characterization,
- ✓ Integration testing

A **testbed** is a platform for conducting rigorous, transparent, and replicable testing of scientific theories, computational tools, and new technologies. Source: Wikipedia

The National Smart Grid Laboratory - an important asset in CINELDI

https://www.sintef.no/en/all-laboratories/smartgridlaboratory/ https://www.ntnu.edu/smartgrid

National Smart Grids Laboratory (NSGL)

National Smart Grid Laboratory is a 250 m² facility located in Trondheim at the campus of the Norwegian University of Science and Technology (NTNU) and jointly operated by SINTEF and NTNU.

CIN[©]LDI

Busbars in the National Smart Grids Laboratory

~

1 1 0 1

Power electronics converters

- 4x Two Level three-phase converters (60 kW)
- <u>3x MMC converters (60 kVA)</u>
- 2x back to back two-level converts (100 kVA)
- 2x 20 kVA two- level converters

Intelligent Electronic Devices (IED)

- Protection relay: SIEMENS 7SJ85
- Merging Unit: SIEMENS 6MU85
- Merging Unit: SEL 401 MU Communication routing, RTUs, PMUs

Electrical machines

- 18 kVA synchronous generator
- 55 kVA induction generator.
- 100 kVA, 14 pole generator
- 66 kVA 6 pole generator

Real-time Simulation and Communication Infrastructure

CIN[©]LDI

Examples of Services Offered by the NSGL

- □ Characterization testing of components such as converters, voltage boosters etc.
- □ Controller development, fine tuning, and validation
- □ Testing of smart grid algorithms and architectures

01001000011010

000010011010000

10000100100001

110100010010100

00010 100100

01010000011

- □ Energy storage system validation and integration testing
- DER integration standards conformance testing
- □ Testing of islanded and interconnected operation of microgrids/minigrids
- **U** Evaluation of cyber-physical systems for resilience towards misuses and conformance with network operation standards

CIN²LDI

- □ Characterization of integration charging infrastructure in distribution systems for electric transport system
- Testing of transmission systems including FACTS devices and HVDC converters and associated technologies
- □ Testing of novel functionalities with the smart meter infrastructure.
- Power quality measurements and analysis for conformity with standards.
- □ Characterization of dependencies of power grid and ICT system and impacts on reliability.
- □ High fidelity and accuracy testing, such as Power-Hardware-in-the-Loop tests.
- □ Validation testing of services offered by flexibility resources.
- Grid impact studies of activation of flexibility resources and home automation systems
- **Testing of Wide Area Monitoring Systems and PMUs**

ADMS Laboratory Testbed Ver#1

✓ Protection relay: SIEMENS 7SJ85

- ✓ AVEVA SCADA
- ✓ OPAL RT (OP5600)

IEC 104
 IEC 61850
 OPC-UA

CIN[©]LDI

<u>Contributions are acknowledged from:</u> Santiago Sanchez and Ravishankar Borgaonkar

Ref:- Merkebu Z. Degefa, Santiago Sanchez and Ravishankar Borgaonkar, "A Testbed for Advanced Distribution Management Systems: Assessment of Cybersecurity," ISGT-Europe 2021

Example Usecase: TSO-DSO volt/var Optimization

Example Usecase: TSO-DSO Volt/Var Optimization ...

 0
 1
 0
 1
 0
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Example Usecase: TSO-DSO volt/var Optimization...

Purpose of Investigation:

Characterize the impact of misuse-cases on the operation of distribution network.

Testing#1: Sequence of Events

01001101100:

Demonstration of smart operation vulnerabilities.

CIN[©]LDI

Testing#1: Evaluation of Impact of Misuse Case

TSO-DSO Coordination for Network Operation

- Operational coordination between TSO and DSO will be characterized by the exchange of large amounts of network and measurement data as well as control signals in near real-time.
- Some of the research questions are:
 - Study the effects of different levels of equivalent network representations of the DSO network.
 - □Study the adequacy of CIM for TSO-DSO operational data exchange.
 - Evaluation of different schemes for controlling components (e.g. converters in the DSO area) for TSO-DSO voltage regulation
- We expanded the ADMS lab setup to represent the coordination between TSO and DSO Operation Centers.

ADMS Laboratory Testbed Ver#2 : with separate TSO control centre...

<u>Contributions are acknowledged from:</u> Henrik Lundkvist, Santiago Sanchez-Acevedo, and Kristoffer N. Gregertsen

Ref. Merkebu Z. Degefa, Henrik Lundkvist, Santiago Sanchez-Acevedo, and Kristoffer N. Gregertsen, 'Challenges of TSO-DSO Voltage Regulation Under Real-Time Data Exchange Paradigm, paper in preparation

CIN[©]LDI

Testing#2: TSO-DSO Operational Coordination

CIN[©]LDI

Testing#2: TSO-DSO Operational Coordination ...

Purpose of Investigation:

- Characterize the impact of different level of details in distribution network equivalent network in the OPF results of the TSO control center VVO.
- Verify the sufficiency of CIM model for such data exchange.

Testing#2: TSO-DSO Operational Coordination ...

- ✓ Full DSO grid knowledge showed lowest loss and highest utilization of the OLTC at the PCC.
- Equivalent grids can be sufficient as long as simplifications are carried out with a tailored approach for the dynamics considered in specific cases to avoid performance degradation.

The use of the CIM/CGMES model for exchanging different levels of DSO equivalent grids has showed its adequacy for such operational coordination.

Operational coordination related data exchange needs between TSO-DSO and DSO-DSO shall be studied. Equivalent network models can be sufficient if done properly.

CIN[©]LDI

Summary

0100100001101

□ First implementation of the ADMS cyber-physical testbed

Related ongoing activity: Topology processing and state estimation methods, the use of smart meter data

(Raymundo E. Torres-Olguin, Santiago Sanchez Acevedo, Henning Taxt)

□Next activities include:

✓ New functions and use cases (e.g. DERMS)

✓ Scale-up

Research questions:

- ✓ Characterization of different control architectures in the distribution system
- ✓ Formulation of sufficiently accurate OPF for real-time operation
- \checkmark Studying impacts of flexibility activation
- \checkmark Identification and mitigation methods for misuse cases

The Transnational Access programme supported successful applicants by offering the following:

- **travelling**
- accommodation
- Iab access to ERIGrid 2.0 testing and simulation facilities

 Apply every 3 months for physical lab access
 Access virtual services anytime no application is required

https://erigrid2.eu/lab-access/

Thank you! Comments and questions are welcome!

This work is funded by CINELDI - Centre for intelligent electricity distribution, an 8 year Research Centre under the FME-scheme (Centre for Environment-friendly Energy Research, 257626/E20). The authors gratefully acknowledge the financial support from the Research Council of Norway and the CINELDI partners.