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Abstract

In this note we consider two-fluid models based on the usuatdtations for conservation of
mass, total momentum and total energy. We present sometjadifenseful general relationships
between the interface exchange terms and the evolutioeafifthanical variables. In particular,
we discuss the possibility of obtaining in this framework adal that is both thermodynamically
reversible and possesses real eigenvalues. We formalle phat such a model must include
terms associated with the virtual mass force.

We then address a technical issue regarding the modellingasface transfer terms in the
energy equations. In particular, we demonstrate how thadtation of the non-conservative
products in these equations determine whether the ineedachange terms represent heat or
energy transfer.
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1. Introduction

We are interested in the classical compressible model forthase flow assuming mechani-
cal equilibrium between the phases, and a separate vefisdityor each phase (Bendiksen et al.,
1991; Bestion, 1990; Stewart and Wenfilyd984). With the standard closure assumptions, this
model possesses complex eigenvalues (Stewart and W&nt®84; Toumi, 1996; Toumi and
Kumbaro, 1996). The mathematical and physical implicatiofthis fact have been extensively
discussed during the past decades (Keyfitz et al., 2003,;2@04 1957, 1980; Sever, 2005,
2008; Stewart and Wenditp1984).

In particular, this model is generalilj-posedin the sense that smooth solutions are expected
to be absolutely unstable under perturbations (Sever,)2@viously, this calls into question
the usefulness of these equations for modelling and simuala® common practice is to intro-
duce regularizing terms to render the eigenvalues reals@terms typically take the form of
interface momentum exchange terms, and may be classifiaimain categories:

¢ interface pressure correction®@estion, 1990; Munkejord and Papin, 2007; Stuhmiller,
1977), involving spatial derivatives in the volume fractio
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e virtual mass force termgBestion, 1990; Lahey, 1991; Stadtke, 2006; Toumi, 19886),
volving spatial derivatives in the velocities.

A very general analysis including both thed®eets was performed by Jones and Prosperetti
(1985). Considering the incompressible limit, the authwese showed that hyperbolicity is
a necessary condition for stability of steady uniform floegen in the presence of algebraic
momentum source terms.

It is known (Saurel et al., 2003), but not widely discussedhia literature, that such dif-
ferential regularizing terms tend to introduce a fundarakmtoblem on the physical level; the
model ceases to satisfy the second law of thermodynamidactnseveral issues regarding the
modelling of interface transfer terms seem to be only inighficliscussed in the recent literature.
The aim of this paper is to clarify some of these issues. mbspect, we provide what seems
to us some explicit original calculations, although theitepve address are highly classical and
our conclusions should not be surprising.

In particular, we aim to shed light on the following two maiej issues:

1. The apparent incompatibility between thermodynamiersbility and wellposedness for
our two-fluid models. Assuming thermal equilibrium, we hprevide a general explicit
condition on the interface momentum exchange term thatdessary and ghicient for
global entropy to be conserved for smooth solutions. Thigdit@n is rather strict and
excludes a large class of models from being simultaneousllyposed and reversible.

2. The interpretation of the interface transfer terms ingthergy balance equations. We argue
that in the standard formulation, these terms should begrated as heat transfer terms
rather than energy transfer terms, and we make this int@atpye mathematically precise.

Our paper is organized as follows. In Section 2, we deschibayeneral framework for the
two-fluid models we will consider. In Section 3, we derive &tienship between interphasic
heat transfer and the evolution of the pressure and voluantidn. In Section 4, we present a
similar result for the momentum exchange term. A main resuiur paper is the equation (24),
which gives a simple general relationship between heat amdentum transfer in our two-fluid
models.

In Section 5, we apply these results by considering the apease of thermal equilibrium
between the phases. In particular, we are able to derivesthergl, and rather restrictive, explicit
condition (36) that must be satisfied by the momentum exaltarg in order for the model to be
thermodynamically reversible. This result allows us toverthat such a model can be well-posed
with real eigenvalues only if this term includes spatialigives in the velocities. The purpose
of this analysis is not to advocate the use of such a modékrahe main insight gained is that
models in our framework thato notsatisfy this condition are unquestionably fundamentally
unphysical.

In Section 6, we discuss the interpretation of the interfmaasfer terms in the standard
formulation of the energy equations. In particular, we evtwo mathematically equivalent
formulations of the energy equations; in one formulatibe,right-hand side terms will represent
heat transferin the alternative formulation, these terms will represaternal energytransfer.
The relationship between these two kinds of source termsaidenexplicit, and gives us an
expression for the amount of heat transferred that will beveded to mechanical work.

Finally, in Section 7, the results of this paper are sumnedlriz



2. The Two-Fluid M odel

We consider here the highly classical two-fluid model présgfor instance by Stewart and
Wendrdf (1984), based on fundamental conservation principlessifgplicity, we will limit our
discussion to the formulation in one space dimension.

Physically, it is commonly recognized that such a formolatis most sensibly interpreted
as amaveragingof a local description of separate flow fields (Ishii, 197%v&irt and Wendid,
1984). In (Ishii, 1975) the focus is on time averaging, budtish and ensemble averaging are
alternative viable approaches (Drew and Passman, 1999a8tand Wendrfi, 1984). In this
framework, we focus on the model derived from the followirgis assumptions of conservation
of masses, momentum and total energy:

Al: Mass is conserved for each phase:

0 0

0 0

3 (peag) + I (peaeve) = 0. (2
A2: Total momentum is conserved in the form:

0 0
p (pgozgvg + pgang) + o (pgozgvé + pgagvg + p) =0. 3)

A3: Total energy is conserved in the form:
ﬁt (Eg + Eg) + % ((Eg + agP)Vg + (E¢ + C&'(p)Vg) =0. (4)
0 0

Herein, external and dissipative forces have been negleatel we have assumed the following
notation for the phaske€ {g, ¢}:

ok - density,

Vk - Velocity,

ax - Vvolume fraction,

Ex - energy,

p - pressure common to both phases.

Here the volume fractions satisfy
ag+ar=1, (5)

and the phasic energies are given by

Ex = Pkak (BK + %Vﬁ) , (6)

wheree is the specific internal energy.

Within the context of averaging, (1)—(2) can be taken as #faition of the velocities.
That these velocities appear in unmodified form also for tlenentum and energy equations
(3) and (4) is here an assumption, although common, thatiislyizased on the desire to avoid
excessive complexities in the model (Stewart and Welidi®84). In this respect, we remark
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that alternative formulations of (3) and (4) may, and pesghsiould, be considered (Song and
Ishii, 2001; Stewart and Wendip1984).

For the thermodynamic closure, we assume that each phasdenaguipped with a free
energyGk(p, Tk), and that the fundamental thermodynamigetiential

dex = Tkdsc+ = dpi ©
Pk

is valid. Herein,Tx ands, are the temperatures and specific entropies of the phassisoutd

be noted that (7) is in itself a rather strong assumptionemithat the entropies, energies and

densities are to be interpreted in averagedsense, relating them through a unique equation of

state is a simplification motivated mainly by conveniende\i@art and Wendif®, 1984).

2.1. Well-posedness and reversibility

In addition to these basic conservation principles, we weamtmodel to satisfy the second
law of thermodynamics. In particular, we here insist tha thodel should be purely fluid-
mechanical, i. e. thermodynamicatversiblefor smooth solutions.

In particular, we assume that some model is given that islio@ally defined, including
a complete set of constitutive relations. Then revergybdhould hold whenever this model is
applied to a physical region with no exchange of mass, enerdyeat with the surroundings.
Mathematically, we represent such a region as a closed fospace (periodic boundary condi-
tions), and we exclude any terms representing interactidgthsthe environment.

Given these considerations, we impose the following reguént:

A4: Global entropy is conserved for smooth solutions:

d
o é(pga/gsg + pearS) dx = 0, (8)
R
where the integral is taken over over arlgsedregionR, i.e. we have
R = [x1, X2),
with periodic boundary conditions.

We also want our model to be globally linearizable, and tHearty of information propagation
should be finite:

A5: The model can be written in quasilinear form

ou oU
oAU =0, ©

whereU is the vector of evolved variables a#qU) is a smooth function.
Finally, the initial value problem should be well posed:
A6: All eigenvalues ofA(U) are real for allJ in some physically relevant domaib.

Additional relations are needed to close the model. Althoagnultitude of such closures
have so far been proposed in the literature, we are not aviameydull model that satisfies all
conditions A1-A6 in any general sense.

In this paper, we will derive a potentially useful condititbrat such a model must satisfy. We
first derive some basic mathematical relationships.
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3. Entropy Exchange Terms

With no loss of generality, we may write entropy evolutioruations for each phase in the
form

0 0
at (okaKs) + ax (oK SVK) = ok, (10)

where the local entropy modification tern is so far unknown. However, we may state the
following general result.

Proposition 1. If the mass conservation assumption Al holds, then in theexbof (10) we

have
o (9P |\, 9P ;G (o D
Tk(Tk (5'[ + Vk 5X) T ((9t + (a'ka)) (11)
where 5
2 p
=|— 12
% (apk)a< ( )
represents the phasic sound velocity and
1 ap)
=— (= 13
Tk (3Sk o 13)

is the Griineisen cggcient.

Proof. By assumption A1 we obtain

3 0 0
(o —pkak( ot + Vi (9X) (14)
and 0 0 0 0
Ok Ok ak
a’k( o0 Ve ax) Pk( e (Olka))- (15)
The result then follows from the filerential
1
Tedsc = — (dp - c2dpy). 1
<ds = 5 (dp- ¢ dpy) (16)
O

3.1. Relation to Internal Energy

Through the fundamentalfiierential (7), this can be recast in terms of internal enevgy e
lution as follows:

_ok(0p 0P\ (A (o 9
(Pka’ka<)+ @kak@vk) Fk( a0 TV 6x)+( r. P& "3 (aka) (17)
where we have used Al:
0 0
—(.Okakek) (.OkakaNk) ,Oka'k( ;k +Vka_?(()- (18)
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4. Momentum Exchange Terms

With no loss of generality, the momentum conservation agsiom A2 can be rewritten as

0 0 0
6t (Pgagvg) * o (Pgag"z) + “ga—p +M=0, (19)
0
(pga'[V() + (p[(l'(Vz) + C&'[ap -M=0, (20)

where the interface momentum exchange taris determined from the closure relations. Using
assumption A1, we can then derive kinetic energy evolut@qragions:

a (1 a (1 ap

e (Epgag\’é) * X (Epgagvg) = Vg (M + C’g&), (21)
0 (1 0 (1 0
at (zp[(lfvz) (Zp[a,;v3) Ve (M - Cl’[a—)p() . (22)

We then obtain the following potentially useful propositio

Proposition 2. If the assumptions A1-A3 and thgfdrential (7) hold, the momentum exchange
term M satisfies

ng2 peC; | Oag ng2 prfa 0
(Vg - V[)M [r‘_g - _] ot ¥ r ax(ag Q) —&(Q[V{’)
+(@+%)5_p+(%_vg+af_W)@,
Iy ot Iy X
(23)
Proof. Add (21) and (22) to (17) and compare with (4). O

Note the general validity of (23), which at first sight mayH#dike a definitionof M. How-
ever, on the contrary, this equation merely provides us infibrmation about how the interface
momentum termfdects the evolution of the pressure and volume fraction.

In particular, we have the following simple relation:

TgO’g + T(O'g = (Vg - V() M, (24)

which follows from (11) and (23). From this we immediateledbat if entropy is conserved
along the flow in each phase, i. e.
ok =0, (25)

then our only choice oM that conserves total energy is
M=0, (26)

which is the standard non-hyperbolic model (Stewart anddiet) 1984) for which real-valued
eigenvalues occur only fofy = v,. This indicates a fundamental incompatibility betweenlwel
posedness and reversibility for models satisfying theragsions A1-A3. We will now investi-
gate this issue further by relaxing the requirementdhat 0.
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5. Thermal Equilibrium

For simplicity, we now limit ourselves to the special casattthe phases are in thermal
equilibrium, i. e.
T=Ty=T,. (27)

This simplification is justified by the fact that any vatigneralmodel must also be valid for the
equilibrium states (27). Furthermore, the equilibriumdition (27) may also be imposed as a
closure relation for the model, as was done for instance bfiNgz Ferrer et al. (2012).

We now introduce the local total entropy variatiSn

S=o0g4+0y, (28)
so that the relation (24) simplifies to
TS = (vg — VoM. (29)

We may then write the reversibility condition A4 as:

d 0
— 9§(pgagsg + peaeSe) dX = 9§ S-— (pgagsgvg +p[(l’[S(Vg) dx = 9§de =0, (30)
dt R R oX R

for any distributionU(x) on the closed regioR. Hence ifS is a function ofU, it becomes an
algebraic entropy source term, and (30) can only be gegevatiisfied if

S(U) = 0. (31)
However, our condition A5 allows to be a function of the spatial derivative Of
_ _ Y gwyY
§=80:0) = 2B G (32)

and the condition (30) may still be non-trivially satisfieow, the classicafjradient theorem
states that a line integral over an arbitrary closed pathviector field is identically zero if and
only if the integrand is a gradient of some potential functivVe now recall that the condition
A4 states that reversibility must hold fatl smooth solutions; hence the entropy integral (30)
must be zero foanyspatial distributiorJ(x).

We may consequently apply the gradient theorem to the sgqdgysically admissible states
D to which U belongs, i. e. we consider arbitrary curvesfZinparametrized by the variable
X € [X1, X2) = R, representing the possible initial conditiddéx). By this, the condition that (30)
must hold foranydistributionU(x) implies the existence of a potential functiéflJ) such that

SESdX=56VuZ(U)'QdX=0- (33)
R R 0X
HenceS dx must be arexactdifferential, i. e. we have
0z

BI - a_lJi, (34)

and in particular
0
= —Z(V).
S X V) (35)

In other words,S can be interpreted as amtropy flux This gives us a main result of this paper.
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Proposition 3. Consider a subdomaify of the admissible thermal equilibrium states. Consider
a two-fluid model satisfying the assumptions A1-A3, A5 aaduhdamental dgierential (7) for

all U € D. Then, for allU € D, the reversibility condition A4 is satisfied if and only ietk
exists a functioW(U) such that the interface momentum exchange term can bemaigte

oW 0
M=T(vg— V{)W + 2WTE((Vg - V) (36)
forallU € D.

Proof. With no loss of generality, we may writ¢as
Z(U) = W(U)(vg - V¢)?, (37)

whereW(U) is some function. Now substituting (37) in (29) and caringliterms, we obtain
(36). O

This result opens for the possibility that some appropifg(e)) may be found, making the
reversible model at least conditionally hyperbolic. Thigegtion will not be pursued in the
current paper.

However, we may use (36) as a convenient tool for testingtbeodynamic consistency of
various established models. In particular, we have thevotig proposition.

Proposition 4. Any model satisfying the assumptions A1-A5 wbith= 0 must involve terms of
the formoayvi in M.

Proof. If this does not hold, it follows from (36) tha¥/(U) would have to satisfy

oW
— +2W=
Vs v + o, (38)
where
Vs = Vg — V. (39)

Now (38) can be integrated to yield
W(U) = C\;2, (40)

whereC is independent ofs. By substituting this result into (37), it follows thA{U), and hence
S, must be independent of. However, it follows from (29) and the smoothnessMfthatS
must disappear when = 0. Hence we must hav® = 0, giving M = 0. O

We remark thaiM = 0 corresponds to the standard non-hyperbolic formulatidimeomodel,
violating the condition A6 for all’s # 0. Hence Proposition 4 may be restated as follows:

Any model satisfying the assumptions A1-A6 in any genemaksmust involve spatial deriva-
tives of the velocities in the momentum exchange.t®nysically, such velocity derivatives are
most naturally interpreted as being associated witlvitteal mass forcdJones and Prosperetti,
1985; Lahey, 1991).

In particular, this result immediately rules out all modeésed solely on interface pressure
corrections in the framework A1-A3 (Bestion, 1990; MaenFerrer et al., 2012; Stuhmiller,
1977). We remark that hydrostatic pressure correctionsd t8 simulate surface waves and
regime transitions (De Henau and Raithby, 1995; Holmé&s.e2@08), typically operate with
separate pressures in each phase and hence do not fit intaumaork A2.
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We emphasize that the converse of Proposition 4 does nosserily hold. The standard for-
mulations of the virtual mass force terms do not in genet#gfyg(36) — and hence the resulting
model is not thermodynamically reversible.

It should also be noted that the standard formulations of/ttieal mass force (Jones and
Prosperetti, 1985; Lahey, 1991) involve not only spatiak &lso temporal, derivatives of the
velocities. However, our current framework applies alsthis case; the temporal derivatives
can always be equivalently reformulated in terms of spdiaivatives through a mathematical
transformation. This point will be demonstrated in the remdtion, where such a transformation
is performed on the energy equations.

6. Energy Transfer Terms

We now turn our attention to the modelling of interface egemgchange terms. With no loss
of generality, we may write the assumption A3 in the standiamath (Martinez Ferrer et al., 2012;
Munkejord et al., 2009; Paillere et al., 2003; Stewart arehtdt, 1984):

9Ey & dag

Zt tox (Va(Eg + agp)) + P +Q=0 (41)
OE, 0 Oay _

a5t " ax (Ve(Ee + a¢p)) + P2~ Q=0. (42)

Herein, the interpretation of the interface exchange t€radeserves some attention. Given that
(41)-(42) balances total energy, one may be tempted tqoirete® as representing the amount
of energybeing transferred between the phases. However, the pesétite termpdie com-
plicates this picture somewhat. In fact, in the form (412}(4he equations are not evolution
equations for the energies; strictly speaking, they ardutiom equations for the fierentiald J
given by

dX = dEg + pdak. (43)

In other words, the source ter@will modify the volume fractions as well as the energies afrea
phase. This means, in the context of (41)—(42), it makes mense to interprep asheat and
kinetic energytransfer terms rather thanergy transfeterms. In the following, we will make
this notion more precise, and present an alternative fation of the energy balance equations
where the source terms are truly energy transfer terms.

This may be considered an advantage from a purely heuristit pf view, although the
resulting formulation is more involved than (41)—(42). Meheless, this alternative formula-
tion has previously proven fruitful in devising numericehemes (Martinez Ferrer et al., 2012;
Munkejord et al., 2009).

In this respect, the main purpose of this section is to makedhowing point: the mod-
elling of the interface energy exchange terms is sensitivihé choice of formulation of the
non-conservative terms representing mechanical workan@hd between the phases

6.1. Internal and Kinetic Energy

Using assumption Al and the fundamentdiatiential (7), we may rewrite the entropy equa-
tions (10) as follows:

? ? da, 0 B
at (Pkake) + X (okaK&VK) + D(E + a_x(a’ka)) = Tyok. (44)
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Now adding (21)—(22) to (44) and comparing to (41)—(42), Wwamn
Q = MVQ - TgO’g = Mvy + T,oy. (45)

In other words,Q represents the sum of the interface heat transfer and &iapérgy transfer
terms, as may be expected; the mechanical work the phadespen each other is encoded in
the termpd:ax.

6.2. Energy Evolution Equations

As was done in (Martinez Ferrer et al., 2012; Munkejord £t24109), we now aim to refor-
mulate (41)-(42) to replace th@:a-term with spatial derivatives. We may rewrite (11) as an
evolution equation for the volume fraction:

Jag 0 0
B—— at + pgagcz (ozgvg) - pgagcf,g( (aevy) + gy (Vg - V() a—s = a/lgTgog—agl'(Teov, (46)
where
B= Pga’{fcé + P(’a’gcg- (47)
Substituting (46) into (41)—(42) we obtain
(9Eg 6 op 0

=n (agl"ngO'g - agl"ng(J'g) -Q, (48)

JE, 0 ap
3 + — (E[V{) + (a/[V[ + nagae (Vg - V{)) Ix + r]pgapcz (a/gvg + apr)
=Q-7g (CZQF[T[O'[ - angTg(Tg) , (49
where D
n=-. (50)
B
6.2.1. Interpretation of Source Terms
To recapitulate, we may now write the energy equations itvtleeequivalent forms:
e Standard formulation:
0By 0
ot F 6_ (Vg(Eg +ag p)) + p— = Hg = Mvg, (51)
(3Eg
s (W(Ef +arp)) + p = He + Mv,. (52)
e Formulation with spatial derivatives:
0Eg 0 ap 0
- * (Eqvg) + (Vg — nagar (Vg — ) " npgagc(?a—x (rgVg + arve) = Eg — Mg,
(53)
0E, 0 ap 50
it ax (E(V{) + (a/ng + nagay (vg - V()) o F Upg(l'(cg X (agvg + C&'(V{) =&+ /\/:Vg.)
54
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Herein:
o My arekinetic energytransfer terms;
o Hy = Tyok areheattransfer terms;
o & areinternal energytransfer terms.

We observe that the following relations hold between the Aed energy transfer terms:

(Sg = 7‘(g -n ((Igrgﬂg - agl"g?{g) . (56)
In particular, the term
(W =n (agF{Hp - ang(Hg) (57)

represents the mechanical work the phases perform on ehehax a result of energy being
transferred.

7. Summary

We have addressed some technical issues regarding thelimpdéinterface transfer terms
in a class of two-fluid models commonly studied in the litarat In particular, we have discussed
the compatibility between thermodynamic reversibilitydamell-posedness in two-fluid models
based on simple formulations for conservation of massesiggrand momentum. We have
derived an explicit condition on the interface momentumhaxge term for these models to be
reversible. In particular, this condition states that angtswell-posed, reversible model must
include virtual mass force terms; more precisely, the mdomarexchange term must include
spatial derivatives in the velocities.

Furthermore, we have showed that in the standard formulatidghe energy balance equa-
tions, interface exchange terms play the role of heat teartefms. We have discussed an alter-
native formulation where the interface terms transfer gneéie have also provided an explicit
relationship between the amount of heat transferred anméwhanical work exchanged between
the phases.
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