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Abstract. We consider hyperbolic conservation laws with relaxation terms. By study-

ing the dispersion relation of the solution of general linearized 2×2 hyperbolic relaxation
systems, we investigate in detail the transition between the wave-dynamics of the homo-

geneous relaxation system and that of the local equilibrium approximation.

We establish that the wave velocities of the Fourier components of the solution to the
relaxation system will be monotonic functions of a stiffness parameter ϕ = εξ, where ε is

the relaxation time and ξ is the wave number. This allows us to extend in a natural way
the classical concept of the sub-characteristic condition into a more general transitional

sub-characteristic condition.

We further identify two parameters β and γ that characterize the behavior of such
general 2 × 2 linear relaxation systems. In particular, these parameters define a natural

transition point, representing a value of ϕ where the dynamics will change abruptly from

being equilibrium-like to behaving more like the homogeneous relaxation system. Herein,
the parameter γ determines the location of the transition point, whereas β measures the

degree of smoothness of this transition.

Keywords: relaxation; wave velocities; sub-characteristic condition.

1. Introduction

We are interested in the wave-dynamics of hyperbolic conservation laws with relax-

ation terms. Such a system consisting of N equations in one spatial dimension can

in general be written in the relaxation form

∂tU + ∂xF (U) =
1

ε
Q(U), (1.1)

where U = U(x, t) ∈ G ⊆ RN for some state space G. In the above, F (U) is the

flux and Q(U) is a relaxation term. The parameter ε > 0 can be interpreted as a

1
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characteristic time-scale of the relaxation process.

Systems of the form (1.1) are useful in describing non-equilibrium processes, and

therefore have a large number of applications in the physical modeling of different

phenomena. Important examples include traffic flow [1], kinetic theory [4] and gas

flow in local thermal non-equilibrium [11,7].

A crucial concept for hyperbolic relaxation systems is that of local equilibrium.

The equilibrium manifold is defined as

M = {U ∈ G : Q(U) = 0}. (1.2)

Moreover, the dynamics of the local equilibrium approximation will in general be

described through a system of n ≤ N conservation laws [5]

∂tu + ∂xf(u) = 0 (1.3)

for some reduced variable u = u(x, t). We assume that every u uniquely defines an

equilibrium state E(u) ∈M .

The stability of the relaxation system is intimately connected to the sub-

characteristic condition, a concept introduced in the linear case by Whitham [18]

and later for non-linear 2×2 systems by Liu [13]. The condition states that the wave

velocities of the local equilibrium approximation (1.3) should be interlaced in the

characteristic wave velocities of the homogeneous relaxation system (ε→∞). This

concept was further developed for N ×N systems by Chen et al. [5] and shown to

be directly related to the convexity of the entropy density of the relaxation system.

Since the pioneering work of Liu [13], the study of 2 × 2 systems has been an

important sandbox for investigating the properties of hyperbolic relaxation systems

[6,12,14,10]. This approach can be fruitful because 2 × 2 systems contain much of

the same elements of complexity as a general system, while being less cumbersome

to work with. Another important approach is the analysis of linearized relaxation

systems. Herein, a notable contribution was made by Yong [19,20], who derived

stability criteria based on the structure of such relaxation systems. Also, in a recent

work by Barker et al. [2], the dynamics of the solution of the St. Venant equations

was investigated by studying the dispersion relation of the corresponding linearized

system.

For well-behaved relaxation systems it is expected that the solutions of the

relaxation system will approach that of the local equilibrium approximation in the

zero relaxation limit (ε→ 0) [15,5]. If both the homogeneous relaxation system and

the conservation law of the local equilibrium approximation are hyperbolic, then

they each describe well-defined wave-dynamics. This implies that the magnitude of

the relaxation term in general influences both the strength and speed of the waves

of the relaxation system.

The purpose of this paper is to investigate the dispersive wave-dynamics of

hyperbolic relaxation systems by studying linearized 2 × 2 systems. The present

approach is similar to that of Yong [20], who used linear analysis to investigate the

stability of hyperbolic relaxation systems. However, in this work we wish to focus
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more on the qualitative aspects of the wave-dynamics of the relaxation system, and

in particular how this dynamics relates to the magnitude of the relaxation term. By

studying the dispersion relation of linearized 2 × 2 systems, we hope to illuminate

some aspects of the transition between the zero relaxation limit (ε → 0) and the

homogeneous (ε → ∞) limit. For the models we consider in this paper, the zero

relaxation limit will coincide with the local equilibrium approximation. Hence, in the

following, we will refer to the model obtained in the limit ε→ 0 as the equilibrium

model and the corresponding limit ε→∞ as the homogeneous model.

The main contribution of this paper is the discussion of the wave dynamics

of the relaxation system in the transitional regime between these two limits. This

transitional regime may be characterized by the stiffness parameter

ϕ ≡ ξε, (1.4)

where ξ is the wave number. For 2 × 2 relaxation systems, we identify a transi-

tion point ϕ̂ where the wave dynamics changes character from being dominated

by the equilibrium dynamics into behaving more like the homogeneous approxima-

tion. Moreover, we show that the wave velocities of the 2 × 2 relaxation system

will be monotonic functions of ϕ. This observation extends the notion of the sub-

characteristic condition to the transitional regime; consequently, we refer to this

generalization as the transitional sub-characteristic condition.

This paper is organized as follows: In Section 2 we give an introduction to 2× 2

hyperbolic relaxation systems and their linearized form. We also outline and discuss

the assumptions made in this paper regarding the structure of the relaxation term.

We introduce two parameters β and γ that characterize the dynamical behavior of

such general systems, and provide an interpretation of these parameters in terms

of the wave velocities of the homogeneous and equilibrium models.

In Section 3 we calculate the dispersion relation of the linearized 2×2 relaxation

system and show that the limiting behavior (ε → 0 and ε → ∞) is as expected.

We then identify a value of the stiffness parameter ϕ that may be associated with

a point of transition between the equilibrium and homogeneous regimes.

In Section 3.5, we extend Liu’s classic notion of the sub-characteristic condition

for 2 × 2 systems [13] into the transitional regime. In particular, we show that

any reduction in the stiffness parameter causes the transitional wave velocities to

approach each other.

Finally, in Section 4, the paper is summarized and the main conclusions are

presented.

2. 2 × 2 hyperbolic relaxation systems

For the calculations in this work, we limit ourselves to 2× 2 systems in one spatial

dimension, written in the general form

∂tU + ∂xF (U) =
1

ε
Q(U), (2.1)
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where U ∈ G ⊆ R2 for some state space G. Moreover, we assume that the system

(2.1) is hyperbolic in the strict sense, i.e. the Jacobian matrix

A(U) =
∂F (U)

∂U
(2.2)

is diagonalizable with real and distinct eigenvalues for all U ∈ G. The eigenvalues

of A are then the characteristic speeds of the homogeneous relaxation system, seen

as the limit ε→∞.

2.1. Linearization

In the usual way, we consider a linearization of the system (2.1) around a constant

equilibrium state. The linear system is given by

∂tU +A∂xU =
1

ε
RU , (2.3)

where A and R are both 2× 2 matrices with constant real coefficients.

By denoting

A =

[
a11 a12
a21 a22

]
, (2.4)

we can write the characteristic speeds of the linear system as

µ± =
1

2
(a11 + a22)±

(
1

4
(a11 + a22)2 − a11a22 + a12a21

)1/2

. (2.5)

The assumption of strict hyperbolicity is then given explicitly as

1

4
(a11 + a22)

2 − a11a22 + a12a21 > 0. (2.6)

2.2. Structure of the relaxation matrix

In this work, we will make the following basic assumptions regarding the 2 × 2

relaxation matrix R:

(i) The matrix R has rank 1

(ii) The matrix R is stable, i.e. it has no eigenvalues with positive real part.

The rationale behind (i) becomes clear when considering the two other possible

choices: If the matrix R has rank 0 then it is the zero matrix and there is no

relaxation effect on the system. Also, if the matrix has rank 2, the local equilibrium

approximation RU = 0 will impose two linearly independent constraints on the 2-

vector U and the equilibrium approximation will be a constant solution. Since we in

this work are interested in the relationship between the dynamics of the relaxation

system and that of the local equilibrium approximation, assumption (i) represents

the only interesting case.
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The condition (ii) is necessary for the solution of the relaxation ODE ∂tU = RU

to converge to a well-defined equilibrium [8]. As observed in [8,19], the relaxation

matrix R may be simplified through a variable transformation:

Proposition 2.1. Under the assumptions (i) and (ii), there exists a change of

variables such that a 2× 2 relaxation matrix R can be written in the form

R =

[
0 0

r21 −1

]
. (2.7)

Proof. A 2× 2 matrix R that fulfills (i) can, up to a row-swap, be written in the

form

R =

[
Kr21 Kr22
r21 r22

]
, K ∈ R. (2.8)

Therefore, there will exist a matrix

T =

[
1 −K
0 1

]
(2.9)

representing change of variables U → T U and a corresponding similarity transform

R → TRT−1, yielding a relaxation matrix with zeroes in the first row. We can

therefore let

R =

[
0 0

r21 r22

]
, (2.10)

by simply assuming that this change of variables already has been performed.

It is straightforward to verify that (ii) for the matrix (2.10) requires r22 < 0.

The absolute value of r22 can then be absorbed into the relaxation time ε, yielding

the desired form.

For the purpose of the discussions of this paper, we therefore define the following:

Definition 2.2 (Relaxation system). The linear 2 × 2 relaxation system

will refer to the general strictly hyperbolic system in the form (2.3) where the relax-

ation matrix R is in the form (2.7).

2.3. The local equilibrium approximation

For the linearized 2 × 2 system, the equilibrium manifold (1.2) is characterized by

RU = 0. By denoting U = [U1, U2]T , and given the assumed form of the relaxation

matrix (2.7), we can write the local equilibrium approximation explicitly as

U2 = r21U1. (2.11)

The dynamics of the reduced variable U1 is then governed by the advection equation

∂tU1 + v∗∂xU1 = 0, (2.12)

where the equilibrium wave velocity v∗ is given by

v∗ = a11 + r21a12. (2.13)
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2.3.1. The sub-characteristic condition

The sub-characteristic condition requires that the wave velocities of the local equi-

librium approximation are interlaced in the wave velocities of the hyperbolic re-

laxation system [5]. For the 2 × 2 system, this reduces to a simple inequality, as

formulated by Liu [13].

Definition 2.3 (The sub-characteristic condition). Consider the general 2×2

relaxation system in the form (2.1). Let µ± be the wave velocities of the homoge-

neous model, and let v∗ be the wave velocity of the equilibrium model. The sub-

characteristic condition states that these velocities must satisfy

µ− ≤ v∗ ≤ µ+. (2.14)

For the linear 2×2 relaxation system, the sub-characteristic condition thus takes

the form

γ − β2 ≥ 0, (2.15)

where we have introduced the convenient shorthands

γ ≡ 1

4
(a11 + a22)

2 − a11a22 + a12a21 (2.16)

and

β ≡ a11 + a12r21 −
1

2
(a11 + a22) . (2.17)

Remark 2.4. In terms of the shorthand (2.16), the condition of strict hyperbolicity

of the relaxation system (2.6) can be written in the simple form

γ > 0. (2.18)

The sub-characteristic condition is an important topic in the field of hyperbolic

relaxation systems [5,3,7]. As discussed by Natalini [16], it can be seen as a causal-

ity principle; the assumption of local equilibrium cannot cause waves to propagate

faster than in the full relaxation system. Also, it can be shown that for certain relax-

ation systems, the sub-characteristic condition is sufficient for the local equilibrium

approximation to be the limit of the relaxation system as ε→ 0 [15].

2.4. An example model

As an illustrative example, we consider a specific linear 2 × 2 relaxation system.

It was introduced by Jin and Xin [9], and has since been commonly used as an

example model [16,10]. The system is given by

∂tU1 + ∂xU2 = 0 (2.19a)

∂tU2 + λ2R∂xU1 =
1

ε
(λEU1 − U2), (2.19b)
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where λE and λR are parameters of the model; µ± = ±λR are the characteristic

speeds of the homogeneous relaxation system while v∗ = λE is the equilibrium

advection speed.

In the context of the general 2× 2 system considered in this work, the example

model is given by γ = λ2R and β = λE . The system is therefore hyperbolic by

construction and the sub-characteristic condition can be written as λ2R ≥ λ2E .

3. Wave-dynamics

The homogeneous relaxation system and the local equilibrium approximation both

have well-defined characteristic wave velocities. Moreover, the number of waves

in these cases are in general different. The magnitude of the relaxation term will

therefore influence both the strength of the waves as well as their respective wave

velocities. In this section we seek to illuminate this mechanism by investigating the

wave-dynamics of the relaxation system in detail.

3.1. Plane-wave solutions

As discussed by Yong [20], there exists for an initial condition U(x, 0) ∈ L2 a unique

solution to (2.3) in the general form

U(x, t) =
∑
ξ

Uξ(x, t) =
∑
ξ

exp (H(ξ) t) exp (iξx) Û(ξ). (3.1)

Herein, ξ is the wave number and H(ξ) is a 2× 2 matrix given by

H(ξ) =
1

ε
R− iξA =

1

ε

[
−iεξa11 −iεξa12

r21 − iεξa21 −1− iεξa22

]
. (3.2)

If H(ξ) is diagonalizable, it can be written in the form

H(ξ) = P

[
λ+ 0

0 λ−

]
P−1, (3.3)

where P is the matrix consisting of the eigenvectors of H(ξ). By using (3.3), we can

write the general solution in terms of plane waves as

U(x, t) =
∑
ξ

[
U+(ξ) exp

(
i
(
ξx+ Imλ+ t

))
exp

(
Reλ+ t

)
+ U−(ξ) exp

(
i
(
ξx+ Imλ− t

))
exp

(
Reλ− t

)]
, (3.4)

for some amplitudes U±(ξ).

From the general solution (3.4), we can deduce that associated with each of

the two eigenvalues of H(ξ) there is a plane wave with wave-number ξ. For each

eigenvalue λ±, the real part Reλ± is an amplification while the negative imaginary
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part −Imλ± represents a dispersion relation ω±(ξ). Given a dispersion relation, we

can obtain the corresponding wave velocity v using the standard relation

v±(ξ) =
1

ξ
ω±(ξ) = −1

ξ
Imλ±. (3.5)

By straightforward calculation, the eigenvalues of (3.2) are given by

λ± =
ξ

2ϕ

[
−1− iϕ (a11 + a22)±

(
1− 4ϕ2γ − i4ϕβ

)1/2]
, (3.6)

where we have employed the stiffness parameter ϕ as given by (1.4).

Introducing the shorthand

J =
√

(1− 4ϕ2γ)2 + 16ϕ2β2, (3.7)

we may write the real part of (3.6) as

Reλ± =
ξ

2ϕ

[
−1± 1√

2

(
J + 1− 4ϕ2γ

)1/2]
. (3.8)

As previously discussed, for hyperbolic relaxation systems the sub-characteristic

condition is intimately connected to the stability of the solution. For 2× 2 systems

the connection can be made explicit, and we here restate for linear systems the

following result, which was established for non-linear systems by Chen et al. [5]:

Proposition 3.1. For linear 2×2 systems as described in Definition 2.2, the linear

stability of the solution is equivalent to the sub-characteristic condition.

Proof. Linear stability requires

Reλ± ≤ 0. (3.9)

Inserting (3.8) into (3.9) yields((
1− 4ϕ2γ

)2
+ 16ϕ2β2

)1/2
+ 1− 4ϕ2γ ≤ 2. (3.10)

Rearranging and squaring yields(
1− 4ϕ2γ

)2
+ 16ϕ2β2 ≤

(
1 + 4ϕ2γ

)2
. (3.11)

Furthermore, by canceling terms and rearranging, (3.11) can be simplified to

γ − β2 ≥ 0, (3.12)

which is the sub-characteristic condition.

For the imaginary part of (3.6), we must consider two cases:

(1) The degenerate case β = 0:

Imλ± =

{
− ξ2 (a11 + a22) if ϕ ≤ 1

2γ
−1/2

− ξ2 (a11 + a22)± ξ
2ϕ

(
4ϕ2γ − 1

)1/2
otherwise

(3.13)
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(2) The non-degenerate case β 6= 0:

Imλ± = −ξ
[

1

2
(a11 + a22)± sgn(β)

2
√

2ϕ

(
J − 1 + 4ϕ2γ

)1/2]
. (3.14)

The expressions (3.8), (3.13) and (3.14) then completely describe the wave-dynamics

of the 2× 2 hyperbolic relaxation system.

The wave velocities v±(ϕ) of the solution are obtained by applying (3.5) to

(3.13) and (3.14), which yields:

(1) The degenerate case β = 0:

v±(ϕ) =

{
1
2 (a11 + a22) if ϕ ≤ 1

2γ
−1/2

1
2 (a11 + a22)∓ 1

2ϕ

(
4ϕ2γ − 1

)1/2
otherwise

(3.15)

(2) The non-degenerate case β 6= 0:

v±(ϕ) =
1

2
(a11 + a22)± sgn(β)

2
√

2ϕ

(
J − 1 + 4ϕ2γ

)1/2
. (3.16)

By simple inspection of (3.15)–(3.16), we can immediately deduce some impor-

tant qualitative aspects of the wave dynamics of the solution. Firstly, the wave

velocities of the relaxation system only depend on the variable ϕ = εξ. This implies

that, as far as the wave velocities are concerned, the zero relaxation limit (ε → 0)

is indistinguishable from the short wave-number limit (ξ → 0). Secondly, by com-

paring the wave velocities of the relaxation system with the characteristics (2.5) of

the homogeneous relaxation system, we can conclude that both these pairs of wave

velocities are symmetric around the same root center (1/2)(a11 + a22). Lastly, the

order of the wave velocities in the non-degenerate case (3.16) depend on the sign

of the parameter β. From (2.17) it is easy to see that the sign of β is determined

by the magnitude of the equilibrium wave velocity v∗ relative to the root center

(1/2)(a11 + a22). As will be shown in the following, this choice of ordering lets us

associate the λ+-wave with the equilibrium wave in the stiff limit.

3.2. Limit behavior

We now wish to verify that the limiting behavior of the wave velocities and am-

plification of the plane-waves (3.4) of the general solution. Since the fundamental

variable of the wave velocities is ϕ, we will investigate what we refer to as the stiff

(ϕ → 0) and the non-stiff (ϕ → ∞) limit. The following result can be shown by

straightforward calculations:

Proposition 3.2 (Non-stiff limit). In the non-stiff limit the amplifications (3.8)

are

lim
ϕ→∞

Reλ± = 0, (3.17)

and the corresponding wave velocities (3.15)–(3.16) are
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(1) The degenerate case β = 0:

lim
ϕ→∞

v±(ϕ) =
1

2
(a11 + a22)∓ γ1/2. (3.18)

(2) The non-degenerate case β 6= 0:

lim
ϕ→∞

v±(ϕ) =
1

2
(a11 + a22)± sgn(β)γ1/2. (3.19)

Since the non-stiff limit is simply the limit where the magnitude of the relaxation

term vanishes, Proposition 3.2 is as expected. The wave-dynamics is equal to that of

the homogeneous relaxation system, with wave velocities equal to the characteristic

speeds of the flux term.

Perhaps more interesting is the stiff limit. As discussed, in the zero relaxation

limit (ε→ 0) the solutions of relaxation systems tend to approach the solution of the

local equilibrium approximation [5,15]. This is consistent with the interpretation of ε

as a characteristic time-scale of the relaxation—the limit ε→ 0 represents an infinite

relaxation speed. The following can be shown by straightforward calculations:

Proposition 3.3 (Stiff limit). In the stiff limit the amplifications (3.8) are

lim
ϕ→0

Reλ± = lim
ϕ→0

ξ

2ϕ
(−1± 1) , (3.20)

and the corresponding wave velocities (3.15)–(3.16) are

lim
ϕ→0

v±(ϕ) = a11

(
1

2
± 1

2

)
+ a22

(
1

2
∓ 1

2

)
± a12r21. (3.21)

Proposition 3.3 reveals how the 2-wave dynamics of the 2× 2 relaxation system

approaches the 1-wave dynamics of the local equilibrium approximation as ϕ →
0. The wave velocities of the relaxation system are mirrors of each other around

(1/2)(a11 + a22) for all ϕ. When ϕ→ 0, the wave with wave velocity closest to the

equilibrium velocity v∗ will be undamped, while the mirror wave will diminish. The

dependence of the wave velocities on sgn(β) is such that it is v+ that is closest to

v∗.

3.3. The degenerate case

The main purpose of this paper is to investigate the transitional (ϕ ∈ 〈0,∞〉) wave-

dynamics of the 2×2 relaxation system. To this end, we first consider the degenerate

case β = 0. For this case, the equilibrium wave-speed is equal to the root center of

the wave velocities of the homogeneous relaxation system.

3.3.1. Wave attenuation

We may write the amplification factors (3.8) as

f±(ϕ) ≡ Reλ± =
ξ

2ϕ

(
−1± 1√

2

√
J + 1− 4ϕ2γ

)
, (3.22)
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where J is given by (3.7). By assuming β = 0 and defining ϕ̂ as

ϕ̂ ≡ 1

2
γ−1/2, (3.23)

we may write (3.22) as

f±(ϕ) =


ξ

2ϕ

(
±
√

1− 4ϕ2γ − 1
)

if ϕ < ϕ̂,

− ξ

2ϕ
otherwise.

(3.24)

We obtain

df±

dϕ
=


ξ

2ϕ2

(
1∓

(
1− 4ϕ2γ

)−1/2)
if ϕ < ϕ̂,

ξ

2ϕ2
if ϕ > ϕ̂.

(3.25)

Observe in particular that f± is not differentiable at the point ϕ = ϕ̂, and that the

one-sided limit satisfies

lim
ϕ→ϕ̂−

df±

dϕ
= ∓∞. (3.26)

3.3.2. Summary for the degenerate case

From the analysis of the degenerate case, we may now conclude the following:

• In the region ϕ ∈ 〈ϕ̂,∞〉, the system displays the 2-wave dynamics of the

relaxation system with dampening; both waves are equally attenuated.

• At the point ϕ = ϕ̂, there is an abrupt bifurcation of the amplification factors,

leading to a strong local reduction of the attenuation of the λ+-wave, as well

as a similar increase in the attenuation of the λ−-wave. Also, at this point, the

wave velocities of the relaxation system become equal to the velocity of the

local equilibrium approximation.

• In the region ϕ ∈ 〈0, ϕ̂〉, this separation of the waves increases, leading even-

tually to the λ−-wave being fully suppressed and the λ+-wave reducing to the

non-attenuated wave of the equilibrium system. In this region the wave veloc-

ities of the relaxation system are both equal to the wave-speed of the local

equilibrium approximation.

Consequently, it makes some sense to interpret the point ϕ = ϕ̂ as a point of

transition where the system changes character from the 2-wave dynamics of the

homogeneous relaxation system to being dominated by the 1-wave dynamics of the

local equilibrium approximation.

Figure 1 shows the wave velocities and amplifications for the example model

(2.19a)–(2.19b) using λR = γ1/2 = 1.0 and λE = β = 0.0. The plot clearly shows

a bifurcation at the point ϕ = ϕ̂ = 0.5. This supports the interpretation of ϕ̂ as a

point of transition between the two regimes.
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Fig. 1. Wave velocities (3.15) and amplifications (3.8) for the example model (2.19a)–(2.19b), using

λR = 1 and λE = 0.0, representing the degenerate case.

3.4. The non-degenerate case

We now investigate how the interpretation of ϕ̂ as a critical point of transition

carries over to the non-degenerate case, given by β 6= 0.

3.4.1. Wave attenuation

For β 6= 0, the derivative of (3.22) becomes

df±

dϕ
=

ξ

2ϕ2

(
1∓ 1√

2

√
J + 1− 4ϕ2γ

)
±
ξγ(−1 + 4ϕ2γ + 2β

2

γ − J)

J
√

1
2 (J + 1− 4ϕ2γ)

. (3.27)

In this case, the derivatives exist for all ϕ ∈ 〈0,∞〉. We are now interested in finding

any critical points where f ′(ϕ) = 0. To this end, it will prove convenient to introduce

the auxiliary variable Q:

Q =

√
1

2
(J + 1− 4ϕ2γ), (3.28)

from which ϕ2 may be uniquely determined:

ϕ2 = Q2 (Q+ 1)(Q− 1)

4(β2 −Q2γ)
. (3.29)

Remark 3.4. Observe that when

γ − β2 = 0, (3.30)

the amplification factors reduce to

f+(ϕ) = 0, (3.31)

f−(ϕ) = − ξ
ϕ
. (3.32)
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In this case, there is no transitional attenuation of the λ+-wave, and

df+

dϕ
≡ 0. (3.33)

When γ − β2 6= 0, the roots of (3.27) satisfy the equivalent equation

h±(Q) = Q3 ± ζ
(
Q2 ∓Q− 1

)
= 0, (3.34)

where

ζ =
β2

γ
> 0. (3.35)

Through elementary analytical techniques, we may establish that h+ has a unique

root corresponding to ϕ ∈ 〈0,∞〉, whereas h− has no such root. Further analysis

yields the following proposition.

Proposition 3.5. Consider a linear 2 × 2 relaxation system as described in Defi-

nition 2.2 satisfying β 6= 0 and γ−β2 6= 0. The amplification of the λ+-wave, given

by (3.8), has a unique local extremum ϕc in the interval

ϕ ∈ 〈0,∞〉. (3.36)

This critical point is given by

ϕc =
Q

3/2
c

2β
, (3.37)

where

Qc =
ν1/3

6
+

2ζ + 2
3ζ

2

ν1/3
− ζ

3
, (3.38)

ν = 108ζ − 36ζ2 − 8ζ3 + 12
√

81ζ2 − 66ζ3 − 15ζ4. (3.39)

On the other hand, the amplification of the λ−-wave is unconditionally strictly

monotonic for ϕ ∈ 〈0,∞〉.

We may verify that

lim
β→0

ϕc = ϕ̂, (3.40)

as should be expected.

In summary, we may divide the non-degenerate case β 6= 0 into 3 further sub-

cases:

• The sub-characteristic condition is strictly satisfied, i. e.

ζ < 1. (3.41)

For all ϕ ∈ 〈0,∞〉, the λ+-wave is attenuated, with the amplification factor f+

having a unique minimum at ϕc.
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• The sub-characteristic condition is marginally satisfied, i. e.

ζ = 1. (3.42)

For all ϕ ∈ 〈0,∞〉, the transitional amplification of the λ+-wave is identically

zero.

• The sub-characteristic condition is not satisfied, i. e.

ζ > 1, (3.43)

For all ϕ ∈ 〈0,∞〉, the λ+-wave is amplified, with the amplification factor f+

having a unique maximum at ϕc.

For all these cases, the λ−-wave is attenuated with the amplification factor f− being

strictly monotonically increasing.

3.4.2. An heuristic interpretation

The analysis of this section indicates that the conclusions drawn from the degenerate

case β = 0 qualitatively carry over to the general case β 6= 0. In particular, the

analysis justifies associating the point

ϕ̂ =
1

2
γ−1/2 (3.44)

with a point of transition, where wave numbers corresponding to

ϕ < ϕ̂ (3.45)

display a behavior characteristic of the 1-wave equilibrium system, whereas wave

numbers corresponding to

ϕ > ϕ̂ (3.46)

display a behavior more strongly associated with the non-stiff 2-wave relaxation

system.

This transition is very obvious in the case β = 0. As β increases, the transition

becomes more smooth while retaining the qualitative behavior. Hence the parame-

ters γ and β may be said to play separate roles in determining the transition between

the homogeneous and equilibrium dynamics. Through (3.44), the parameter γ iden-

tifies the location of the transition point. The parameter β may be interpreted as a

regularization parameter, determining the degree of smoothness of the transition.

Figure 2 shows the wave velocities (3.16) and amplifications (3.8) for the example

model, using λR = 1.0 and different values for β = λE . The cases considered in

Figure 2 all belong to the non-degenerate case. The figure demonstrates that the

wave-dynamics approaches that of the degenerate case when β becomes small, and

that the transition becomes gradually more smooth with increasing β.

Städtke [17] observed a qualitatively similar behavior as that shown in Figure 2

in his analysis of a 5× 5 model for two-phase flow.
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(a) β = 0.01
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(b) β = 0.2
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(c) β = 0.5

Fig. 2. Wave velocities (3.16) and amplifications (3.8) for the example model (2.19a)–(2.19b), using
λR = 1 and different β = λE .

3.5. The transitional sub-characteristic condition

We have observed that the wave velocities of the system are dependent on ϕ, making

the wave dynamics dispersive. The exact nature of this dispersion will be investi-

gated in the following:

Lemma 3.6 (Monotonicity). For linear 2 × 2 relaxation systems as described
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in Definition 2.2, the transitional Fourier wave velocities v±(ϕ) will be monotonic

functions of ϕ, with

sgn

(
dv±(ϕ)

dϕ

)
=


±sgn(β) sgn(γ − β2) if β 6= 0,

0 if ϕ < ϕ̂ and β = 0,

∓1 if ϕ > ϕ̂ and β = 0.

(3.47)

Proof. Using (3.16) we can write

dv±(ϕ)

dϕ
= ± sgn(β)

2
√

2

1

ϕ2

(
J − 1 + 4ϕ2γ

)−1/2 [
1− (1− 4ϕ2γ) + 8ϕ2β2

((1− 4ϕ2γ)2 + 16ϕ2β2)
1/2

]
.

(3.48)

The absolute value of the second term in the brackets of (3.48) can be written as∣∣∣∣∣ (1− 4ϕ2γ) + 8ϕ2β2

((1− 4ϕ2γ)2 + 16ϕ2β2)
1/2

∣∣∣∣∣ =

√
1− 64ϕ4β2

(1− 4ϕ2γ)2 + 16ϕ2β2
(γ − β2). (3.49)

The cases γ − β2 = 0 and γ − β2 > 0 then follow directly. The case γ − β2 < 0

follows from the fact that the second term in the brackets of (3.48) will be strictly

negative with absolute value greater than 1. Differentiating (3.15) completes the

proof.

Lemma 3.6 demonstrates that the higher the wave number, the closer the wave

velocities will be to the characteristics of the homogeneous relaxation system. Con-

versely, components with lower wave numbers will have wave velocities closer to the

equilibrium wave-speed and the equilibrium mirror wave-speed. Moreover, since the

wave velocities are monotonic in ϕ = εξ, for a fixed wave number the wave velocities

will also be monotonic in the relaxation time ε.

The monotonicity of the wave velocities, combined with the limiting behavior,

gives us the following bounds:

Proposition 3.7. Consider linear 2× 2 relaxation systems as described in Defini-

tion 2.2. If the sub-characteristic condition is fulfilled, the transitional wave veloci-

ties v±(ϕ) will for all ϕ ∈ 〈0,∞〉 satisfy

µ− ≤ v−(ϕ) ≤ a22 − a12r21 <
1

2
(a11 + a22) < a11 + a12r21 ≤ v+(ϕ) ≤ µ+ (3.50)

if β > 0 and

µ− ≤ v+(ϕ) ≤ a11 + a12r21 <
1

2
(a11 + a22) < a22 − a12r21 ≤ v−(ϕ) ≤ µ+ (3.51)

if β < 0.

Proof. The result follows directly from the limit behavior from Proposition 3.2 and

Proposition 3.3, and the monotonicity from Lemma 3.6.
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As discussed in Section 2.3.1, for 2× 2 systems the sub-characteristic condition

requires that the single characteristic of the local equilibrium approximation is con-

tained within the two characteristics of the homogeneous relaxation system. Since

the wave-dynamics of the relaxation system is dispersive, it has no well defined char-

acteristics. Instead, the wave velocities of the Fourier components of the solution de-

pend on the wave number. In order to generalize the notion of the sub-characteristic

condition to the transitional regime, we emphasize the following result:

Proposition 3.8 (Transitional sub-characteristic condition). Consider lin-

ear 2× 2 relaxation systems as described in Definition 2.2. If the sub-characteristic

condition is fulfilled, the transitional wave velocities v±(ϕ) will satisfy

min
(
v−(ϕ2), v+(ϕ2)

)
≤ v±(ϕ1) ≤ max

(
v−(ϕ2), v+(ϕ2)

)
, (3.52)

for all ϕ1, ϕ2 ∈ 〈0,∞〉 where ϕ1 < ϕ2.

Proof. This result follows directly from the monotonicity properties of Lemma 1

and the definitions (3.15)–(3.16).

Note that in the limit ϕ1 → 0, ϕ2 →∞, the transitional sub-characteristic con-

dition reduces to the classical sub-characteristic condition of Definition 2.3, where

the equilibrium velocity is given by

v∗ = lim
ϕ→0

v+(ϕ). (3.53)

4. Summary

We have investigated the dispersive wave-dynamics of the solutions to 2 × 2 hy-

perbolic relaxation systems. By using linear analysis, we have discussed both the

limiting and transitional behavior of the wave-dynamics.

Particular attention has been given to the transitional regime, where the wave-

dynamics of the relaxation system can be seen as a mix of the dynamics correspond-

ing to the homogeneous relaxation system and that of the local equilibrium system.

The wave velocities of the solution to the general 2×2 relaxation system have been

shown to be functions of ϕ = εξ. This implies that, as far as the wave velocities are

concerned, the zero relaxation limit (ε→ 0) is indistinguishable from the low wave

number limit. Conversely, the limit ε→∞ is indistinguishable from the high wave

number limit.

For any such linear relaxation system, we have identified two parameters β

and γ that characterize the qualitative behavior in the transitional regime ϕ ∈
〈0,∞〉. In particular, these parameters describe a definite transition between the

homogeneous relaxation system and the local equilibrium. Herein, the parameter

γ determines the location of a transition point, whereas β acts as a “mollifying”

parameter for the smoothness of the transition. In the degenerate case β = 0, an

abrupt non-differentiable transition in the wave velocities and amplification occurs

in this critical point.
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The transitional wave velocities have been shown to be monotonic functions of

ϕ. Combined with the limiting behavior, this implies that if the sub-characteristic

condition is fulfilled the wave velocities of the individual Fourier components of the

solution will satisfy a transitional sub-characteristic condition. Moreover, because

of the way ϕ is defined, these results all have a dual interpretation, e.g. the wave

velocities can be seen as monotonic both in ε and ξ.

The results of this paper have general validity for any 2 × 2 linear hyperbolic

system with a stable relaxation matrix of rank 1. Our results are derived by simple

means, yet their main interest lies in the general qualitative insights they provide

into such systems. These insights have to the authors’ knowledge not been given

much attention in the literature.
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