A HIERARCHY OF RELAXATION MODELS FOR TWO-PHASE FLOW

HALVOR LUND*

Abstract. A hierarchy of relaxation two-phase flow models is considered, formulated as hyperbolic relaxation
systems with source terms. The relaxation terms cause volume, heat and mass transfer due to differences in pressure,
temperature and chemical potential, respectively, between the two phases.

The subcharacteristic condition is a concept closely related to the stability of such relaxation systems. It
states that the wave speeds of an equilibrium system never can exceed the speeds of the corresponding relaxation
system. The work of Flitten and Lund [Math. Mod. and Meth. in Appl. Sciences, 21(12), 2011, pp. 2379-2407]
is extended, with analytical expressions for the wave velocities in each model in the mentioned hierarchy. The
subcharacteristic condition is explicitly shown to be satisfied using sums of squares, subject only to physically
fundamental assumptions.
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1. Introduction. Two-phase flow is found in many industrial applications, such as nuclear
reactors [6], heat exchangers, petroleum production [4] and carbon dioxide capture, transport and
storage (CCS) [5]. Modelling such flow for use in simulations is a challenging task due to the
complex nature of the interactions between the two phases, such as the movement and shape of
the interface, and heat and mass transfer across it. In cases where the precise shape of the interface
is of less importance or too computationally expensive to calculate, one may apply averaging (see
e.g. Ishii and Hibiki [13]) of the quantities of the two-phase fluid over a certain area or volume.
These averaged models can often be formulated as hyperbolic relaxation systems with source terms
accounting for the phase interactions, in the form

oU oU 1
(1.1) S TAU) S+ -RU) =0,

where U € R"™ is the vector of unknowns, and ¢ is a characteristic time for the relaxation process
described by R(U). The hyperbolicity requires that the n x n matrix A(U) is diagonalizable
with real eigenvalues. Such relaxation systems have been analysed by Chen et al. [7], Liu [18] and
Yong [29]. For a further review of the literature on such systems, see e.g. Natalini [21].

We now assume that there exists a constant k x n matrix P associated with R which has the
property that

(1.2) PR(U) = 0.

By multiplying Eq. (1.1) with P on the left, we get an equation system for the reduced variables
u = PU,

ou ou
1. — +PAU)— =0.
(1.3) 5 T PAU) 5
We now make the assumption that w determines an equilibrium value U = &(u) such that
R(&(u)) =0 and
(1.4) PE(u) = u.

We finally assume wu to be sufficiently smooth, so that we may formulate a quasi-linear equilibrium
system as

(1.5) %—?—kB(u)Z—Z =0,
(1.6) U=¢E(u),

where B(u) = PA(E(u))0,E(u). As the relaxation time ¢ of the relaxation system (1.1) goes to
zero, we expect the solutions to approach the solutions of the equilibrium system (1.5).
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1.1. The subcharacteristic condition. The subcharacteristic condition is a concept which
has proven to be closely related to the stability of relaxation systems. This was first mentioned by
Whitham [28] for the linear case, and later developed for 2 x 2 non-linear systems by Liu [18]. A
similar condition was also discussed by Leray [17]. For more general systems, Yong [29] introduced
a relazation criterion, which imposes a certain stability requirement on the (linearized) relaxation
system and requires that the relaxation term R(U) be nonoscillatory, and showed that for k = n—1
this criterion leads to a) convergence of the solution in the limit € — 0, and b) the subcharacteristic
condition being fulfilled.

The subcharacteristic condition has also proven to be an important trait of many physically
revelant models. For this reason, the literature on relaxation systems puts a strong emphasis on
this condition, see e.g. Baudin [2, 3] and Flatten [11].

In the context of our relaxation system (1.1) and the corresponding equilibrium system (1.5),
the subcharacteristic condition can be defined as follows.

DEFINITION 1. Let the eigenvalues of the matriz A(U) of the relazation system (1.1) be given

by

(1.7) A< <A <A <00AL

Similarly, let the eigenvalues of the matriz B(u) of the equilibrium system (1.5) be given by
(1.8) A< << < e

Also let the equilibrium system’s eigenvalues \; be interlaced with the relazation system’s eigen-
values, in the sense that \; € [A;, Ai1n—). Here, the relaxation eigenvalues A; are evaluated in
an equilibrium state such that

(1.9) Ai = AZ((‘:(’UJ)), )\z = )\Z(’U,)

Then the equilibrium system (1.5) is said to satisfy the subcharacteristic condition with respect to
the relazation system (1.1).

Chen et al. [7] proved that the subcharacteristic condition is satisfied if there exists a convex
entropy function for the relaxation system (1.1), and that this entropy is locally dissipated by the
relaxation term R.

1.2. The model hierarchy. In a completely general (averaged) two-phase flow model, one
may imagine that the two phases have separate pressures py, temperatures T}, chemical potentials
ur' and velocities vy, where k is the phase index. The system can then be moved towards equi-
librium by employing relazation source terms, causing volume transfer due to pressure differences,
heat transfer due to temperature differences, mass transfer due to chemical potential differences,
and momentum transfer due to velocity differences between the two phases.

In our paper, we consider only homogeneous flow models, i.e. models where the phase velocities
are equal. Discussion of models with different velocities, typically called two-fluid models, may be
found in Refs. [1, 9, 22, 30]. We are then left with three relaxation processes, namely relaxation of
pressure, temperature and chemical potential. By considering either the equilibrium (stiff) limit
or the non-equilibrium (non-stiff) limit of these three processes, we get a hierarchy of models with
different equilibrium assumptions.

Figure 1.1 illustrates this hierarchy, where circles symbolise models and arrows denote how
the models are related through equilibrium assumptions on individual variables. Each arrow
corresponds to a subcharacteristic condition for the wave speeds of the two models which the
arrow connects. To the far left in this figure, we find the basic model, denoted 0, and to the
far right, we find the homogeneous equilibrium model (pT), in which the two phases are in full
equilibrium. The full hierarchy is based on the work by Flatten and Lund [10], who developed
the basis (the basic model) for the hierarchy, along with the p, pT', pu and pTp-models, shown

INot to be confused with dynamic viscosity.
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with dashed lines in Fig. 1.1. In the present work, we complete the hierarchy with the T', x4 and
T p-models, and the seven related subcharacteristic conditions, shown with solid lines in Fig. 1.1.

In this paper, we will present each of the models in this hierarchy. In particular, the formulation
of the hyperbolic relaxation systems and the wave velocities (and hence the speed of sound) of
the models will be presented, and we will explicitly show how the subcharacteristic condition is
satisfied for each equilibrium assumption. More specifically, we will show how to relate the mixture
speed of sound a of an equilibrium model X and the corresponding relaxation (non-equilibrium)
model Y by writing

(1.10) ay’ =ay’ + 2%,

where Z% is a positive term expressed using sums of squares. This is shown to be sufficient to
satisfy the subcharacteristic condition of Definition 1.

Stiff relaxation terms will cause dispersion of sound waves, with a speed of sound dependent
on the wave number and the relaxation parameter €. For more discussion regarding sound wave
dispersion in certain models, see e.g. Stédtke [26, Chap. 6] or Jinliang and Tingkuan [14]. We will
focus our analysis on the non-stiff limit and the equilibrium limit, which are without dispersion.
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Figure 1.1: Model hierarchy. Each circle symbolises a two-phase flow model assuming equilibrium
in zero or more of the variables p (pressure), T (temperature) and p (chemical potential). Arrows
represent a relaxation process of one variable, pointing in the direction of equilibrium in that
variable. Solid lines indicate original contributions in the present paper, dashed lines indicate
results presented in Ref. [10].

1.3. Paper outline. In the following, we will in turn present each of the eight different
models shown in Figure 1.1, in Sections 2-9. Three of the models have, to the author’s knowledge,
not been described elsewhere, and thus represent original contributions. The models in question are
the thermal equilibrium, the chemical equilibrium and the thermal-chemical equilibrium models,
described in Sections 4, 5 and 8, respectively. The remaining models are the ones developed by
Flatten and Lund [10], which are all briefly included here for completeness. For each model, we aim
towards an explicit expression of the mixture speed of sound, and prove that the subcharacteristic
condition of Definition 1 is satisfied by relating speeds of sound in the different models using sums
of squares.

In Section 10, we show plots of the mixture speeds of sound in the models of the hierarchy as
functions of gas volume fraction, for relevant cases for water and carbon dioxide. Finally, Section
11 draws some conclusions and outlines possible further work.

2. Basic model. In this section, we present the basic one-dimensional two-phase flow model,
in which we let the two phases have separate pressures, temperatures and chemical potentials, while
the velocity v is equal in the two phases. Heat, mass and volume transfer between the phases are



4 H. LUND

modelled using relaxation source terms. The model was proposed in this form by Flatten and
Lund [10], and forms the basis from which we can derive the other models in the hierarchy.

2.1. Mass balance. In general, we have one mass balance equation for each phase, which
may be written as [10]

I(agpg) | O(agpgv)
2.1 S B8 — K(pe —
( ) 8t + ax (/“‘Lf :Ug)y
d(aupe) | O(aupeo)
2.2 =K —
( ) at + ax (:ug /’Lz)a
where we use the following notation:
Qg volume fraction of phase k
Dk density of phase k
v fluid velocity

i chemical potential of phase k
K >0 chemical potential relaxation parameter
Here the chemical potential relaxation source term ensures that mass flows from high to low
chemical potential, if we only assume that K > 0. Mass transfer modelled using such a relaxation
term can be found in the works of e.g. Saurel et al. [23] and Stewart and Wendroff [25]. Adding
the two equations (2.1)—(2.2) yields the conservation equation for total mass,

dp  O(pv)
2.3 — =0.
(2:3) ot + Oz
Here, the mixture density p is given by
(2.4) p = Qgpg + Qupe.

2.2. Volume advection. We assume that volume transfer, in Lagrangian coordinates, can
only be caused by differences in pressure, which is a common assumption also found e.g. in models
by Baer and Nunziato [1] and Saurel et al. [22],

(25) Dtag = j(pg _pf)a

where we have introduced the material derivative, defined by

0 0
2. D= — —
(2.6) TR
and the notation
Dk pressure of phase k

J >0 pressure relaxation parameter
Here, we note that the pressure relaxation causes volume to be transferred to the phase with
highest pressure, i.e. the expanding phase has the highest pressure. The only assumption made is
that the relaxation parameter is non-negative, J > 0.

2.3. Momentum conservation. Since the basic model is defined as a homogeneous flow
model, with equal velocity v for the two phases, the momentum conservation may be formulated
as a conservation equation for the total momentum,

d(pv) n 9(pv® + agpg + cupr)

ot oz =0

(2.7)
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2.4. Energy equations. We assume that each relaxation process should conserve energy
and that in Lagrangian coordinates, only the relaxation terms contribute to entropy changes.
This allows us to derive energy equations for each phase, which may be written as [10]

0E; O(vEy) Oov v O(agpg + aupe)
2. —t g 27 4 2, I\ Telg T TUPE)
(28) ot + or + gPg or + pmg ox

1
=T~ 1) 457 T =)+ (4 50°) K = )

0E, O(vEy) Ov v O(ogpg + upe)
2.9) ¢ U | Vg D%l T UPL)
(29) ot * ox +aepe Ox + pmz ox

1
= H(Tg — TE) +p*\7(pg - pe) + (,U,* + 2U2> ’C(Mg — /Lz),

where p* and p* are the pressure and chemical potential, respectively, at the gas-liquid interface.
The detailed derivation can be found in Ref. [10]. For brevity, we have also introduced my = aypg,
the mass per volume of phase k. The total energy in each phase, Fy, is given by

1
(2.10) Ey = agpr(er + 51)2).
The temperature relaxation parameter is denoted H > 0, and the corresponding heat source term
H(T; — T) causes heat to flow from the hot to the cold phase.

2.5. Entropy evolution. When deriving the wave velocities of the present model and other
models in the hierarchy, it is often useful to formulate the model using entropy evolution equations
instead of the energy equations (2.8)—(2.9). These can be formulated as [10]

W — g K HTe—T;, p*—pg

2.11 D = _ = _ i .

( ) t% ( T, Sg> Mg (e = ptg) + mg Ty * mgTy J (pe = pe),
u*—uz K HTg—Tg p*—pg

2.12 D = —1= _ - _ i _

( ) e5e ( Tz S@) my (,U'g MZ) + my Te + szg j(pg pé)’

where si is the entropy density of phase k. These equations may also be formulated in a balance
form,

213) 7, (2% 3 20} i, - 1) 0 = 0T = )+ (0 = K ),

O(myse)  O(myesev)
ot Ox

(2.14) T, < ) =H(Ty — To) + (" — pe) T (pg — pe) + (1" — ) K(pg — pe).-

The latter equations may be derived by using the entropy equations (2.11)—(2.12), the mass balance
equations (2.1)—(2.2) and the volume fraction equation (2.5).

2.6. The laws of thermodynamics. An important point made by Flatten and Lund [10]
is that this basic model satisfies the first and second law of thermodynamics, which is a sensible
requirement to have on any two-phase flow model. By adding the two energy equations (2.8)—(2.9),
we get

O(Eg + Er) | Ol(Ey+ Ee + agpy + aepe)v]

(2.15) o o

207
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thus the total energy is conserved, and the model fulfils the first law. The second law, expressing
that entropy should be non-decreasing, is also satisfied, only requiring that

(2.16) >0,

(2.17) J >0,

(2.18) K >0,

(2.19) min(pg, pe) < p* < max(pg,pe),
(2.20) min(pg, pre) < p* < max(pig, pig)-
The full proof can be found in Ref. [10].

2.7. Wave velocities. In the non-stiff limit K, 7,H — 0, the wave velocities of the basic
model Egs. (2.1)—(2.2),(2.5)—(2.7),(2.11)—(2.12) can be found to be [10]

(2.21) Ao = {v — ag,v,v,v,v,v+ ap},
where a¢ is the mixture speed of sound of the basic model, given by
mgcé + mgcﬁ
e

i.e. a mass weighted average of the single-phase speeds of sound, which in turn (for phase k) are
defined as

8pk>
2.23 2= =) .
(2.23) * <5Pk sk

(2.22) o =

)

3. Pressure relaxation. In this section, we consider the model that results when we impose
volume transfer equilibrium in the basic model of Section 2. In other words, we let the pressure
relaxation parameter J go to infinity, which we expect to correspond to the assumption

(3.1) Pe=De=p =0,

i.e. mechanical equilibrium between the two phases. The mechanical equilibrium model equations
may be obtained by replacing the pressure relaxation term 7 (pg — p¢) using the volume fraction
equation (2.5), as described in detail by Flatten et al. [11]. The full model equations are not stated
here, but the derivation may be found in Ref. [10]. This five-equation model has been studied by
a number of authors [11, 15, 20, 23, 24, 26], with slightly varying formulations.

3.1. Wave velocities. The wave velocities of the mechanical equilibrium model, in the non-
stiff limit where H,C — 0, are given by [11]

(3.2) Ap ={v—ap,v,v,0,v+ap},

where @, is the mixture speed of sound, given by

(3.3) i’ =p (O‘g + ‘”) .

2 2
pgcg PeCy

This is a classic, well-known expression, also referred to as the Wood speed of sound [24] or Wallis
speed of sound [27].

As shown by Flatten and Lund [10], the mechanical equilibrium model satisfies the subchar-
acteristic condition with respect to the basic model, only requiring p; > 0. This can be shown by
writing the mixture speed of sound as

(3.4) a,* =a," + 2y,
where
- g X
(3.5) 78 = ag? —5" (pgc? — pect)®.

2 2
PgCqPrCy
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4. Temperature relaxation. In this section, we consider the model that results when we
impose heat transfer equilibrium in the basic model of Section 2. In other words, we let the tem-
perature relaxation parameter H go to infinity, which we expect to correspond to the assumption

(4.1) T,=T,=T,

i.e. thermal equilibrium between the two phases. The model equations and wave velocities for
this model have not been found elsewhere, and will thus be derived here.

When we let the temperature relaxation parameter go to infinity, H — oo, the value of
the temperature relaxation term # (7, — T}) is no longer defined. Thus, to derive the equations
describing the current model, we find it necessary to determine an explicit expression for the
temperature relaxation (or heat transfer) term.

To this end, we consider the two following thermodynamic differentials:

r,T T T,
(4.2) dI' = —=—dpy + —dsg = dpg + —ng,
g g D,g peC Cp,t
(4.3) dpr = Cidpk + pilTdsy,

where I';, is the Grineisen coefficient and c, j is the specific heat capacity at constant pressure,
defined by

(4.4) T = & (gi:)

s
(4.5) o = Th < 8T’;>

By using Egs. (2.1)—(2.2), (2.5), (2.11)—(2.12), together with Eqgs. (4.2)—(4.3) expressed with
the material derivative, we may solve for the heat transfer term, which yields

Fg - Fz ov
Tz 1 r 1Oz
m, g(;2 + CpgT + m;c? + CpeT *
I * r? 1 *
e st e T (mgcz tz gT> (" = hg) + (m;cf CMT) (1™ = he)
™ & - K(pe = pg)
mg ('2 + Cp. T + mgc? + CpeT

(46) H(T,—Ty) =

I * r; 1 *
g + =L + (mgc2 + Cp, gT) (p _pg) + (Wﬂ? + Cp,zT) (p _pf)
F2 1 1—3 1 j(p@ - pg)7
mgcg + Cp.gT + mec? + Cp,eT
where
(4.7) Cp.k = OpPLCpk

is the extensive heat capacity at constant pressure. We may now formulate the equations describing
the thermal equilibrium model.

4.1. The thermal equilibrium model. The thermal equilibrium model can now be sum-
marised using the following equations.
e Mass balance:

O(agpg) | O(agpgv)
(4.8) ox + Ox

Ioupe) | O oupev) B

= K:(/’(‘Z - /J/g)?
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e Momentum conservation:

Opv) | O(pv? + agpy + aepe)

4.1
(4.10) ot ox

= ()’
e Volume fraction evolution:

(4.11) Diag = T (pg — pe):
e Energy conservation:
OE N Ol(E + p)v]
ot Ox

These model equations are Eqgs. (2.1)-(2.2), (2.5), (2.7) and (2.15) from the basic model. Herein,
E is the total energy per volume, defined by

(4.12) =0.

1 1
(4.13) E=FE;+ E; = agpgleg + 502) + aype(er + 51)2).

4.2, Wave velocities. We now wish to derive the wave velocities in the non-stiff limit where
the pressure and chemical potential relaxation parameters vanish, 7, K — 0. To this end, we find
it useful to derive the material derivative of the effective pressure peg = azpg + cps,

(4'14) Dipesr = Olthpg + ayDyipe + (pg - pZ)Dtag

We insert for the pressure differentials D;py, from Eq. (4.3), and then rewrite the density differen-
tials Dypy using the product rule on Dymy, yielding

(4.15) Dipest = ¢;Dymg + mglyTDysg + ¢;Dymy + myTTDysy,

where have used that Diog — 0 since J — 0. The terms D;m; may be found by rewriting
the mass balance equations (4.8)—(4.9). We also replace Dysj, from Eqgs. (2.11)—(2.12) and (4.6),
keeping in mind that K, J — 0, and finally get

ov
4.16 D — —pa2 -,
( ) tPeff pPar O
where
2
U r 1 1 1
(4.17) L 1Tecimycy (msgcé + mfc%) T (Cp,g + cp,z) (mgcg + macy)
. Q- = — .
T 14 1 1"2+ 1 1—\2+l 1 + 1
mgcZ " 8 mycZ = L T \Cpe Cot

Using the gas mass balance equation (4.8) and total continuity equation (2.3), we find that
the gas mass fraction Y, = ”;g satisfies

K
(4.18) DYy = ;(W — Hg)-

Thus, in the non-stiff limit 7, — 0, we know from Egs. (2.5) and (4.18) that Y, and o, are
characteristic variables with a corresponding eigenvalue v. The remaining model equations, namely
the total continuity equation (2.3), momentum conservation (4.10) and pressure evolution equation
(4.16) may be formulated as a quasi-linear system,

0 1 0

(4.19) u+ | =02 20 1| u, =u + A(u)u, =0,

—UEL% d2T v

where u = [p, pv, perr]. The eigenvalues of the matrix A(u) are given by {v—ar,v,v+ar}, so the
eigenstructure of the full model is given by
(4.20) AT = {1} —dT,U,U,U,U+dT},

where the mixture speed of sound is ar, given by Eq. (4.17).
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4.2.1. The subcharacteristic condition with respect to the basic model. From Egs. (2.22)

and (4.17), we find that the mixture speed of sound of the thermal equilibrium model can be writ-
ten as

(4.21) apt=ag?+ 29,
where

1 (F —P4)2
4.22 Z0 = = 5

5 .
2 2 g Iy 1 _ 4 1 ) 552
T CyMgCy (mscg + mec%) + (CPYZT + CP»ET) Pap

PROPOSITION 1. The thermal equilibrium model given by Eqs. (4.8)—(4.12) satisfies the sub-
characteristic condition with respect to the basic model of Section 2, subject only to the physically
fundamental conditions

pr >0,
Cpk > 0,
T >0.

Proof. By Egs. (2.21) and (4.20), we see that the interlacing condition in Definition 1 reduces
to the requirement that

(4.23) ag > ar,

which follows from Eqgs. (4.21)—(4.22) and the given conditions for py, ¢, and T'. O

5. Chemical potential relaxation. In this section, we investigate the model that arises
when we impose mass transfer equilibrium in the basic model of Section 2. In other words, the
phase transition between liquid and gas will be infinitely fast. This is equivalent to letting the
chemical potential relaxation parameter X go to infinity, which we expect to correspond to the
assumption

(5.1) g = fte = p=p",
i.e. equal chemical potentials and chemical equilibrium. The model equations and wave velocities
for this model have not been found elsewhere, and will thus be derived here.

5.1. Mass fraction evolution equations. In the limit X — oo, the chemical potentials
in the two phases are equal, y; = p¢, hence the value of the mass relaxation term K(ug — pr) is
undefined. To find an expression for this quantity, we find it necessary to derive some differentials.
Since the chemical potentials are equal, pe = ¢, so are their differentials, dpg = dpue, which yields

1 1
(5.2) —dpg — 5¢dTy = —dpg — 5,dT.
pe Pg

The temperature and pressure differentials can be written as

I'yTh T;

(5.3) a1y, = L ap, + o dsy,
PkCr Cp.k
(5.4) dpr = C%dpk ~+ prl'Tidsy.

We then insert for the temperature differential (5.3) and then the pressure differential (5.4)
in Eq. (5.2), which yields

(5.5) idﬂf + (M(C? — &) - SIZTZ) ds; = —gdp + (pg(c2 - &) - Sng> ds
pe Se Cp,t Pg & sg 8 B Cog &
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where we have introduced the abbreviation & = ¢ — ;s ). Next, we have use for the differential
of the total density,

(5.6) dp = agdpg + agdpe + (pg — pe)day,

and gas mass fraction differential
Mg 1
(5.7) dYy = —?dp + ;(agdpg + pgdag).

By writing Eqgs. (5.5)—(5.7) using the material derivative, together with the equations for entropy
(2.11)—(2.12), volume fraction (2.5), total continuity (2.3) and gas mass fraction (4.18), we arrive
at the mass fraction evolution equation,

1
€4 &4 s2T, 52T
(g + g + 2+ )
v G- &lg—&) s s
9 .o e — & g\% ~ Sg §
. B dv _ - + — + = |H(T, - T,
|:(§g ff)ax + ( m¢C%SlT£ mgcgngg Cp,f * Cp,g ( ! g)

2(¢2 _ 2 _ 2
+<pg( Sg +§g(§g2 g)>_|_p>g<$€_|_€lg(§t?C%>_£g_ﬁlg)j(p[_pg)}7

2
Chpe MmgCysgTy Cpe mecyseTy ag oy

(5.8) DY, =

where we have introduced an interface-bulk pressure difference p; = p* — p.

5.2. The chemical equilibrium model. The chemical equilibrium model may now be
formulated using the following equations.
e Mass conservation:

dp  O(pv) _
(5.9) ot "o O

e Momentum conservation:

d(pv) n 9(pv® + agpg + oepr)

5.10 =0
( ) ot Oz ’
e Volume fraction evolution:
(5.11) Diog = T (pg — pe),
e Energy equations:
(5.12) aEg + 8(UEg) + Em Opest _ (fg - gz?) (,U + %UQ) o @
’ ot Ox p & Ox &, & siTe | %Ts gPs | o
mgcg m[cf Cpe Cp,g
ree? Ige2 , s 1.2
JCEE SR ran ) ey |
- 5;1 62} S%Tg séTg + ( L= g)
mgcé mgcf + Cpﬁg Cp)g
re2 s . T€2 . & g 1.2
(o + o) mi (o + ) vi — 22— &) (w+ 307)

+p" | T(pe —pg)s
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0E, OWwE) v 8 52—52 p+ 30? o
(513) 2B, (vEy) Y, 2Pt ( ¢ ) ( )2 o |
ot ox p ox TR S s Ts 4 5T ox
mgc? 2 C Cp.,
_Fgfz _ sz? s se 1,2
_ ( msc% mécf + :s CM) (M+ 2" ) + 1| H(Ty —Ty)
- & 52T s2Ty g ¢
mgcl% mg c2 m Cp.,
V133 * 3 s «_ & &
(- + & )pﬁ(—nfc% s )pp - £ ) (e be?)
+ 54 s Tg S%T[ +p j(pg _pZ)
mgcf + mg c2 + C Cp,,

Herein, the continuity, momentum conservation and volume fraction equations are the ones known
from the basic model, Egs. (2.3), (2.5) and (2.7), while the energy equations (5.12)—(5.13) are
derived by inserting for the chemical potential relaxation term (¢ — 1) in Egs. (2.8)—(2.9) using
Egs. (5.8) and (4.18).

5.3. Wave velocities. We wish to calculate the wave velocities, and hence the mixture speed
of sound, of the chemical equilibrium model (5.9)—-(5.13) in the non-stiff limit where #, 7 — 0.
To this end, we find it useful to derive an evolution equation for the effective pressure peg.

The material derivative of the effective pressure peg is given by Eq. (4.14). In this equation,
we replace Dyp, and Dyp, using Eqs. (5.2)—(5.4) and (5.6). We then insert for D;s, and D;s; by
replacing the chemical potential relaxation term in the basic model entropy equations (2.11) and
(2.12) using Eqs. (5.8) and (4.18). Finally, using that D.a; = 0 due to Eq. (2.5) and the fact that
J,H — 0, gives

(5.14) Dipesr = @, Dyp,

where

2 2
£ £ 2 9 2 2y (51T | SeTs
i (mw% + mecz ) MgCgmecy + (mgc + mycy) o T
(5.15) a, = o a 2 =
g
P (mgcg + ) 3 + Cp.e + Ch,

We may now write the full equation system in a quasi-linear form,

0 1 0 00
—v? 20 0 0 1
(5.16) u+ | v6@ -G v 0 0fu,=us+ A(u)u, =0,
vL —L 0 v 0
—vai di 0 0 v

where u = [p, pPY, Sg, Sevpcff}T and

Sg(ftg - 52)

(517) G == pcgm ( 521 fé ﬂ ﬂ) ’
g8 \ myc? mgcs Chpe Cp.g
(5.18) I Se(fg — &)

2 2 *
9 ngg seTg
pecymp (m 2 + mgc >+ Coe + Cot

The equation system has been formed by the equations for mass (5.9), momentum (5.10) and
pressure (5.14), along with the entropy equations, which are obtained by replacing the mass
transfer term in Eqs. (2.11)—(2.12) using Eqs. (4.18) and (5.8). The eigenvalues of the matrix A
are

(5.19) Ay €{v—ay,v,v,v,v+a,}t,

hence the mixture speed of sound of the chemical equilibrium model is a,,, given by Eq. (5.15).
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5.3.1. The subcharacteristic condition with respect to the basic model. Using the
expressions for the mixture speed of sound in the basic model (2.22) and the chemical equilibrium
model (5.15), we can show that

(5.20) a,>=ay’+ 7y,
where
(5.21) ZO _ (gl? B 52)2

H® &2 &2 2 27 27 !
g ‘ 2.2 Spte Sg-s ~2|~2
[(mgcé + m’fcg) CoCgMeme + (Cznf + Czns) pao} 0

PROPOSITION 2. The chemical equilibrium model given by Egs. (5.9)—(5.13) satisfies the
subcharacteristic condition with respect to the basic model of Section 2, subject only to the physically
fundamental conditions

pr >0,
Cp.k > 0,
Tk > 0.

Proof. From the eigenstructure of the basic model (2.21) and the chemical equilibrium model
(5.19), we see that the interlacing condition in Definition 1 reduces to the requirement that

(5.22) ag = ay,

which follows from Eq. (5.20)—(5.21) and the given conditions for py, ¢, and T. O

6. Pressure-temperature relaxation. In this section, we investigate the model that arises
when we impose volume and heat transfer equilibrium. In other words, we let the pressure and
temperature relaxation parameters J,H go to infinity. This corresponds to taking the limit

(6.1) H — 0

in the mechanical equilibrium model of Section 3, or equivalently taking the limit

(6.2) J —

in the thermal equilibrium model (4.8)—(4.12), which we expect to correspond to the assumptions
(6.3) T,=T,=T,

(6.4 Pg =pc=p" =p,

i.e. equal temperatures and pressures. The model equations may be found in Ref. [10].

6.1. Wave velocities. The wave structure of the mechanical-thermal equilibrium model was
investigated by Flatten et al. [11] in the general case of n different components with n mass balance
equations, in the non-stiff limit where £ — 0. In the case of two components, n = 2, the wave
velocities were found to be

(6.5) Apr = {v — apr,v,v,v + dpr},
where

- (67 Qy c,,.C Vi F( r 2
6.6 a2 — ( CH ) 4 T —p8Ep. ( _ s )
( ) pT = P pgcg pgc[% P prg + prg pgcf pgcg

This model and its wave velocities are also described by Stadtke [26, Chap. 4].
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6.1.1. The subcharacteristic condition with respect to the p-model. As shown by
Flatten and Lund [10], the mechanical-thermal equilibrium model satisfies the subcharacteristic
condition with respect to the mechanical equilibrium model of Section 3, given only the physically
fundamental requirements py, > 0, ¢, , > 0, T > 0. This is easily seen from Eq. (6.6),

(6.7) ayp =, + 2y,
where
CooeCoe [Ty  T.\?
(68) ZII;T _ pT p.g~'Dp, ( 5 — g2> .
Cpg+Cpe \pec;  pgcg

6.1.2. The subcharacteristic condition with respect to the T-model. From Eqs. (4.17)
and (6.6) we see that the mixture speed of sound in the mechanical-thermal equilibrium model
may be expressed as

(6.9) Qyp = a7 + Zyr,

2
Iy I, g Iy 2 2 1 1 2 2
B ((mgCQ + WC?) (pgcg pec? ) MeCgmecy — awag \ oo + o, 7 (pgcq — peci)) p

2
2 2 1 1 Ly Iy 2 2 1 1 ~2
MeCymgCy (CMT + CMT) ((mgcg + mw?) meCymgcy + (Cp,gT + CMT) pao)

PRrROPOSITION 3. The mechanical-thermal equilibrium model satisfies the subcharacteristic
condition with respect to the thermal equilibrium model of Section 4, subject only to the physically
fundamental conditions

pr >0,
Cpk > 0,
T >0.

Proof. By Eqgs. (4.20) and (6.5), we see that the interlacing condition of Definition 1 reduces
to the requirement that

(6.11) ar 2 apr,

which follows from Egs. (6.9)—(6.10) and the given conditions for pg, ¢, and T'. O

7. Pressure-chemical relaxation. In this section, we investigate the model that arises
when we impose volume and mass transfer equilibrium. In other words, we let the pressure and
chemical potential relaxation parameters 7, K go to infinity. This corresponds to taking the limit

(7.1) J =
in the chemical equilibrium model (5.9)—-(5.13), or equivalently the limit
(7.2) K —

in the mechanical equilibrium model of Section 3, which we expect to correspond to the assump-
tions

(7.3) Pg=pe=p" =p,

(7.4) g = b = p° = p1,

i.e. equal pressures and chemical potentials. This model was first introduced in this form by
Flatten and Lund [10].
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7.1. The mechanical-chemical equilibrium model. The mechanical-chemical equilib-
rium model can be formulated as follows:
e Mass conservation:

9 . 9(pv)

ot or 0

(7.5)

e Momentum conservation:

d(pv) n 9(pv® + agpg + cepr)

7.6 =0
(7.:6) ot Oz ’
e Energy equations:
dE, 0 me Op paz du
7.7) 2+ — (vE —Ey = r—
(7.7) ot +8a: (wEg) + p vax—’_pagpgcg@x
B paz, MgsgTyCp i s 1112 pag(FeSsz — ) + u(TgsgTy — cf) v
Py s2T,0, 0+ s7TiChp 2 PguC + progcy Ox
r r
- <1 pw> H(T; — T,)
PgluCs + PeaigCy
1 g (TpseTy — 2) + ap(Typs, T, — 2
+H(TZ_Tg) ,LL+*'02+p g( fi ( g2g g g)
2 PgleCy + peigCy

ap

) 5gCp,e + 50Cp g <C~‘w)2 - ( g I ) .pdfw Pg0gSgTeChye
séTngl +57T0Cp g chg pecy Py SéTng,é’ +57T0Cpg |

OB, 0 my Op pay v

78) L4 CwE) + 2P Lo Bk

(7.8) ot +6x (vEe) + ’ Uax+paépzc§8x
pag,  musTiCpyg o Lo poeCesT = cf) + anTysgTy — ) | v
Py s3TyCpu + $2TyChp g A b PgQieCy + peagC? ox

r T

— (1 _ W) H(T, —Ty)
PgQuuCy + PeOgCy

ag(TeseTy — ) + ap(Tgsg Ty — cé))

1
+H(T, —Te) (p+ 20> +p
(T ) (ﬂ 2 PguC + progcy

) ( 5gCpe + 50Cp g (&pu)2+ < Iy Iy > .paz%u peoseTyCy o >

Sngcp,f + SfTKCp,g ap pgcé B WC% Py SngcpJ + S%chp,g

As presented in Ref. [10], the energy equations (7.7)—(7.8) unfortunately contained a sign error,
which has been corrected here. We have also introduced

-1
) T, 2 2
(7.9) P = (p) _sly (S &)
Dsg se Cpg \ PeCg PG
—1
T, 2 2
(710) PK = (ap> — Sply €Z2 _ €g2 ,
0sy 5 Cpe \ pecy  pgCy
and
P C,eCho T.T' T\ >
711 Ayl =ar+ P per. < — o+ <s EE g, .
(1) o = G Gy ety + Gy 5~ P oot \Sepa — o0
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7.2. Wave velocities. The wave velocities of the mechanical-chemical equilibrium model
(7.5)—(7.8) was analysed by Flatten and Lund [10] in the non-stiff limit % — 0. The eigenvalues
were found to be

(7.12) Apu = {v = Gpp, v, 0,0 + Gpyt,
where @y, is the mixture speed of sound, given by Eq. (7.11).

7.2.1. The subcharacteristic condition with respect to the p-model. From Eq. (7.11),
we immediately see that the mixture speed of sound can be written as a sum of squares,

(7.13) a,. =a,” + 728,
where
2
PCpgCp,e < < Tl TgFg))
7.14 VA — pe + s — s .
(r1y "= RACpastT, + gt \Po P P8 Py 3~

From this and Eqgs. (3.2) and (7.12), we see that the subcharacteristic condition is satisfied, given
only the physically fundamental conditions py > 0, ¢, > 0, T, > 0 [10].

7.2.2. The subcharacteristic condition with respect to the py-model. Using the ex-
pressions for the mixture speed of sound in the chemical equilibrium model (5.15) and the present
mechanical-chemical equilibrium model (7.11), it may be shown that the latter can be written as

(7.15) ane =ay,> + Zb,,

where

2 2 2 2
2, 2 11 52 1g ﬂ) (f E?)<L_E?)>
(1.16) 2z, =t (Fz =) (B2 1) + Gz + o) (5 — o
) pp $2T, 2T, 2 2 \2 2T, 82Tg\ - '
(8% + &%) ((Rkz + 2l ) cickmeme + (87 + E2) i)
PROPOSITION 4. The mechanical-chemical equilibrium model given by Eqs. (7.5)—(7.8) satisfies

the subcharacteristic condition with respect to the chemical equilibrium model of Section 5, subject
only to the physically fundamental conditions

pr >0,
Cpk > 0,
Tk > 0.

Proof. By Egs. (5.19) and (7.12), we see that the interlacing condition of Definition 1 reduces
to the requirement that

(7.17) Gy > s
which follows from Egs. (7.15)—(7.16) and the given conditions for pg, ¢, and Tj. O

8. Temperature-chemical relaxation. In this section, we investigate the model that re-
sults when we assume heat and mass transfer equilibrium, in other words that the relaxation
parameters H, KC go to infinity. This is equivalent to taking the limit

(8.1) H — o0

in the thermal equilibrium model of Section 4, or equivalently the limit

(8.2) K — o0

in the chemical equilibrium model of Section 5. We expect this to be equivalent to the assumptions
(8.3) T, =T, =T,

(8.4) fg = pe = p* = p1,

i.e. thermal and chemical equilibrium. The model equations and wave velocities for this model
have not been found elsewhere, and will thus be derived here.
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8.1. Entropy equations. To derive the entropy equations of the thermal-chemical equilib-
rium model, we start by adding the balance formulations of the entropy equations (2.13)—(2.14)
to eliminate the heat transfer term, which, after expanding and rewriting derivatives, yields

ov
(8.5) T (ngtsg + myDysg 4 sgagDipg + spagDypy + (mese + mgsg)am>

= (pg —Pe — T(Sgpg - Seﬂe))j(Pg _pf)v

where we also have let K go to infinity, hence eliminating the mass transfer term.

To eliminate the material derivative D;py, we need to establish certain differentials. Since the
chemical potentials and temperatures are equal, so are their differentials, which gives us

1 1
(8.6) dp = —dpg — 5,dT = p—dpg — 55dT,
F T T I, T
(8.7) ar =l ap v Tas, = " ap + Las,,
5Cg Cpg pecy Cp,t
(8.8) dpy = czdpy + prlkThdsy.

Solving these three equations for dp, as functions of ds, and ds, yields

(2 (Fan—1) - (f T DAY ) g+ Lodsy
(89) dp =p P £ P, 7
5 = Py CHE ng;Ah)
g
o (%Ah - 1) -1, T (F— - F— - ng;Ah)) ds + —L-ds,
(810) dpg = Py P g ir gF - ©Cg P8 ’
G (% - 5 - Bzan)

where Ah = hy — hy. We will also have use for the differential of the mixture density,
(8.11) dp = agdpg + aedpe + (pg — pe)dag.

We may now express Eqs. (8.9)-(8.11) using the material derivative, which together with
Eq. (8.5) allows us to solve for the entropy equations, which turn out to be slightly complex,

F Fe Iy Iy

I, r r r
(Ahé +—= - Cf) <(Ahpg - Ap);f +pg — P6> CpeTeje;
0

ic ¢
Fg
+(Ah—y =1 ) (Ahpg — Ap)mycy — (Ahpe — Ap)cgmyg | T (pg — pe)
g
VS VRS VIR AN
X [((Ahcggcf + C—gg - cf) c%chp’ng,gTQ + cgmng,gT + cfmgCy o T + Ah*mgmy

-1
r ? T ?
+ (Ahcf + 1) cimgCp T + (Ahcé‘z - 1) mgC’nchz)mg} ,
z

g

ov
o
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(8.13)

DtS[ =C
C,

:
r,r, T, T r
( h——2 - =+ 2g> <(Ahﬂz Ap) *5 —pet Pg> CpgTegc]
Cy Cg Cy Cg Cq

( h— + 1) Ahpe — Ap) mgc% + (Ahpg — Ap) cgmg> T (pe — pg)
Iy

Iy T T\’
((A C—C—Qg - 2@ + ) C;C%Cp’gcp’gTQ + cgmgCp o T + czmngygT + AR*mymg
¢ g € g

-1
r ? r ?
+ (Ahczg - 1) cémgcpygT + (Ahcf + 1) mngygTﬁ) mg] ,
¢

8
where we have used Eqgs. (2.3) and (2.5) to replace D;p and D;a,, and introduced Ap = p, — py.

8.2. The thermal-chemical equilibrium model. The thermal-chemical equilibrium model
can be formulated as follows:
e Mass conservation:

9p , 0(pv)

(8.14) T P

=0,

e Momentum conservation:

9(pv) + d(pv® + QgPg + upr)
ot Ox

(8.15) =0,

e Volume advection:
(8.16) Dtag = j(pg _pl)v

e Energy conservation:
OB _00(E+p)
ot ox

An alternative formulation may be obtained by using the more obscure entropy equations (8.12)—
(8.13) instead of the volume fraction (8.16) and energy equations (8.17).

(8.17) —0.

8.3. Wave velocities. We now wish to calculate the wave velocities, and hence the mixture
speed of sound, of the thermal-chemical equilibrium model (8.14)—(8.17) in the non-stiff limit
where J — 0. To this end, we find it useful to derive an evolution equation for the effective
pressure peg.

We express Eqs. (8.8)—(8.10) using the material derivative, which together with Eqs. (8.12)-
(8.13), (8.16) and (4.14) yields

o Ov
(8.18) Dipess = —pity -,
where
2 2 2 ~92
- P Tym Iy my Ah*mgmyag
8.19) a3, = <1+Ahg) + (1—Ah ) +
( ) T (vagT c% P OPJT cg P Cp7ng7gT20§c§

2 2
My Mg Iy my Iy Mg
Ah— —1 Ah— +1
C%OngT * CECMT * ( c > 5 * ( C? - ) Cgcp,gT

2 2 2T 2
Cg Cq cy

Ah2mgmg n (Ahrgrg Fg FZ)2‘| -

I I
) (( Ah—Qfg 72[ — CS) (p meAh—= E ) C’p,chgcg — Ahmgmy (cg - Ath))
] g Cg

ov

oz
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From Eq. (8.16), we know that «, is a characteristic variable with the corresponding eigenvalue
v. The remaining equations (8.14), (8.15) and (8.18) may then be expressed as a quasi-linear
equation system in the variables u = [p, pv, pes],

0 1 0

(8.20) w4+ | —v? 20 1| u,=0.

52 22
—vap, ar, v

The eigenvalues of this system are {ar,,v,v + ar,}, thus the eigenvalues of the full model may
be summarised as

(8.21) Ary ={v—aru,v,v,v+ar,}.

8.3.1. The subcharacteristic condition with respect to T-model. Using Eqgs. (4.17)
and (8.19), it may be shown that the mixture speed of sound of the present model may be written
as
(8.22) g = ar’ + 21,
where

r Iy 1 1
8.23) zL = (Ah g 2 — ——
( ) Tr ( (Cp,éT * Op,gT) - (CZ Cg) Op oI * vagT

T, r r,l, I, T, ?
Cy gCg gl ]

2 2
p my I‘g> p ( Mg 1"5) > 9 9 o Mg My ~2>
1-Ah——=) + 1+ Ah—— crc; + Ah a
((CMT( p 2 CpeT p 2 e Cp T CpyT°

1 1 ~2 Ty Uy ’ 2.2 )
((CP,gT " CILZT) pio (mgcf " mgcg e

PROPOSITION 5. The thermal-chemical equilibrium model given by Eqs. (8.14)—(8.17) satisfies
the subcharacteristic condition with respect to the thermal equilibrium model of Section 4, subject
only to the physically fundamental conditions

Pr > 0,
Cpk > 0,
T>0.

Proof. By Egs. (4.20) and (8.21), we see that the interlacing condition from Definition 1
reduces to the requirement that

(8.24) ar > ary,

which follows from Egs. (8.22)—(8.23) and the given conditions for py, ¢, and T. O

8.3.2. The subcharacteristic condition with respect to the y-model. From Egs. (5.15)
and (8.19), we find that the mixture speed of sound in the present model may be written as

(8.25) agpn = a;,> + Zf

I
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where
(8:26) Zl, = (—(Ath —2+ cz)cfl — (ARDy + & — cé);—g
Pl P:8
n p TusgT  Tgs,T Ah%& N r, Iy 0202)2
mgme  myC mgcg cé c? cé c? s

y Ah2a2 [t p_ TeAh 2+ 1 p T, AR\ mecimgc?
CpeCpiT? CpeT \mgmg — myc? Cp T \mgmy  mgc2 )

1
2T 2T\ . p TyseT  Tos,T\>
D8 Pl g mecy MgCqy

PROPOSITION 6. The thermal-chemical equilibrium model given by Eqs. (8.14)—(8.17) satisfies
the subcharacteristic condition with respect to the chemical equilibrium model of Section 5, subject
only to the physically fundamental conditions

pr >0,
Cp,k > 0,
T >0.

Proof. By Egs. (5.19) and (8.21), we see that the interlacing condition of Definition 1 reduces
to the requirement that

(827) ap > &T,ua
which follows from Egs. (8.25)—(8.26) and the given conditions for py, ¢, and T'. O

9. Full relaxation. In this section, we investigate the model that results when we let all the
relaxation parameters J,H,/C in the basic model of Section 2 go to infinity. We expect this to
correspond to the assumptions

(0.
(0.
(9.

In other words, the two phases are in full equilibrium. This model is also referred to as the
homogeneous equilibrium model [26], and has been used for two-phase flow simulations by a number
of authors [8, 19].

9.1. The full equilibrium model. The full equilibrium model can be formulated through
conservation equations for total mass, momentum and energy:
e Total mass conservation:

) Dg =p"=p,
)
) Hg

I
S
~

N

S

)

W b =
[

e = p* = p.

9p , 0(pv)

(9-4) ot Ox

=0,

e Momentum conservation:

Opv) | 9(pv® +p)

9.5 =0
(9:5) ot Ox ’
e Total energy conservation:
0E O(w(E
(9.6) + OW(E +p)) _ 0.

ot or

Here, the energy equation (9.6) is obtained simply by adding the energy equations (2.8)—(2.9) of
the basic model.
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2. Wave velocities. The wave velocities of the full equilibrium model have been analysed
by e.g. Stiadtke [26], Saurel et al. [23] and Flatten and Lund [10]. The eigenvalues are given by
(97) )‘PTN = {’U — &PTP«’ v,V + dPTN}’

where the mixture speed of sound is given by [23]

2
Qgpg <asg) upe (835)
+ a )
cpxg 8]) sat Cpf 8]) sat
where the notation (- )s. is used for differentiation along the boiling curve. The mixture speed

of sound may also be expressed through the thermodynamic derivatives used earlier (I'y, ¢ and
¢p.k), by replacing the saturation derivative using

Osk\  _  Twepr  cpklpg —pe)
(9.9) AL I L £
Ip prcy  pgpe(hg — he)

9.2.1. The subcharacteristic condition with respect to the p7T-model. As shown by
Flatten and Lund [10], the subcharacteristic condition with respect to the mechanical-thermal
equilibrium model of Section 6 is satisfied, given only p; > 0, ¢y > 0 and 7" > 0, which was
shown by writing

(9.8) a p, =a

52 T
(9.10) Ay = apT + Z;;Tw

where

T Pg — Pt ryC VIO
9.11 z = L ( £ Cpg + Cpy) + —08 4 2=
O-10 PR Cpg + Cp \ pgpelhg — he) (Cre 2 [ peci

9.2.2. The subcharacteristic condition with respect to the pu-model. Also shown
by Flatten and Lund [10], the full equilibrium model fulfils the subcharacteristic condition with
respect to the mechanical-chemical equilibrium model of Section 7, given only pi > 0, ¢pr > 0
and T > 0, which may be shown by writing

62 — g Pp

(9.12) Aprp = Ap + ZpTu’
where
(9.13) z%% = P (pe = pg) (Cpgse + Cpesg)

pTh — T(Cpesz + Cpgst) pape(50 — 5g)

Ty r r
+ Tcpgc Pt 3g St (PEC + Ps%) + Pg 52 02 pgé 02
Cp.,gsl + prgsg :

9.2.3. The subcharacteristic condition with respect to the Tu-model. By algebraic
manipulations, one may show that the mixture speed of sound of the full equilibrium model is
related to the one of the thermal-chemical equilibrium model as given by

=a72 4+ Tu
(9.14) PT# apy t Zyp s

where

I, Iy
(4 {4
T

I r Mgy 2
—Crg < Pg = Ahspf) (p - Ah2gm5> + AR 5 2 (Cépg - C?Pf)) P)
% Cg CgCh
I\’ T\?>  mem -
(C’pgT (p — mgAhCZg) +Cp T <p + mgAhC§> + 5625 h2pa0> Athgp?]
) v

g l
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PROPOSITION 7. The full equilibrium model given by Egs. (9.4)—(9.6) satisfies the subcharac-
teristic condition with respect to the thermal-chemical equilibrium model of Section 8, given only
the physically fundamental requirements

pr >0,

Cp,k > 0,
T>0.

Proof. From Egs. (8.21) and (9.7), we find that the interlacing condition in Definition 1
translates to the requirement that

(9.16) Qpp 2 ApTps

which follows from Egs. (9.14)—(9.15) and the given conditions for py, ¢, and T. O

9.2.4. The discontinuity of the speed of sound. We have now considered eight different
models with varying equilibrium assumptions, each with its own speed of sound. One would expect
that the two-phase speed of sound reduces to the single-phase speed of sound in the limit where
one phase disappears, which is indeed the case with seven of the models,
©10) - Jim G0 = lim, @, = i or = ln, 8,0 = o, Gr = i, @, = T, 6z, = c.
However, for the final and present full equilibrium model, the single phase limit of the two-phase
speed of sound turns out to be discontinuous,

1
2\ 32
(9.18) lm Gy = | = + cpgT (W + F;’) £ ¢,
ag—1 Ca ’ pehg —he) 2
_1
- 1 pe—p VAT
9.19 lim a =|=5+c T(g+) Ccy.
( ) ap—1 pTu (C? Pt pg(hg — hg) C% 7& ¢

This implies that when an infinitesimal amount of gas is added to a pure liquid, the mixture
speed of sound will change drastically, and vice versa. The discontinuity in the single-phase
limit may cause significant numerical challenges, and is not physically plausible, as pointed out by
e.g. Stadtke [26, Chap. 4]. It is interesting to note that only the combination of all three relaxation
processes together causes this discontinuity, while any other combination does not exhibit such a
behaviour.

10. Speed of sound comparison. In this section, we will present plots illustrating the
mixture speed of sound for water and carbon dioxide at industrially relevant conditions, illustrating
the impact of the different equilibrium assumptions on the speed of sound. Plots with the same
parameters were presented in Ref. [10] for five of the models, but in this section we complete the
picture by considering all eight models in the hierarchy.

Figure 10.1a shows the mixture speed of sound in a two-phase water-steam mixture at atmo-
spheric pressure, p = 10° Pa. The other parameters are shown in Table 10.1. We recognise that
mechanical equilibrium has the most significant impact on the speed of sound, while thermal and
chemical equilibrium assumptions have a much smaller effect. In Figure 10.1b, we take a closer
look at the range 0-100 m/s. The full equilibrium model is, as expected, not continuous in the
single-phase limit, clearly visible at oz = 0, where the two-phase speed of sound is a,r, ~ 1 m/s,
whereas the liquid speed of sound is ¢, = 1543.4 m/s.

The differences between the different models are perhaps even clearer in Figure 10.2, showing
the speed of sound for a two-phase CO5 mixture at p = 50 bar. The other parameters are listed
in Table 10.2. In this figure, the subcharacteristic condition, predicting that the speed of sound is
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Figure 10.1: Mixture speed of sound in a water-steam mixture at atmospheric pressure.

Table 10.1: Parameters for a water-steam mixture at atmospheric pressure.

Quantity Symbol  Unit Gas Liquid
Pressure P MPa 0.1 0.1

Temperature T K 372.76  372.76
Density p kg/m? 0.59031  958.64
Speed of sound c m/s 472.05 15434
Heat capacity Cp J/kg K 2075.9  4216.1
Entropy s m?/s? K 7358.8  1302.6
Griineisen coefficient T’ (dimensionless)  0.33699 0.4

lowered for each imposed equilibrium assumption, is clearly illustrated. Once again, thermal and
chemical equilibrium alone has little effect on the mixture speed of sound, and only combining the
three equilibrium conditions leads to a discontinuous speed of sound in the single-phase limit.

For more discussions on models and experimental values for the speed of sound in two-phase
systems, a number of works exist. Henry et al. [12] present experimental values for the speed of
sound in different flow regimes in a water-steam system, while Kieffer [16] compares experimental
values with certain models. Stidtke [26] also discusses a variety of different of models and their
speeds of sound. Furthermore, Zein et al. [30] have interesting discussions on how the speeds of
the different relaxation processes typically are related.

11. Conclusion and further work. We have studied the complete hierarchy of averaged
two-phase homogeneous flow models that arises by assuming equilibrium in different combinations
of pressure, temperature and chemical potential, of which the 7-, y- and T u-equilibrium models
represented original contributions. The models were formulated as hyperbolic relaxation systems
with source terms accounting for heat, mass and volume transfer between the phases. Wave
velocities for each model were derived, and we showed how the subcharacteristic condition leads
to the requirement that the mixture speed of sound decreases when equilibrium assumptions
are imposed. This requirement was explicitly and analytically shown using sums of squares.
Furthermore, it was illustrated how the different equilibrium assumptions affect the speed of sound
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Figure 10.2: Mixture speed of sound in a two-phase COs mixture at 50 bar.

Table 10.2: Parameters for a two-phase COy mixture at 50 bar.

Quantity Symbol  Unit Gas Liquid
Pressure P MPa 5.0 5.0

Temperature T K 287.43 287.43
Density p kg/m? 156.71  827.21
Speed of sound c m/s 201.54  398.89
Heat capacity Cp J/kg K 3138.0 3356.9
Entropy s m?/s? K 1753.9  1128.8
Griineisen coefficient T’ (dimensionless)  0.30949 0.63175

in relevant cases for a water-steam mixture and two-phase carbon dioxide. We have also shown
how the assumption of full equilibrium leads to a discontinuous speed of sound in the single-phase
limit, a phenomenon which is quite unique for this model.

In further work, the hierarchy could possibly be extended to inhomogeneous flow models,
i.e. different velocities for the two phases, formulated using two momentum equations and velocity
relaxation.
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