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1 Executive Summary 
 
This D5.2 report is a report on the technologies and methods that are being developed in the 
"COGNITWIN Hybrid and Cognitive Twin Toolbox" and which will be applied in the developments for 
the COGNITWIN industrial pilots. The information provided in the report will further be useful for 
aligning the concepts and available tools among the COGNITWIN partners but should also give external 
readers ideas about new Industry 4.0 possibilities. 
 
The COGNITWIN projects aims toward supporting the digitalization of the European heavy industries. A 
main ambition of the COGNITWIN project is to develop cognitive digital twins that can support a 
significant improvement in industrial operation. In order to do so, COGNITWIN will work with combining 
data, physics-based models, machine learning (ML), and Artificial Intelligence (AI) in the best possible 
manner in order to solve the industrial challenges. Cognition is introduced into the models through self-
learning and AI. In COGNITWIN WP5, where this report belongs, the aim is to identify which ML/AI 
methods are suited for such problems and extend and/or develop new algorithms to further improve 
performances of the control systems. By developing a Cognitive Twin Toolbox, comprising methods to 
analyse data, exploit the information from physics-based models, combine information from data and 
numerical models, and demonstrating applications to process control, this can be applied more 
generally to support many different process industries. A Cognitive Twin Toolbox is currently being built 
out from the needs of 6 different industrial pilots, all with their specific and different challenges.  
 
In this report we discuss an intermediate state of the progress on technologies and methods that are 
being developed for the Hybrid AI/Analytics and Cognitive Toolbox, and which we already started to 
apply to the pilots. A specifically important part of the report is thus “reflections on the pilots”, where 
technological insights and findings in ML/AI and software architecture are taken from the first 
applications of the technology to the pilots and should guide development for the remainder of the 
project. 
 
As technical details below some level are best presented on a per-component-basis, our presentation 
on the individual tasks focusses on more abstract insights. The bulk of technical details and development 
status of the individual toolbox components is additionally reported as Appendix 1 and referred to 
frequently in this document.  
 
Separate reports on the industrial pilots (D1.2, D2.2, D3.2), the "Platform, Sensor, and Data 
Interoperability Toolbox" (D4.2), and the Key Performance Indicators (D6.2) as well as the Data 
Management Plan (D8.2) are issued together with this report, giving a more complete overview on the 
COGNITWIN challenges and Toolbox. 
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2 Introduction to COGNITWIN Initial Hybrid AI and Cognitive Twin 
Toolbox 

2.1 Scope and purpose 
A purpose of the COGNITWIN Initial Hybrid AI and Cognitive Twin Toolbox is to provide the technical 
foundation for the realization of hybrid AI and cognitive twins in the process industry. This technical 
foundation takes the form of software components, methods, and processes. An important 
consideration is that while hybrid AI and cognitive twin concepts are not entirely unique to the process 
industry, certain aspects are specific to the industry. The toolbox developed in this task therefore 
comprises: (1) custom software components that are developed, extended, or adapted for the specific 
needs of the Use-Cases in the process industry, (2) existing components that are technically integrated 
to facilitate interoperability along workflows specific to the Use-Cases, and (3) workflows that that are 
realized entirely by existing software, but which is combined and used in patterns and ways specific to 
the Use-Cases in the process industry. The initial state of the toolbox is therefore the form of individual, 
mostly unrelated software tools and processes which are potentially applicable to the Use-Cases in the 
process industry. During the course of the project, these unrelated components will continually be 
adapted, integrated, and combined to support the specific needs of the Use-Cases. At the end of the 
process, the toolbox will provide a technical foundation capable to support the requirements of the 
Use-Cases in known and tested usage patterns, with specifically adapted software components that 
are interoperable where required. The current deliverable shows an intermediate progress towards 
that goal. 

2.2 Structure of the deliverable 
This deliverable is structured as follows. We will start by giving a high-level overview of the toolbox in 
its entirety, specifically design decisions and the conceptual architecture in the intended, final state of 
the toolbox. Going back from the final state, we will show how we intend the toolbox to evolve from 
its initial state to the final state and where we currently (as of M18) are in this process.  
The second part will contain status descriptions on a task-level, focusing on progress, challenges, and 
deviations from original planning. These descriptions will still be kept relatively short, as the bulk of 
the technical documentation is provided on a component level.  
The third and most detailed part of this deliverable consists of detailed descriptions of the individual 
toolbox components – including detailed descriptions of progress made during the project so far – 
examples of how to use them, and their relation to the Use-Cases.  
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3 High-level overview  
 

 
Figure 1. High-level overview of the COGNITWIN Toolbox. 

The goal of WP5 is to provide methods and tools for Hybrid AI and Cognitive Twins.  Figure 1 shows 
the structure of the COGNITWIN Toolbox as reflected in the COGNITWIN Toolbox Portal, available at 
https://cognitwin.github.io/toolbox/.  This report, D5.2 focuses on the areas in the red box on  Digital 
Twin Analytics Models and Visualisation, while the report D4.2 introduces the areas in the Toolbox and 
the areas of to the left in the figure on Digital Twin Data Acquisition and Representation. 

In the context of the COGNITWIN project, the Hybrid AI and Cognitive Twins should not be developed 
from scratch, but rather the already existing components/systems should be considered. Additionally, 
the new services to model the behaviour of a Hybrid AI or Cognitive Twins will be developed or even 
have already been developed by different partners. However, the partners use different technologies, 
develop components in several programming languages, use different protocols, etc. In previous WP5 
deliverable (D5.1) we have already identified a list of the components which will be reused or 
extended.  

In this midterm report, we are reporting progress on the extension and development of components, 
and reflecting on additional requirements that emerge from applying the toolbox components to the 
pilots. 

4 Plant Digital Twins with ML/AI  
A plant digital twin is a digital replica of the real plant. A modern digital twin gets is essential 
behavioural contents from a plant model, perhaps linking simulations with on-line data and various 
services such as data visualization and analytics, what-if analyses, or 3D plant animations. Currently, 
the huge potential of the digital twin technology is reflected in a better design of an asset, based on 
extensive simulations in various conditions. A model can be used for improving system dynamic 
behaviour, designing a model-based controller, or a state-estimator. Model-based fault detection and 
isolation, operator training simulators, or plant analysis as well as integrated plant and control design 
are other examples of applications requiring a proper dynamic process model. 

https://cognitwin.github.io/toolbox/
https://cognitwin.github.io/toolbox/
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The models can be very detailed and enable powerful simulations. In the heavy process industry, the 
models are often built based on physical considerations, tuned and complemented in various way by 
data from experimental tests or normal operation. Task 5.1 aims to promote use of ML/AI methods 
suited for such problems and extend and/or develop new algorithms to further improve the 
performance of the control, monitoring, and maintenance systems. 

4.1 Objectives, challenges, and components 
Task 5.1 (T5.1) examines the role of simulation models and data to effectively model real-world assets. 
T5.1 identifies, selects, and extends/develops further ML/AI methods particularly suited to 
challenges of the process industry. Eventually, it will provide rules-of-thumb for selection and 
parameterization of ML methods, as justified and illustrated by pilot case experimentation.  

The state-of-the-art of the T5.1 methodology was described in the COGNITWIN WP5 M6 deliverable 
(D5.1) Sec. 4.2. The methods of analytics are developing in a fast pace, and much of the required 
infrastructure for sensor, data, and automation exists. However, due to the nature of the heavy 
process industry, the changes in the industrial practice can be slow. Discussion of these topics is 
emerging in the scientific community, including recent articles such as: 

[QIN+19] S. Joe Qin & Leo H. Chiang (2019) Advances and opportunities in machine learning 
for process data analytics. Computers and Chemical Engineering 126, 465–473. 

[BIK+20] Timur Bikmukhametov & Johannes Jäschke (2020) Combining machine learning and 
process engineering physics towards enhanced accuracy and explainability of data-
driven models. Computers and Chemical Engineering 138, 1–27. 

The heart of most ML/AI approaches is in learning from data. This poses serious problems in the heavy 
process industry, which is typically characterized by slow processes, large size and complexity of plant 
installations, and heavy safety requirements, which prohibit approaches based heavily on exploratory 
data generation and testing. Plants are typically operated in production mode, which leads to the 
operation data probably not being rich in information. Therefore, the role of physical models is 
particularly pronounced. A significant challenge is to assess the feasibility of various proposed 
approaches in the process engineering context. 

The case pilot problems were briefly described in D5.1 Sec. 4.4, more extensive descriptions were given 
in D5.1 Sec. 2 as well as the pilot work package deliverables (D1.1, D2.1 and D3.1). 

T5.1 participates in providing components to the COGNITWIN toolbox, focusing on the full exploitation 
of physical plant models and ML/AI approaches in data-analytics and data-driven model tuning. The 
work in COGNITWIN associated with T5.1 largely originates from the development of solutions to pilot 
case problems. The role of T5.1 is to focus on the exploitation of physical modelling aspects on one 
side, and on data-driven techniques – such as ML/AI – on the other. The hybridization aspects are 
partially considered in T5.4 on hybrid digital twins. The work in T5.1 is pilot-driven, in that the methods 
are examined in solving the COGNITWIN pilot case problems, and promising solutions are generalized 
for extended use via the T5.1, to be cross-utilized in other COGNITWIN pilot cases or other process 
industry applications. 
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4.2 Detailed description of activities performed 

4.2.1 Fuel Characteristic Estimator  
The UOULU (University of Oulu, Intelligent Machines and Systems research unit) has focused on the 
Sumitomo power plant pilot case problem (WP3). This case considers the monitoring and 
control/maintenance of heat exchange surface fouling and slagging. As a component for solving the 
problem, a fuel characteristic estimator has been developed.  
The estimator is based on exploitation of a physical model for the circulating fluidized bed (CFB) boiler 
furnace. This hotloop model consists of more than 1k states, and well over 100 I/O. Based on a 
Sumitomo in-house model, the simulator was developed further for providing one-step-ahead 
simulations from arbitrary initial states. The simulator parameters were adjusted for the local pilot 
plant conditions.  

A novel approach for tuning physical models was proposed (Ikonen and Selek, 2020): 

[IKO+20] Enso Ikonen & Istvan Selek (2020) Calibration of physical models with process data 
using FIR filtering. Australian and New Zealand Control Conference, Gold Coast 26-27 
Nov 2020, 143–148. 

 
Figure 2. The PMFIR approach.  

The main suggestion is to use dynamic tuning elements at the outputs of a physical model (PM), which 
enables both the application of robust parameter estimation ML techniques and availability of the 
original physical model results (Figure 2). 

Ikonen & Selek (2020) discuss the PMFIR via an application to a nonlinear simulated continuous stirred-
tank reactor (CSTR). The incorrect (worst-case) models were successfully calibrated using nominal 
plant data, even a simple steady-state physical model could be successfully applied. The approach was 
compared with alternative data-driven methods, including static affine correction at the physical 
model output, and data-driven modelling of the dynamic process. The proposed approach provided 
improved performance and was shown to be much less sensitive to the amount of data than 
corresponding data-driven approaches. Also, the application of the calibrated model in physical model-
based state estimation using unscented Kalman filter (UKF) was successfully demonstrated. UKF 
belongs to the class of ML/AI-inspired population-based nonlinear state estimation techniques.  

The principle of tuning physical model outputs was applied for the Sumitomo case pilot problem. With 
the given model, the experiences suggested a static affine mapping as a feasible and robust tuning. 
The hotloop physical model was then further applied in fuel characteristics state estimation (FUSE-
tool). The main challenge in using a physical model is the computation time needed in evaluation of 
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the model equations. At the moment, with a handful of unknown states/inputs, the simulations take 
~1 second/20 seconds of real-time simulation. This presents challenges in the formulation of a state 
estimation problem, and reducing the number of uncertain states was found to be a feasible 
formulation. The current tool can be run in real time. The approach was tested on real plant data, as 
illustrated in the Appendix. See FUSE component/tool template in the Appendix. 

The FUSE-tool and the examined method/procedure is expected to be applicable for other 
input/parameter/state estimation problems as well, provided that a suitable plant model is available. 
A generalized FUSE tool (based on the pilot problem solution) is provided for the COGNITWIN toolbox, 
providing a flexible implementation for the UKF state estimation using a physical plant model. The 
development will continue in 2021.  

The SubFUSE tool has been developed in view of the Sumitomo pilot fuel characterization problem. 
The tool focuses on data-driven process identification using subspace techniques. The estimated linear 
model can then be used in state estimation, e.g., Kalman filtering. The approach – identification and 
state estimation – has been tested in simulations, but not with real data as the available data has not 
been sufficient for subspace modelling. The tool will not be provided for COGNITWIN toolbox until 
validated in the real pilot.  

The SubFUSE tool is described in the component/tool template in Appendix. 

The FUSE tool fuses process physical model with on-line measurement data from the plant. The 
bayesian state estimation approach uses the deterministic non-linear plant model to predict the plant 
behaviour one sampling time ahead in time. The states with uncertainties to be examined are 
estimated by providing initial, state, and measurement noise characteristics (covariances). An optimal 
correction using the innovation signal (difference between prediction and measurement) is provided 
by the algorithm. The physical model tuning method, including an application of the model in UKF state 
estimation in a benchmark CSTR simulation, was reported in Ikonen & Selek (2020). 

Among the bayesian state estimation techniques (extended Kalman filter, unscented Kalman filter 
(UKF), particle filter, grid filter, ... ), the UKF was found to be most appropriate for the Sumitomo pilot 
case as i) it can handle nonlinear plant models, ii) it does not require the Jacobians to be explicitly 
evaluated, and iii) the amount of required model predictions / computational load can be kept feasible. 
It can be expected that similar conditions are found in other heavy process industry applications. A 
generalized FUSE tool (based on the pilot problem solution) is provided for the COGNITWIN toolbox, 
the development will continue in 2021.  

The FUSE tool is described in the component/tool template in Appendix. The application for solving 
pilot case problem is described in more detail in D3.2. 

4.2.2 Teknopar Machine Learning Library 
TEKNOPAR has focused on the NOKSEL pilot case of a metal sheet roller system of spiral welded pipes 
(SWP). The goal is to monitor the production process machine malfunctioning and enable predictive 
maintenance.  

STEEL 4.0 Teknopar Machine Learning Library (TMLL) is being continuously developed for Task 5.1 and 
T5.2. A library of ML/DL (machine learning/ deep learning) algorithms has been created and tested. In 
TMLL, different machine learning algorithms are applied through the incremental PCA stage to detect 
anomalies. Prediction results are produced using different machine learning libraries. Both Spark MLlib 
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and Keras were used. Spark MLlib is produced entirely by Spark, and uses Spark’s engine optimized for 
largescale data processing. Keras library, that uses TensorFlow, is used for deep learning purposes. The 
Long Short-Term Memory (LSTM) algorithm of this library is utilized. This open-source neural network 
library makes it simpler to work with artificial neural networks through its user interface facilities and 
modular structure. The Scikit-Learn library is another open-source machine learning library that 
contains several algorithms for regression, classification, and clustering. We used algorithms like RF, 
GBT, LSTM, SVM, KNN, and multi-layer perceptron (MLP) from the Scikit-Learn library for data 
modelling and prediction. The trained algorithms have been compared in predictive maintenance.   

The TMLL and ICPV tools are described in the component/tool template in Appendix. 

4.2.3 Predicting the Slag Generated in the Furnace and Measured After Tapping 
SINTEF Digital used machine learning models for predicting the slag generated in the furnace and 
measured after tapping, in the Elkem pilot in WP1. The input time series data are measurements from 
the furnace, materials added, and post tap hole measurements from previous tappings. Several 
machine learning models were evaluated and compared, including support vector machines, a k-
nearest neighbour algorithm, and ensembles of decision trees. The results from testing these methods 
have proved useful in getting a better understanding of the underlying process, e.g. with respect to 
parameter importance. Still, neural network-based models outperformed the other models. The best 
results have been obtained from models which take sequences of data as input. A model consisting of 
one convolution layer followed by three LSTM layers have been trained on filtered data to predict the 
trend in slag measurements. Many sequence models have been tested, but all give similar or worse 
results compared to LSTM models. Even if the current models show some predictive abilities, their 
results are still quite unreliable. This makes it difficult to tune models and compare similar results. 
Further improvements of the models rely on a cooperative and iterative process; by analyzing and 
discussing the results of the current best models, more insight into the process might help in the tuning 
of the models. 

The status of BedRock tool is given in Chapter "Hybrid Digital Twins", and is explained in the Appendix. 

4.2.4 Estimation Technique for  Parameters of the First-Principles Models 
Cybernetica is planning on applying a recursive estimation technique to estimate parameters and 
states of the first-principles models of the Elkem ferrosilicon refining pilot and the Hydro Gas 
Treatment Centre (GTC) pilot. The physical models are formulated as a nonlinear state-space model, 
which typically includes an integration from one sample time to the next. Some of the parameters are 
quite uncertain and vary with time in a manner that is difficult to model. The interfacial area between 
slag and metal is one such parameter in the Elkem model, as it varies due to complex fluid dynamics 
which is unsuitable for modelling in a real-time application. This parameter is important for calculating 
the rate of the reactions taking place at the slag metal interface and thus affects the composition of 
the metal. In order to estimate this parameter using the available measurements online, the state 
vector is augmented with the parameter vector and the model is extended with a data-driven noise 
model. Applying a recursive estimation algorithm to this extended model, such as a Kalman Filter or a 
Moving Horizon Estimator, allows us to estimate uncertain parameters online. Great care has to be 
taken when choosing which parameters to estimate online, and combining the knowledge of which 
parameters are uncertain from a physical point of view, together with the knowledge of which 
parameters the model is most sensitive to has proven powerful in previous applications. 
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4.3 Progress beyond State of the Art or State of the Practice 
A number of physical models and ML/AI methods have been developed/applied in solving the 
COGNITWIN pilot case problems. The LSTM recurrent neural network approach has been found 
applicable in several pilots. The novel methods of model-based state estimation have been considered 
as very promising approaches in the fusion of physical models with plant data in solving the pilot case 
problems. 

Development and execution of detailed physical models require a specialized software. Typical data 
storage/communication platforms do not support established ways of representing and solving 
standard physical model forms, such as ordinary/partial differential equations. Highly sophisticated 
physical modelling tools do exist, however, such as Matlab (including Simulink and Simscape), CENIT, 
and others, used in the COGNITWIN. A digital twin requires a means for connecting to external tools. 
Following the basic principle of WP4 interoperating toolbox, this connection has been developed using 
e.g. OPC-UA and MQTT services for data transfer. 

The significant lesson learned from the applied work is the importance of fusing physical modelling 
with plant data. This has been experienced in several (if not all) pilots, where it has been observed that 
the operation data history is of limited range. In the development of plant operation optimization and 
control, the models need to cover areas not typically visited by the plant (as the optimization is likely 
to change the operation point). A similar problem appears in maintenance/fault detection and 
isolation in data-driven modelling of rare events. Therefore, data-driven approaches alone are not 
sufficient. Digital twin provides a tool for a fusion of data and models. A general approach for physical 
process model tuning based on plant data has been proposed. In an alternative approach, the physical 
model has been used to generate complementing data for ML/AI learning. 

4.4 Summary of the key achievements 
A paper on the COGNITWIN T5.1 outcome was presented in a scientific conference in November 2020 
and published in the IEEE Xplore: 

[IKOI+20] Enso Ikonen & Istvan Selek (2020) Calibration of physical models with process data 
using FIR filtering. Australian and New Zealand Control Conference, Gold Coast 26-27 
Nov 2020, 143–148. 

The following tools in the COGNITWIN toolbox, were developed:  
• FUSE-tool (Fuel state estimation), 
• Steel 4.0 TMLL machine learning library, 
• Steel 4.0 ICPV industrial control panel and visualization (3D modelling and digital twin), 
• Bedrock tool. 

These tools/methods have been validated in at least one COGNITWIN pilot and are available for the 
development of applications in other pilots in the COGNITWIN toolbox. Video demonstrations are 
available, the tools are described in more detail in the Appendix. 

4.5 Next steps 
T5.1 will continue monitoring and collecting the tools, methods and experiences related to physical 
modelling and data-driven analytics and ML/AI. As more experience is collected via the pilots, more 
general conclusions and guidelines can be drawn on ML/AI methods suitable for the process industry 
in the wealth of approaches available. 
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4.6 Demonstrator Scenario/Description/Video 
A video demonstration of the FUSE-tool is available at the COGNITWIN Youtube channel: 
https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A 

5 Multi-variate Sensor analytics with Deep Learning 

5.1 Objectives, challenges and components  
The possibility to process multi-variate sensor data using Deep Learning will be crucial for the 
realization of hybrid AI and cognitive twins. While the extraordinary performance of Deep Learning 
systems to many classification and regression problems has been demonstrated in many contexts, key 
challenges remain. Their challenges are generally recognized to be: (1) high demand in compute 
power, (2) high demand in training data, and (3) difficulties in obtaining trustworthy results or even 
finding good technical explanations in cases when unintended system behaviour occurs. The generally 
high demand in compute power is less problematic for many applications in the process industry as 
high-performance hardware is readily available. For situations where latency is critical, we dedicate a 
specific task (Deep Learning Performance) to finding solutions. This task will therefore focus in the two 
remaining core problems of Deep Learning: the availability of training data and trustworthiness 
concerning explainability. 

For the availability of training data, we will focus on the generation of training data using parametric 
models and sensor simulations, specifically on capturing of 3D information using photogrammetry. For 
improved explainability, we will adapt a visual debugger for neural networks called Neuroscope for 
the specific needs of the Use-Cases.  

5.2 Detailed description of the activities performed  

5.2.1 Neuroscope & Aerial Photogrammetric 
DFKI have improved two key components: a visual debugger for neural networks called Neuroscope 
and a process for the photogrammetric capturing of plant sites using aerial photogrammetry. A 
detailed description of the activities can be found in the component descriptions for the toolbox 
components photogrammetry and Neuroscope, which are detailed in the Appendix.  

Working closely with DFKI, Scortex has prepared an evaluation of the synthetic data processing 
approach using photogrammetry under high performance conditions using our technology. 

5.2.2 LSTM deep learning algorithm 
Focused on NOKSEL pilot, TEKNOPAR has conducted a LSTM deep learning algorithm. Multiple sources 
of sensor data (vibration, temperature, pressure, etc.) have been used and DL (deep learning) models 
have been applied. The Keras library, that uses TensorFlow, is used for deep learning purposes. The 
LSTM algorithm of this library is utilized. This open-source neural network library makes it simpler to 
work with artificial neural networks through its user interface facilities and modular structure. 

STEEL4.0 TMLL of TEKNOPAR, which is under continuous development, is detailed in the Appendix. 

5.3 Progress beyond State of the Art or State of the Practice  
For Neuroscope, we have built on the published state of the art in the visualization of neural networks 
by implementing a number of methods in an interactive, useable software. While such methods have 

https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A
https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A
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been published, the majority of these methods is designed for, and immediately applicable, to 
classification (i.e., output of the network is a label per image) networks only. We initially assumed our 
Use-Case would require semantic segmentation networks (i.e., output of the network is a class label 
per pixel). We have therefore adapted the methods for applicability to semantic segmentation 
problems. In the following, we give a list with methods that were implemented in Neuroscope, with 
an indication whether the methods work for classification (C) or segmentation (S) problems. The 
following methods were implemented: Activation maps (C,S), Saliency map (C,S), Guided back 
propagation (C,S), Grad-CAM (C,S), Guided Grad-CAM (C,S), Grad-CAM plus (C), Score map (C,S), 
Segmented score map SSM (S), Guided segmented score map GSSM (S), Similarity map (S), Fusion score 
map FSM (S), Confusion Matrix (S, in conjunction with provided ground truth). 

5.4 Summary of the key achievements  
We have published a useable version of the software Neuroscope in version 1.0, available at: 
https://github.com/c3di/neuroscope. 

We have prepared a manuscript describing the software. The manuscript has the following 
coordinates: 
[SCO+21] Schorr, C., Godarzi, P., Chen, F., Dahmen, T. (2021) Neuroscope - An explainable AI 

toolbox for semantic segmentation and classification of deep neural nets, in: Applied 
Sciences, Special issue on explainable artificial intelligence (accepted for publication). 

5.5 Next steps  
In deeper consideration of the Saarstahl Use-Case, it became apparent that even semantic 
segmentation (i.e. output of the network is a label of object-class per pixel) will be insufficient for the 
Use-Case of tracking milled bars, but instead will require either multi-object detection and localization 
(output of the network is a list of labels with bounding boxes), or instance segmentation networks (i.e. 
output of the network is a different label for multiple objects of the same class, assigned per pixel). 
We have already begun to implement support for multi-object detection and localization networks in 
Neuroscope, so will likely address instance segmentation support during the course of the project.  

5.6 Demonstrator Scenario/Description/Video 
A video demonstrator on both Neuroscope and the Photogrammetry workflow are available on the 
COGNITWIN YouTube channel: 
https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A. 

6 Deep Learning Performance 

6.1 Objectives, challenges and components  
The previous tasks “Multi-variate sensors analytics with deep learning”' is about the ability to train 
deep learning algorithms and achieve a good enough accuracy for a task. In order to be able to deploy 
such models in production, a specific focus has to be set on the pipeline performance in terms of 
inference time, memory used, compute resources needed, etc. This is especially true when it comes 
to Industry 4.0, where systems are deployed in the 3D world and have real time. For example, in the 
field of quality inspection, dozens of images of high resolution may be used to take a decision in real 
time. This means that standard architectures from the literature designed on the ImageNet dataset 

https://github.com/c3di/neuroscope
https://github.com/c3di/neuroscope
https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A
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may be too slow to be used in practice. This task is about finding solutions which allow engineers to 
deploy state of the art deep learning algorithms in practice, in factories. 

6.2 Detailed description of the activities performed  
Scortex has experimented on several ways to solve the deployment issues. Because Scortex is a quality 
inspection company, it encounters the issue more often than other companies. Indeed, high resolution 
images are often required to detect very small defects. 
Scortex followed several leads related to: 
 
Network architecture design: Architectures were specially designed to enable inference on high 
resolution images (from 1000x1000 pixels up to 2000x2500 pixels) using only one GPU or FPGA. 
These networks were trained and evaluated on Scortex datasets. The tasks of interest were 
supervised semantic segmentation / detection as well as anomaly detection. 

Pruning of the network: Pruning strategies were implemented. Though this method helps lowering 
disk space and RAM/GPU memory constraints, it does not provide faster inference. We believe this 
will be the case as long as TensorFlow/Keras does not provide a better sparse tensor support. 

Distillation:  We successfully managed to transfer knowledge from a large network to a smaller one. 
The performance is not as good as the large model, but better than the performance of the smaller 
model trained on its own.  

Inference graph optimization: We investigated “folding” Batch Normalization which provided 30% 
speed in inference time. Details can be found in Scortex blog: 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/ 

Quantization of networks:  This is a necessary step in order to deploy networks on FPGA hardware 
(see task 4.4). We also work on a Keras2RTL component which enables converting a Keras model into 
something usable by the FPGA platform (see Honir, task 4.4) 

Efficient inference pipeline: Scortex is currently working on an end-to-end library called “sensei” to 
acquire images, apply preprocessing and deep learning networks as well as post processing on top of 
them. This library supports asynchronous and parallel inference on GPU so that real time capabilities 
can be achieved in a robust fashion. 

Scortex now uses its “bonzai” library to train models and its “sensei” library to deploy such models at 
its customers. Scortex is ready to scale the methodology to the use case partners who have need for 
fast deep learning technology. 

TMLL is used by TEKNOPAR for comparing the different machine learning models. While setting up a 
machine learning model, it is difficult to predict which model architecture will provide the best result. 
The parameters which affect the model architecture are called hyper-parameters. For each machine 
learning algorithm utilized, hyper-parameter tuning has been performed by first comparing the 
previously determined success criteria, and then selecting the best result combination by examining 
the results obtained through testing possible combinations of the hyper-parameters' values in a certain 
range. For each ML algorithm used, additionally, various parameters - such as precision, recall, F1 
score, error detection rate, total training time, total test time, average training time, Type 1 error, Type 
II error - were calculated and displayed to the user. 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
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The user is offered a voting option to decide on the algorithm to use. The application enables users to 
select the machine learning model for a given set of data, and then compares the output using 
graphical elements. For developing and testing purposes, the AML Workshop dataset from Microsoft 
(AML data set) is used in TMLL module. The Scikit-learn library has been used for Random Forest, 
Gradient Boosted Tree, MultiLayer Perceptron, Support Vector Machine, and K-Nearest Neighbors. For 
the LSTM, Keras has been used. 

 STEEL4.0 TMLL of TEKNOPAR, which is under continuous development, is briefed in Appendix. 

6.3 Progress beyond State of the Art or State of the Practice  
The work done by Scortex on “Batch Norm Folding” has been published on its blog:  
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/ (Figure 3). 
 

 
Figure 3. Tech Blog entry of Scortex.  

It is now one of the most read articles on the subject. As of 2021/01/19, it has been read by 1683 
different people according to Scortex website statistics. Readers came from recognized industry 
companies such as: Sony, Nokia, Daimler, AMD, Intel, Thales, Huawai, Zoom, ETH Zurich, Panasonic, 
etc. 

By combining several ideas described above, Scortex managed to deploy a station able to perform a 
complex inspection of rotating parts. The Scortex box handles the inspection of 3 parts per second 
which requires inference of 300 (3 x 100) 1280x640 grayscale images per second. To the best of our 
knowledge, Scortex is the only company able to achieve such performances in a real-life deployment. 

6.4 Summary of the key achievements  
Using Batch Norm Folding, we were able to reduce the inference time of light architectures by 30%. 
The work is summed up on Scortex blog: 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/. 

We managed to design and quantize efficient architectures. Once deployed on FPGA, we can achieve 
120 FPS (frames per second) on 1920x1200 RGB images. Deployed on 2 GPUS, we achieved 300 FPS 
on 1280x640 grayscale images. 

6.5 Next steps 
In the following months, Scortex plan to continue the FPGA library to make it more versatile and more 
robust so that it could be easily used internally and externally. This work is mostly related to task 4.4 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
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but does need some inputs from the task 5.3. The automatization of the conversion process of a 
topology and the weights from a neural network into a hardware designed platform will be done in 
the next steps (improvement of the Keras2RTL component). This will ease the use to the process and 
reduce the time needed to transition from a functional neural network design on computer to one 
running on an FPGA.  

The use of very light architectures can be an issue because of the lack of expressiveness and capacity 
they lead to. This is something that we have observed in practice. We plan to rework our architectures, 
typically using recent architecture blocks from the literature such as Efficient Net / efficient det 
MBconv, SE and SK blocks, or more generally the mechanism of attention (since we anticipate some 
transformers breakthrough computer vision in 2021). Part of the work detailed above is still 
experimental. Packaging and standardization work will be necessary to make the methods more 
“production-ready”. Finally, these methods have been proven on internal datasets and now need to 
be tested and benchmarked on the pilot data, deep learning tasks, and network architectures.  

6.6 Demonstrator Scenario/Description/Video 
Scortex released a video of the first iteration of the FPGA platform on the COGNITWIN YouTube 
channel: 
https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A 

7 Hybrid Digital Twins 
A Hybrid Digital Twin is an extension to the plant Digital Twin where the physics-based model is 
combined with data from the real process and one or more data driven models that adapts and 
corrects the Digital Twin such that it better represents its real-world counterpart. 

A definition for a Hybrid Digital Twin as the second layer in a three-layered twin definition was given 
in: 

[ABB+20] Sailesh Abburu et al. (2020) COGNITWIN – Hybrid and Cognitive Digital Twins for the 
Process Industry. 2020 IEEE International Conference on Engineering, Technology and 
Innovation. 

“An extension of Digital Twin in which the isolated Digital Twin models are intertwined to recognize, 
forecast and communicate less optimal (but predictable) behaviour of the physical counterpart well 
before such behaviour occurs. A Hybrid Digital Twin integrates data from various sources (e.g., sensors, 
databases, simulations etc.) with the Digital Twin models, and applies AI analytics techniques to 
achieve higher predictive capabilities, while at the same time optimizing, monitoring, and controlling 
the behaviour of the physical asset. A Hybrid Digital Twin is typically materialized as a set of 
interconnected models, achieving symbiosis among the Digital Twin models.” 

7.1 Objectives, challenges and components  
The main goal of Task 5.4 is to contribute to the CogniTwin toolbox with tools which support the 
creation, use, and exploitation of Hybrid Digital Twins. The tools will originate from the development 
of twins in the pilots. Certain, suitable elements will be extracted from the pilot twins, generalized, and 
made available as tools for the other pilots and eventually other processes.  

https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A
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The focus of the task is on the following aspects: 

- Enhancement of the digital twin technology by combining physics-based models with data 
driven models, including AI and machine learning functionality 

- Development of soft sensing applications based on digital twins 
- Development of advanced, predictive, and self-learning control applications based on digital 

twins 

So far, the main development in the pilot cases has been on the development and tuning of different 
process models, so hybridization of the models has not yet been addressed in all of them. 

7.2 Detailed description of the activities performed  

7.2.1 Building Physics-based Models 
Cybernetica’s work has been focusing on the Elkem and Hydro pilot cases. A large part of the work 
effort has gone into building physics-based models for these two processes and to tune the model 
parameters such that the models replicate the physical processes as correctly as possible. The physics-
based models for both pilots have been implemented as extensions to the tools Cybernetica CENIT, 
Modelfit, and RealSim. The extensions are in the form of application-specific modules and have been 
implemented in C/ C++ using a pre-made application component template. Cybernetica Modelfit has 
been used together with logged data from the processes for offline tuning of the model parameters, 
and the models now represent the processes quite well.  

Cybernetica CENIT will be used to run the models online for both the Elkem and Hydro pilots as soon 
as the required IT infrastructure is in place. The plan is to extend the physical models with data driven 
models which continuously adapt the twins to the real processes. Extended Kalman Filter or Moving 
Horizon Estimator will be considered for updating these models. 

Soft sensing of unmeasurable variables in the processes will then be possible, and later also extensions 
for model predictive control will be considered. In the meantime, Cybernetica RealSim has been used 
as a plant replacement simulator for testing different scenarios with the twins.  

In the Hydro pilot, the process model will receive meteorological input data in addition to process 
measurements. The weather data is fetched from a public API by a specific component developed by 
SINTEF (described in deliverable D4.2). In the Elkem pilot, it is planned that the process model will 
receive estimated parameters as inputs from a data-driven model (AI) of the up-stream furnace 
process section. 

The generic part of Cybernetica CENIT has been extended with functionality for evaluation of the 
quality of both the input signals and its own calculation results. In the case that invalid input or 
calculation results are detected, the application will send a notification of this via an OPC connection. 
Thus, the plant operators can be notified, and a proper fallback solution can automatically be activated. 
This extension forms an important foundation for adding more sophisticated error detection and self-
examination algorithms, like the proposed Cognitive CENIT extension, described in the Appendix. 

7.2.2 Bedrock Toolbox 
The Bedrock Toolbox code repository by SINTEF has since the last milestone undergone restructuring 
to allow for improved configuration and remote deployment.  The updated code structure allows for 
easy addition of new components to the toolbox. The Bedrock Toolbox has during 2020 been extended 
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with more components. The underlying components in the bundle of the updated repository are still 
containerized, but the deployments are now centrally configured from a hierarchy of Ansible 
playbooks. This enables deployment and administration of multiple remotely installed instances on 
different servers and projects while allowing for flexible selection of modules in customized 
deployments based on the needs. It also enables options for cloud deployment for work with external 
partners. A deployed central Bedrock Toolbox server allows for collaborative work on joint datasets 
with various compute modules interacting with a shared database. Figure 4 shows an example of a 
BedRock deployment. 

 
Figure 4 . Data workflow between physical process plant and compute. 

Application of a central time series database for data workflow on treatment of process data allows 
for structuring and visualization of data from sensors and models/simulators. Process data inputs to 
the database can be from real-time collection of process plant time series or from historical datasets. 
This approach enables easy access and structuring of time series for iterative data analytics and 
machine learning of raw data, filtered data, or calculated/simulated/predicted datasets. Two-way 
communication between the physical plant or simulator and the compute modules enables return of 
setpoints or decision support data to the process control. Advanced process control can be explored 
by replacing the physical plant with a dynamic simulator when available (software-in-the-loop). The 
application of OPC UA historian and the establishment of additional OPC server tags for calculated 
parameters is an option for a direct link between process plant and compute modules, however the 
application of dedicated databases in the compute framework allows for flexibility and is beneficial in 
the development phase of digital twin modules. 

Data from the Sidenor pilot, currently present as Excel export files from the plant, will be imported and 
structured in a relational time series database. This will enable easy structuring of the data set for 
application in hybridization between physics-based models and machine learning. Implementing the 
developed models in the above framework is coming up. 
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7.2.3 Pragmatism in physics-based modelling  
Pragmatism in physics-based modelling (PPBM) has been applied and further developed in the Sidenor 
pilot case. The industrial task is related to the lifetime of a ladle in the steel industry. A ladle is a 
container for liquid steel, typically filled with 100 – 180 tons of liquid steel. For each use of a ladle the 
refractory will be eroded and after N uses the ladle must be taken out of use in order to avoid serious 
accidents (more than 100 tons of extremely hot liquid steel, flowing out and onto the floor in the plant). 
The task is to find a method to extend the number N, without compromising with safety. 

The PPBM process was applied to the above-mentioned industrial case. Based on access to offline data 
from the plant and multiple discussions with the pilot owner, a quite clear picture of the challenge 
could be formed. A physics-based model was proposed and implemented. The numerical 
implementation, written from scratch, has been done using Python 3. The model is aiming to predict 
the temperature evolution in the system (steel, slag, refractory) and the erosion evolution of the wear 
bricks of the refractory. A number of challenges have to be faced due to the complexity of this task: 

i) The model must be fast. Therefore, it is designed locally (at each height) to be one-dimensional 
through the refractory. Conservation equations for energy of metal, slag, and refractory (quasi 2D) are 
included, ii) A ladle is going through multiple operations for each use. This requires specific model 
boundary conditions for each part of the sequence, iii) The boundary conditions (energy and 
composition of dissolved species) are complex due to applications of gas-induced stirring, natural 
convection, radiation (only heat), and use of submerged electrodes in the slag, iv) The addition of 
alloying material and slag formers consume considerable heat. This necessitates an enthalpy-based 
description of the slag and metal that can handle heats of phase transition. Thermodynamic data is 
not readily available for such systems, v) The erosion of the refractory is driven by thermal shocks and 
dissolution of refractory when contacted by slag and metal. The solubility of refractory components 
into the slag and metal can only be obtained from thermodynamics software, built on lab experiments, 
vi) The mass transfer is depending on natural convection and forced convection due to application of 
gas (bubble) stirring. Both this and the additional impact of surface waves must be represented, and 
vii) In addition, there are processes that must be considered (waiting times between uses, use of 
burners and lids) and mistakes in the data input given by operators. 

The model should be fast enough to predict the thermal evolution and erosion losses during the 
lifetime of the ladle, and this to happen in an acceptable time (<1 h). From the learnings, indicated by 
i) to vii) above, several general recommendations for improvements of the PPBM can be extracted and 
documented for future application.  

The model is currently predicting temperature but is still under development. The erosion model has 
not been activated. This will be implemented and planned to be in operation during 2021. Due to the 
complexity of the modelling tasks, still significant simplifications have to be introduced. By going 
through this process, the learning will be generalized and included into the PPBM tool. 

Publication of results. The details of the learnings and recommendations for an improved PPBM tool 
will be published in a paper, dealing mainly with the methodology and the process for developing 
pragmatism-based physics models. In a second paper we will describe the physics-based model in full 
detail and show validation of the model against data. 

After this, papers on hybrid and cognitive twins, where the focus will be on methods to exploit the 
interaction between physics-based and data-based (ML/AI) methods, will be produced. 
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The results from the model will be shared at github.com at the end of the project. This will include 
source code and documentation. This code will be available under an open-source licence and can be 
reused for similar projects in the metals industry and other related industries. 

7.2.4 FUSE tool 
The FUSE tool fuses a physical process model with process data in stochastic nonlinear state 
estimation. The tool is developed for the Sumitomo pilot (see D3.2), using a dynamic physical model 
for a boiler furnace, data from the Sumitomo pilot, and UKF.  

The tool is described in more detail in the Appendix, in D5.2 Task 5.1 (“Plant DT with ML/AI”). The 
physical model tuning results were published in Ikonen & Selek (2020). The applied view to the tool is 
reported in D3.2. A generalized FUSE-tool is provided for the COGNITWIN toolbox, providing an 
implementation of UKF, with a possibility to flexibly use a physical model and select 
input/measurement signals. 

The SubFUSE tool is an alternative approach for solving the Sumitomo pilot. The SubFUSE uses 
subspace identification for data-driven construction of a plant model. As the outcome is a linear state-
space model, a Kalman filter can be used for state estimation. The approach has been tested in 
simulations, see Task 5.1 for details.   

7.2.5 Hybrid model designer for StreamPipes 
One of the most challenging tasks in the hybrid modelling is enabling an efficient creation of hybrid 
models, since it requires an efficient orchestration. We argue that StreamPipes is a very suitable 
framework for such a hybridization due to its pipeline-oriented nature. 

This component uses these functionalities to support the creation of hybrid models. 

In the following figure we illustrate the integration of two data-driven models (developed for the 
Sidenor pilot), whereas the output of one model is used as an input for the other model. 

 
Figure 5. Integration of two data driven models. 

As shown in Figure 5, the output of one model is used as an input for another model. There can be 
different ways of connecting and StreamPipes orchestration seems to be suitable for any meaningful 
combination of models. 
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7.2.6 TMat-SynDat 
By combining two related models - a data driven-model and a (physics)-driven 1st order principal model 
- a hybrid digital twin has been generated. 1st order physics-driven models can be beneficial to the 
data-driven ones in many ways including but not limited to: 

- Synthetic data generation in case of poor data: An example is training a machine learning pipeline for 
the predictive maintenance. Generally, when a machine is new, it does not have historical sensor data 
that can be used to train a data-driven approach. When carefully designed, the virtual physics-based 
twin can generate the needed supervised training dataset. 

- Data-Driven Digital Twin quality control: When operating a critical infrastructure or asset, it is seen 
as a risky approach to fully rely on data-driven approaches in taking real-time decisions. To mitigate 
these risks, it is possible to build a control pipeline in which the physics-based model will be used as a 
controller to the data-driven predictor. A broker needs to be designed to integrate the two approaches 
in a seamless way. 

Data-driven models can be used to continuously calibrate physics-based models. Machine 
degradation, wearing of parts, environment, and other factors impacts the overall process 
performance over time. The state of the practice is that an operator will manually recalibrate the 
control system when a deviation is identified. Such manual operation can be replaced by setting a data-
driven model to identify and calibrate critical process variables that will be fed into a physics-based 
model, which in turn will optimize the control system of the process. 

A hybrid digital twin for predictive maintenance of a component which is composed of electrical and 
mechanical elements has been generated. The hybrid twin includes the sensor installed on the 
machinery. 

TMat-SynDat is a synthetic data generator. Developed in MATLAB, TMat-SynDat enables synthetic data 
generation for common electro-mechanical parts (electric DC motor and hydraulic shaft). First, the 
physical hydraulic/motor/gearbox models for the plant have been developed. They have been 
developed/implemented using Matlab SimScape with the aim of predictive maintenance purposes. 
Model parameters have been calibrated and simulated. Potential failure scenarios have been 
identified and used in the generation of synthetic data, used by ML/AI algorithms for predictive 
maintenance. The model is enriched with data retrieved from the experts. 

7.2.7 Hydraulic/Motor/Gearbox Models  
Physical hydraulic/motor/gearbox models for the plant have been developed. The models are 
developed/implemented using Matlab SimScape with the aim of predictive maintenance purposes. 
Model parameters have been calibrated and simulated. Potential failure scenarios have been 
identified and used in generation of synthetic data, used by ML/AI algorithms for predictive 
maintenance. The model is enriched with data retrieved from the experts. 

Since the last milestone, sensors have been added to the 1st order principal models. Current and 
temperature sensors have been added to the motor and gearbox model, while a hydraulic press sensor 
has been added to the previously developed hydraulic press model.  

Following the sensor implementations for the models, model parameters have been calibrated and 
the random error sources have been introduced to the model. Thus, the model has been updated to 
be ready for predictive maintenance algorithms by introducing sources of random errors to be used in 
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predictive maintenance, adding appropriate sensors to observe the effect of these error sources on 
important variables of the models and calibrating the geometrical, electrical, and hydraulic parameters 
of components to make the model as applicable and as realistic as possible. 

The TMat-SynDat is described in the component/tool template in Appendix. 

7.3 Progress beyond State of the Art or State of the Practice 
Several physical and data-driven models have been developed for the pilot cases. 

TEKNOPAR has created a hybrid digital twin for predictive maintenance, combining a physical model 
of the process with sensor data and ML/AI algorithms. 

Nissatech has developed a hybrid model designer for StreamPipes. It has been applied in the Sidenor 
pilot to combine two data-driven models. 

Important extensions and modifications for the SINTEF Bedrock, SINTEF Pragmatism, and Cybernetica 
CENIT tools/ platforms have been made that will be used by Task 5.4 later in the project. 

7.4 SIDENOR Pilot 
The pilot is addressing the wear of refractories in steel ladles and focusing on increasing the ladle 
lifetime and thereby cutting the costs of the ladle operations. The pilot goal is to be able to predict if 
a ladle can be used safely at least one more time before relining.  

Operational data have been supplied to the development team, including both static (acyclic) and 
dynamic (cyclic) data from the ladle operations. Sidenor plans to set up a mirror of their internal data, 
which also can make real time data available to the development team. 

The toolbox elements, being developed and used in the pilot, are "Pragmatism in physics-based 
modelling" (PPBM), the " Hybrid model Designer for StreamPipes-based Toolbox ", " Set of adapters 
for StreamPipes-based Toolbox " and " Services for resolving tool wear / equipment degradation 
problems in process industry". In addition, a number of classical machine-learning methods (Python 
libraries) are being applied.  

The work has demonstrated the importance of the project development team having a very good 
understanding of the process. This is a prerequisite for building the best possible model. The Sidenor 
data is typical for this type of heavy industry and cannot be used directly without qualified pre-
processing. It is therefore critical to have a close interaction with the pilot owner. 

The Sidenor pilot case is progressing as planned and first model predictions have been demonstrated. 
The development team builds one physics-based model of the erosion process. The thermal part of 
this model has shown that it is possible to obtain a mapping of the internal erosion state of the ladle 
by combining a physics based model and thermal images of the outside wall of the ladle. This possibility 
was however not included in the scope and plans for the pilot, but may be pursued at a later stage. 
The physics-based model is now being extended with erosion predictions. 

In parallel, ML-based methods on the provided data indicate that it is possible to predict the probability 
for a safe next heat for the ladle, based on data. 

Next steps are to combine the methods mentioned above, to arrive at a hybrid twin that exploits the 
best of the different approaches. Hybridization methods, based on StreamPipes, are under 
development, and are planned to orchestrate the hybridization, and later, the cognitive twin. 
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7.5 Summary of the key achievements 
Task 5.4 has been involved in the development or extension of the following tools: 

• several physics-based process models for the pilots 
• improvements to the Bedrock platform 
• improvements to the Pragmatism methodology 
• input signal and calculation results validation (Cybernetica CENIT extension) 
• FUSE/ SubFUSE 
• Hybrid model designer for StreamPipes 
• Synthetic data generator for DC motor and hydraulic shaft 

7.6 Next steps 
As the model development in the pilot processes goes forward, Task 5.4 will continue to monitor how 
the different models are combined and used together as Hybrid Digital Twins in the pilots. Suitable tool 
candidates will be identified from the pilot tasks, and generic elements will be extracted, generalized, 
and finally implemented as tools in the toolbox.  
The possibility to use the tools in other pilots will also be investigated. 

7.7 Demonstrator Scenario/Description/Video 
The Pragmatism-based model for the Sidenor pilot is currently predicting temperature. The erosion 
model has not been activated. Videos demonstrating the use of the model and how CENIT is used to 
build a hybrid digital twin in the Hydro pilot case are available on the COGNITWIN YouTube channel: 
https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A. 

8 Cognitive Digital Twins  

8.1 Objectives, challenges and components   
The main objective of this task is to design the cognition process as a part of industrial decision making 
and its realization in Cognitive Twins. During the 1st year of the project, we reviewed the relevant 
definitions in the literature and documented the results of this analysis in our paper “Cognitive Digital 
Twins for the Process Industry” accepted for the Twelfth International Conference on Advanced 
Cognitive Technologies and Applications (COGNITIVE 2020). We defined the cognitive digital twins as 
an extension of digital twins with cognitive capabilities in the context of the process industry.  

For realizing cognitive digital twins in the process industry, an essential aspect is to devise the 
architectural building blocks that can serve as a foundation for cognitive systems in this domain. We 
provided our architectural perspective on the type of cognitive services needed for Cognitive Twins in 
the context of process industry. The proposed architecture provides a blueprint, supporting a wide 
range of abilities similarly to human capabilities. In the following figure (Figure 6) we illustrate the role 
of knowledge in the Cognitive Twin (Layer in the Toolbox).   

https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A
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Figure 6. The role of Knowledge in the Cognitive Twin. 

There are many definitions of the cognition, but for this paper we focus on that derived from the 
cognitive computing domain, which are related to reasoning and understanding at a higher level, in a 
manner that is analogous to human cognition. We specialize this view for the complex cases where 
there is a lot of uncertainties inherent in the available data and models. We expect that a human-
cognition-like approach will enable a broader, as well as a more connected view on the data and 
models. The key advantage is the introduction of new knowledge that should provide missing insights 
for resolving original cases, as illustrated in Figure 7. 
 

Figure 7. Cognition extending Hybrid Twin solution. 

As presented in the figure, we assume that “intelligent methods”, which can be a part of Hybrid Twin, 
support the development of a solution that “maps” inputs into outputs. However, the solution might 
be missing a high accuracy, due to not having enough data in the training set. As illustrated, cognition 
supports augmenting the input data, as well as intelligent methods with new knowledge (gathered 
directly from the expert or some other sources), with the goal to generate new outputs (with a higher 
accuracy). Therefore, we argue that the uncertainty inherited in the problem (e.g., missing data, 
models) can be resolved by augmenting data and intelligent methods to compensate missing 
information. Notice that this process is not about getting new data, but rather new insights about 
existing data (through cognition). 
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Therefore, the main role of cognition services is to enable understanding the monitored system’s 
behavior under various types of uncertainties/unknowns, to support reliable decision making (by 
human experts) or control (in autonomous systems). Uncertainties can be of different types, but we 
focus on the two most important types from the DT point of view: lack of data and unavailability of 
models regarding the current system behavior. It means that the current system behavior cannot be 
understood neither a) by analyzing past data, since the relevant data is missing nor b) by the 
simulations of numerical models, since these do not exist (or are not accurate enough). In such cases, 
it is important to compensate these unknowns by introducing new processing steps that will gradually 
improve the understanding of the system behavior, until this understanding is enough for the 
desired/requested action. This process we consider as cognition, where the processing steps are part 
of cognition services.  

The main challenge is that the real time data is not enough for understanding the current situation 
(regarding the underlying problem). The main goal of the cognition service is to enable resolution of 
the original problem by introducing new knowledge which provides new insights for the model 
learning/creation processes, e.g. introduction of some constraints in the interpretation of originally 
collected data. Therefore, cognition is working on top of existing models, which can be derived using 
AI methods, extending the intelligence with the with the deep understanding, and reasoning 
strategies.  

We can materialize this general process by following four steps (cf. Figure 6): (1) Inserting new 
knowledge (relevant for the problem) (2) Learning more accurate models, by applying new knowledge 
(3) Better situational understanding (e.g. lower interpretation uncertainty), by applying new models 
(4) Planning actions for resolving the problem, based on improved situational understanding.  

We describe these steps in the following: Firstly, by knowledge extraction and knowledge acquisition, 
for gathering knowledge from the existing data sources (e.g. unstructured and semi-structured 
content) and from experts, respectively. The goal is to collect knowledge related to the uncertainties 
in data and models. Since the process is related to supporting human-like understanding, it is 
important that the process is driven by the well-defined knowledge structures (like knowledge graphs) 
which provide a general description of the domain.  Indeed, one of the main characteristics of the 
human cognition is a very fast discovery of hidden connections between arbitrary information items, 
which is based on large memory maps. Secondly, by learning, which encompasses applying new 
knowledge to the existing data, models, and methods, with the goal of learning more accurate models 
(from existing datasets). There are three main activities: transforming existing datasets in the anomaly-
free ones, which can be used for learning more accurate models, improving used learning methods by 
introducing some knowledge-driven constraints in the learning process, and adding new methods 
which can complement existing ones in the context of the above-mentioned uncertainties.  Thirdly, 
understanding, which is related to applying new models on real-time data to get a better interpretation 
of the situations of interest (e.g. problem/anomaly detection). We assume that, as in the human-like 
cognition, this process can be iterative, i.e. understanding processes can generate data which can be 
used for improving the learning process. Finally, planning, for defining optimal actions based on system 
behavior understanding. 

There are many challenges to be addressed to realize the vision of the cognitive digital twins. The 
most important ones are discussed below:  
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Knowledge representation challenge.  The first question to be clarified is how knowledge can be 
formally represented to enable a digital twin to learn from experience and behave intelligently like a 
human. All cognitive services mentioned above are heavily dependent on this decision.  

The more complex the representation of knowledge is, the more difficult it is to acquire this knowledge 
automatically. However, more advanced reasoning services can be offered. Our goal is not only to 
support the decision-making process, but also to increase its accuracy and human-acceptance. Thus, 
both declarative and procedural knowledge is needed, as questions like ‘what?’, ‘how?’, ‘when?’, ‘in 
what context?’, ‘what-if?’etc. should be answered. 

Several knowledge representation formalisms seem to be suitable for cognitive digital twins. To clearly 
separate the general knowledge from the specific knowledge, it makes sense to structure the 
knowledge into two parts: ontologies for representing the domain knowledge and rules for 
representing the problem-solving knowledge.  

To better understand a current situation (i.e. the asset itself, the context in which it is used, its 
environment, etc.), we consider using ontologies. They are a knowledge representation method that 
is on one hand expressive enough and on the other hand extensible. They could be used: 

• to represent the domain knowledge which includes the vocabulary domain-experts apply 
(e.g. brick wall: types of bricks - e.g. red shale, clay bricks, etc. - the features of bricks - 
thermal shock resistance, mechanical strength, etc. - and so on) as well as the constraints 
(e.g. temperature threshold at which the stone is unusable)  

• to take into account existing standards for the domain  

• to support collaboration between digital twins, e.g. for cooperative execution of complex 
tasks.  

Although simple constraints (e.g. temperature of a ladle must not exceed a certain threshold) can be 
modeled by using ontologies, there are many scenarios where complex (functional or behavioral) 
constraints should be considered (e.g. calculations including results of different physics-based, AI, 
statistic-based, etc. models). To mimic the reasoning of a human expert in solving knowledge intensive 
problems, there is a need to use rules (e.g. event condition action rules). Rules should be used even in 
the presence of incomplete and/or uncertain information to (i) focus the attention to the most 
important aspects and (ii) collect additional, goal-oriented information relevant for a given context. 
This can be done by mapping raw sensor data and/or outputs of different digital twin models into 
actions (such as control decisions or recommendations for human operators).  

Knowledge acquisition challenge. The second challenge is to collect knowledge which is not only 
spread in different documents (e.g. excel tables) and software systems (e.g. error reports in MES 
systems), but could be also implicit as it is based on personal experience which is even more difficult 
to express. To make the tacit knowledge explicit and machine-understandable as well as -processable, 
different cognitive technologies could be used, such as NLP, speech recognition, etc. For example, one 
possibility is to apply a speech-to-knowledge approach, as speech is relevant for the shop floor workers 
for short information interchange allowing hands-free conversations. Since the multilingual speech 
functionality in recent years became a commodity available on smart speakers, mobile phones, and 
computers, the pre-existing solutions could be reused and added to the cognitive digital twin to enable 
speech communication channels with human operators. Ontologies can help achieving higher accuracy 
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of resulting rules, as synonyms, multilingual aspects, context, etc. can be taken into account. In this 
way, the domain and problem-solving knowledge will be connected. 

Knowledge update challenge. In addition to collecting knowledge, the ability to learn, to unlearn, and 
to continuously update knowledge is crucial for cognitive digital twins to create competitive 
advantage. Knowledge update is however a complex process, which includes knowledge extension 
(e.g. adding a new entity in the ontology for new types of bricks), knowledge forgetting (removing an 
ontology entity representing material not used anymore for bricks), and knowledge evolution (e.g. 
changing the maximum temperature of a ladle). Similar strategies can be applied to the problem-
solving rules. The challenge lies not only in ensuring the consistency after applying a change, but more 
importantly in discovering the need for a change. This can be done by applying usage-driven strategies 
(e.g. by monitoring whether the proposed decisions were accepted by domain experts) or by using 
structure-driven methods (e.g. by using ontology-based reasoning to discover conflicting rules or 
generalized/specialized rules). 

8.2 Detailed description of the activities performed 

8.2.1 Cognitive CENIT 
Cybernetica has started the development of an extension to its software product Cybernetica CENIT 
called Cognitive CENIT, which enables self-diagnosing. A framework for self-monitoring of the model 
predictive control application via stage cost monitoring has been developed and is currently being 
evaluated on a simplified and simulated test process. The framework consists of the following steps:  

• Estimate the measurement error distribution  
• Propagate that noise distribution through the closed-loop model predictive controller via 

Monte Carlo simulations  
• Compare the resulting distribution of the average stage cost from the actual plant. If the 

average stage cost is significantly off from the theoretical distribution, this indicates an error 
in the closed-loop model. This is illustrated in Figure 8: 

 
Figure 8. Cognitive CENIT. 

As shown in Figure 8, analysing the average stage cost distribution in closed loop applications can 
detect anomalies like component failure or model mismatch 
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8.2.2 State Estimation as Part of Plant Monitoring 
The University of Oulu has developed the physical model tuning approaches and model-based state 
estimation tools, reported in T5.1. These tools are to be used for the development of cognitive digital 
twin behaviors. In the considered framework, state estimation will be a significant part of the plant 
monitoring tool, from where further decision support as well as optimization tools for plant operation 
and maintenance are envisioned. The tool is developed in view of experiences and requirements of 
the Sumitomo pilot fouling monitoring and control problem in particular.  

8.2.3 TMat-PdM Predictive Maintenance 
Focused on the NOKSEL pilot case of a metal sheet roller system of spiral welded pipes (SWP), 
TEKNOPAR has worked on related to T5.5. TStreamPipes-ML is developed by TEKNOPAR to apply ML 
algorithms on the stream and to compare the results of the algorithms. The developed data processor 
enables users to select the algorithms to be used/compared and the output is displayed on a 
dashboard.  

TEKNOPAR’s TMat-PdM component which is under continuous development, can be used for 
predictive maintenance of the DC motor, gearbox, and hydraulic press. Different ML models have been 
used by TMat-PdM. TMat-PdM uses MATLAB’s Predictive Maintenance toolbox and 
Classification Learner app. TMat-PdM enables visualization of a confusion matrix for the selected 
algorithms to present the difference between simulation outputs.  

In the related pilot case (the NOKSEL pilot), the cognitive twin will introduce improved decision making 
by integrating human knowledge into the decision-making process. The anomalies, alarms, and early 
warnings of machine and system problems will be tackled by the cognitive twin. The decision-making 
process will emulate the experienced human operator with embedded knowledge base. The cognitive 
twin will augment expert knowledge for unpredictable cases on the digital and hybrid twins. The 
human operator’s knowledge is reflected to process knowledge and physics-based models with 
parametric values as well as thresholds and causality relations. Expert knowledge on the causes of 
breakdowns is collected with the series of the problematic operations and the initial causes which 
trigger the successive reactions. Cognition will be further integrated by making use of the machine 
learning algorithms, ontologies, and knowledge graphs to capture background knowledge, entities, 
and their relationships. Reacting to early warnings, cognitive twins will bring life cycle optimization, 
and suggesting optimized predictive actions will improve operational performance by optimized 
operational parameters and it will also decrease energy usage (Figure 9).  

 TSteampipes-ML and TMat-PdM are detailed in Appendix.  
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Figure 9 Cognition using StreamPipes Toolbox. 

8.2.4 Cognition using StreamPipes Toolbox.  
StreamPipes Siddhi-Processor (SP). Siddhi-Processor's purpose is to extract information and identify 
meaningful events (opportunities and threats), such as patterns, relationship between events, etc. It 
would receive its input from SP element(s), execute written query on received data, and forward 
execution result to other SP element(s). 

 
Figure 10. Complex Event Processing (CEP). 

The role of Complex Event Processing (CEP) in codifying expert knowledge. Siddhi CEP performs 
Complex Event Processing using the Siddhi engine. It provides application of complex logic to the 
“main” outputs of this pipeline (results of various analytical methods). In addition, this element 
provides points of connection for this and previous pipelines – CEP can be applied on outputs of 
multiple pipelines connecting them into one complex pipeline (Figure 10).  

Knowledge/Patterns.  Regarding outputs from data-driven models, MEWMA, and KNN elements, we 
singled out the following queries (patterns) that can be applied:  
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• Test whether there were more than M anomalies in a single heat during a time window of 
length N. For example, if there were more than 10 anomalies in a time window of 5 
minutes, raise a warning. (uses output from MEWMA element)  

• Test whether there were too many anomalies in single heat with the same root-cause. For 
example, if there were more than 100 anomalies with the same root-cause parameter, this 
can indicate some sensor or part of a machine is faulty and should be checked. (uses output 
from MEWMA element)  

• Test whether during last N heats, a cycle is classified as 1 (indicating that the degradation is 
greater than given threshold) with an increasing probability (certainty). This can indicate that 
the ladle will soon be unusable and should be monitored closely or even 
repaired/replaced. (uses output from KNN element)  

• Test whether during the last N heats there were more than M anomalies and that 
cycle was classified as 1 (indicating that the degradation is greater than given 
threshold) - extension to the implemented query in pipeline #2.  

• Test whether during the last N heats there were more than M anomalies and that cycle was 
classified as 0 (indicating that the degradation is lesser than given threshold) - extension to the 
implemented query in pipeline #2.  

8.3 Progress beyond State of the Art or State of the Practice   
Most related work is dealing with the self-awareness of digital twins. There are several systems which 
we briefly analyze in the following text. 
In [Kap+20], a DDDAS system is extended to a self-aware digital twin to support real-time path planning 
of an unmanned aerial vehicle according to its structural integrity. In this work, stimulus awareness 
and goal awareness are implicitly involved. 

In [Rok+20], a dynamic data-driven approach is applied to the digital twin model for 3D printer 
products. The digital twin is a machine learning model that predicts the surface texture and dimension 
of the product to be printed by using environmental parameters from sensors as input. Stimulus 
awareness and time awareness are implicitly involved. 

In [ROß+14], a 3D simulation model is used as the mental model for the path planning of a mobile 
robot. The robot simulates all the possible future paths resulting from different initial parameters. 
Stimulus- and time-awareness are implicitly involved, the latter to predict future path trajectories. 

In [ZHA+20] twins that can exhibit a high level of intelligence are described. They can replicate human 
cognitive processes and execute conscious actions autonomously. The paper brings together the 
concepts of digital twins and self-awareness and discusses how the different levels of self-awareness 
can be harnessed for the design of cognitive digital twins. 

[Kap+20] M. G. Kapteyn, D. J. Knezevic, and K. Willcox, “Toward predictive Digital Twins via 
component-based reduced-order models and interpretable machine learning,” AIAA 
Scitech 2020 Forum, pp. 1–19, 2020. 

[Rok+20] S. Rokka Chhetri and M. A. Al Faruque, “Dynamic data-driven Digital Twin modeling,” 
in Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis, 
Cham: Springer International Publishing, 2020, pp. 129–153. 
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[ROß+14] J. Roßmann, E. Guiffo Kaigom, L. Atorf, M. Rast, G. Grinshpun, and C. Schlette, 
“Mental models for intelligent systems: eRobotics enables new approaches to 
simulation-based AI,” KI - Künstliche Intelligenz, vol. 28, no. 2, pp. 101–110, Jun. 2014 

[ZHA+20] Nan Zhang, R. Bahsoon; G., Theodoropoulos Towards Engineering Cognitive Digital 
Twins with Self-Awareness, 2020 IEEE International Conference on Systems, Man, 
and Cybernetics (SMC), 2020 

8.4 Summary of the key achievements   
There are three key achievements: (1) Initial conceptualization of the cognition, driven by the role of 
knowledge in the cognitive twin layer (Toolbox) (2) Initial realization of the cognition in two pilots. 
(3) Conceptual model for the cognition in the StreamPipes toolbox. 

8.5 Next steps   
Since this task is responsible for the realization of the cognitive twins, which are one of the main 
outcomes of the project, there are several dependencies to other tasks, i.e. the results from these 
tasks should be fed into this one. 
In addition, initial concepts and realizations (as mentioned in previous section) will be further 
developed and validated. 

9 Reflection on the pilots  

9.1 HYDRO Pilot 
There has been good progress in the Hydro case towards developing both physics- and AI-based 
models that can be incorporated into a cognitive digital twin aimed at regulating operation of the Gas 
Treatment Centre (GTC). 

A dynamic physics-based model has been developed and implemented as a Cybernetica Application 
and Model Component. The model has been tuned using Cybernetica Modelfit to best reflect fluoride 
emissions measurements from the GTC and has been shown to accurately follow trends in emissions 
data caused by changes in weather. The model uses input from several sources, including Weather API 
developed by SINTEF which allows searching and collecting weather data made available online by the 
Norwegian Meteorological Institute (MET Norway). Other sources of input data include alumina 
certificates, electrolysis cells, and the GTC itself. A digital twin is ready to be implemented online using 
Cybernetica CENIT once the case can overcome COVID-19 limitations and obtain a virtual machine. 
Process measurements for continuous adaption of the physical model will be taken into consideration. 

A purely data-driven AI model for the process was developed in parallel using the weather data 
collected through the Weather Api developed by SINTEF but has so far been difficult to use to replicate 
process behavior independently, as the measurements recorded in the GTC are influenced by many 
other process quantities apart from just weather. 

An ongoing challenge to the digital twin technology is better understanding the sources of error in 
process measurements, inputs, and the physical model itself. To address this, another ML model is 
under development for analyzing the deviation between process measurements and estimated 
measurements from the physics-based model (residuals). By using both weather data and process 
quantities not included in the physics-based model, an additional ML layer will be put on top of the 
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existing physics-based model and trained to estimate the residuals, to create a hybrid physics-ML 
model boosting the total accuracy.  

9.2 ELKEM Pilot 
There has been good progress in the Elkem Pilot case. A physics-based model has been developed and 
implemented as a Cybernetica Application and Model Component.  The model has been tuned against 
data logged from the process using Cybernetica Modelfit and it reflects the process well.  

Not all measurements were available on OPC, therefore a bespoke Cybernetica OPC UA server was 
created to query relevant databases and publish the measurements to OPC. The digital twin is soon 
ready to be run online using Cybernetica CENIT. Process measurements for continuous adaption. 

A data-driven AI model is being developed to describe the slag amount from the upstream furnace. 
The input time series data are measurements from the furnace and the materials added. Even if the 
current models show some predictive abilities, their results are still quite unreliable. Further 
improvements of the models rely on a better understanding of the process and incorporating more 
input data, like post tap hole measurements from previous tappings. 

Infrared cameras will utilize a machine vision tool to provide additional measurements; most 
importantly temperature of the metal during tapping, refining, and casting. Additional information 
may be extracted from the thermal cameras, for example ladle slag coverage, metal/slag ratio in 
tapping, and chemistry/dynamics during refining. A set of machine vision tools will be developed for 
this purpose, alongside the necessary adapters. 

9.3 SUMITOMO Pilot 
The Engineering pilot (Sumitomo SHI FW) in WP3 considers monitoring and control of heat exchange 
surfaces in biofuel combustion. On-line characterization of the incoming fuel feed is important 
information in fouling monitoring. A state estimation tool was constructed to estimate the uncertain 
input fuel fragments in the fuel. The estimator was based on applying a detailed circulating fluidized 
bed (CFB) furnace model in conjunction with nonlinear bayesian state estimation tool. A generalized 
version of the fuel characterization tool – enabling application of other prediction models and setups 
of plant measurements – was provided for the COGNITWIN toolbox as a set of Matlab code. An 
example of a setup of data communication was demonstrated via an OPC-UA tool, consisting of free 
software (Prosys) and existing properties of Matlab (Mathworks) and StreamPipes (Apache). The tools 
are described in more detail in the Appendices of component descriptions in D5.2 and D4.2. 

The tool promotes the fusion of first principle based physical models with on-line plant measurement 
data. A procedure for fine-tuning the physical model for local plant conditions was suggested, keeping 
in mind the value of the physical model predictions. The state estimation was based on UKF, a modern 
realization of the bayesian state estimation in the spirit of population-based machine learning 
paradigms. The approach provides hybridization of physical knowledge with data, as a service of a 
plant digital twin platform. Among the lessons learned was that the estimation of highly data-driven 
dynamics based on plant operating data is complex in the industrial environment, so ensuring 
robustness of approaches is highly valuable. The fusion of a number of models – including physical, 
grey-box and data-driven, partial and complementary – is foreseen in solving the problems in the next 
phases of the WP3, looking at monitoring of fouling and slagging at the heat exchange surfaces. It is 
expected that the cognitive features of a digital twin supporting integration and decision making will 
play an important role when deriving approaches for the control of the fouling phenomena. This phase 
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eventually expects to look at improvements to automatic control and/or prescriptive maintenance 
procedures. 

9.4 NOKSEL Pilot 
The NOKSEL use case has been progressed as planned. Sensor installations on the SWP machinery and 
related components have been completed. Following the sensor installations, by means of two PLCs 
multi-sensor data were acquired over OPC and passed in MQTT in JSON format. Kafka uses the MQTT 
data. Data consumed by Kafka is stored in Cassandra database. 

Machine learning and deep learning algorithms need big data to be collected. The cognitive digital twin 
for the use case is related to predictive maintenance. The collected data does not have many machine 
breakdowns. Labelling a dataset for failed data is a challenge, not only does it require real data for 
machine failures, but also should expert knowledge be inserted into the models. While working, a huge 
amount of data is collected. Missing failure related real data has been overridden by means of a tool 
used to generate synthetic data as close as possible to the real cases. To cope with the missing data 
challenge, a model-driven twin is developed and integrated together with the data-driven model, as a 
result a hybrid digital twin has been generated. 

9.5 SAARSTAHL Pilot 
There has been substantial progress in the Saarstahl use case related to the installation of optical 
tracking sensory hardware onsite at the Saarstahl production facility, the implementation of 
integrational components that allow the interoperability of the optical tracking system described in 
the Use-Case with Saarstahl production planning systems, and the photogrammetric capturing of the 
Saarstahl production plant to form a generative 3D model allowing the creation of training data for a 
tracking system.  

A technical issue for the Use-Case is that from the realizable camera angles, the rolled bars cannot be 
separated optically. This means that rolled bars overlap in the image. A consequence is that the 
envisioned software architecture consisting of a neural network for the semantic segmentation (i.e. 
pixel-wise labelling) of rolled bars, followed by a manually programmed component for the linking of 
bars to sequences, will not work. The reason is that for overlapping bars, a semantic segmentation will 
lose the information that the two objects are separate bars – information that cannot be retrieved 
later. Rather than using this two-component approach, we will need to shift more responsibility to the 
machine learning system by using either a network from the class of multi-object detection and 
localization networks, or instance segmentation networks. Multi-object detection and localization 
networks means that the output of the network is a list of objects, each specified by a label and a 
bounding box. The technology is well understood and mature, but is likely to encounter problems with 
the very elongated shape of the rolled bars, which will lead to a very high degree of overlap between 
the bounding boxes. Instance segmentation means that the output of the network is a label per pixel 
(as for semantic segmentation), but different instances of the same object class are recognized and 
receive separate labels. The technology is more promising for very elongated objects, but in general is 
less mature and less understood, leading to a higher development risk and effort. A consequence for 
our toolbox components is that Neuroscope will be extended for support of the respective network 
types.  

  



 DT-SPIRE-06-2019 (870130) Deliverable D5.2  

Classification Public Page 36 of 85 

10 References 
 

S. Joe Qin & Leo H. Chiang (2019) Advances and opportunities in machine learning for process data 
analytics. Computers and Chemical Engineering 126, 465–473. 

Timur Bikmukhametov & Johannes Jäschke (2020) Combining machine learning and process 
engineering physics towards enhanced accuracy and explainability of data-driven 
models. Computers and Chemical Engineering 138, 1–27. 

Enso Ikonen & Istvan Selek (2020) Calibration of physical models with process data using FIR filtering. 
Australian and New Zealand Control Conference, Gold Coast 26-27 Nov 2020, 143–148. 

Enso Ikonen & Istvan Selek (2020) Calibration of physical models with process data using FIR filtering. 
Australian and New Zealand Control Conference, Gold Coast 26-27 Nov 2020, 143–148. 

Schorr, C., Godarzi, P., Chen, F., Dahmen, T. (2021) Neuroscope - An explainable AI toolbox for semantic 
segmentation and classification of deep neural nets, in: Applied Sciences, Special issue on 
explainable artificial intelligence (accepted for publication). 

Sailesh Abburu et al. (2020) COGNITWIN – Hybrid and Cognitive Digital Twins for the Process Industry. 
2020 IEEE International Conference on Engineering, Technology and Innovation. 

M. G. Kapteyn, D. J. Knezevic, and K. Willcox, “Toward predictive Digital Twins via component-based 
reduced-order models and interpretable machine learning,” AIAA Scitech 2020 Forum, 
pp. 1–19, 2020. 

S. Rokka Chhetri and M. A. Al Faruque, “Dynamic data-driven Digital Twin modeling,” in Data-Driven 
Modeling of Cyber-Physical Systems using Side-Channel Analysis, Cham: Springer 
International Publishing, 2020, pp. 129–153. 

J. Roßmann, E. Guiffo Kaigom, L. Atorf, M. Rast, G. Grinshpun, and C. Schlette, “Mental models for 
intelligent systems: eRobotics enables new approaches to simulation-based AI,” KI - 
Künstliche Intelligenz, vol. 28, no. 2, pp. 101–110, Jun. 2014 

Nan Zhang, R. Bahsoon; G., Theodoropoulos Towards Engineering Cognitive Digital Twins with Self-
Awareness, 2020 IEEE International Conference on Systems, Man, and Cybernetics 
(SMC), 2020 

 

  



 DT-SPIRE-06-2019 (870130) Deliverable D5.2  

Classification Public Page 37 of 85 

11 Appendix 1.  Toolbox components 
 

Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
STEEL4.0- ICVP: Industrial Control and Visualization Panel 
Defined in Task 
T5.1 
Short Description – incl. Purpose 
STEEL4.0-ICPV supports the digital twin by means of visual components presenting the generated 
data which is retrieved from, and processed within other STEEL4.0 components.  

The purpose of STEEL4.0-ICPV is to visualize the digital twin. ICPV visualizes the historical, real time 
data as trend graphs and status reports by means of different types of graphical elements. Both 
real-time and processed information that are used for condition monitoring and predictive 
maintenance of SWP are visualized by ICPV. 

Progress since last milestone 
Visual components of all of the SWP machinery parts were prepared.  
GUI designs (including the icons, graph types, dashboard elements, etc.) for the display screens 
were updated, graphical elements to display real-time and calculated fields have been changed.  
AI/ML related elements are visualized on GUIs of ICPV. 
Accepted Proceeding Paper including STEEL4.0 Digital Twin (related to ICPV elements): 

Albayrak, Ö., P. Unal “Smart Steel Pipe Production Plant via Cognitive Digital Twins: A Case Study 
on Digitalization of Spiral Welded Pipe Machinery” has been accepted for publication in the 
Proceedings of the ESTEP Workshop on Impact and opportunities of AI in the Steel Industry. 

Examples of usage / illustrations 

 

Figure: ICPV Sample GUI for External Welding of SWP displaying Real-Time sensor Data. 
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Figure: Real-Time ML Sample GUI visualized by ICPV. 
Interfaces  (in/out) – system/user 
ICPV uses real time sensor data and predictions as input and displays them in the forms of visual 
elements to the users. 

Subordinates and platform dependencies 
Being a web application, ICPV is platform independent, it can run on many different types of 
browsers including Google Chrome, Safari, Microsoft Edge, Mozilla, Opera, etc. 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to license 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 5-6 running to be TRL 7. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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Component/Tool description 
Component/Tool/Method/Framework/Service Name 
MAI - Collection of weather data 

Defined in Task 
Task 5.1: Plant Digital Twins with ML/AI 

Short Description – incl. Purpose 
The MET API Interface (MAI for short) is a user interface to FROST, the API developed by the 
Norwegian Meteorological Institute (MET), which enables public access to weather data. MAI is a 
software bundle written in Python and is intended to be used as a standard Python module. 

The purpose of MAI is to simplify data retrieval from FROST by providing a streamlined user 
interface. A user can select a location, a time interval, and a series of measurements, then MAI 
takes care of contacting the correct access point in FROST, submitting a properly composed 
request, as well as receiving and handling the response. MAI allows querying FROST for three main 
purposes: 1) Retrieve all available weather-station names in a given area (at municipality level); 2) 
retrieve a list of all available measurements at a selected location or municipality; 3) retrieve all 
data available for the selected measurements at a chosen location and time interval. The weather 
data is collected in a properly formatted Pandas DataFrame for ease of use. 

The modularity of MAI allows for flexible development and extension of its features. 

Progress since last milestone  
Examples of usage / illustrations 
To allow MAI to access FROST, a user must first register and receive its client ID. This is 
done by visiting https://frost.met.no/auth/requestCredentials.html and registering with 
an email address. MET's API terms of use as well the privacy statement hold in this step. 
After registration, weather data can be retrieved by the user in one simple call to MAI. The figure 
below illustrates a minimal usage example. 

 

Figure: Minimal usage example for retrieving weather data using MAI. 

Interfaces (in/out) – system/user 
The software is intended to be run as a standard Python module, imported in a script and run 
either in terminal or in a notebook. Most functions contained in MAI accept as input location 
names, list of measurements, and time intervals (or a combination of those). The returned output 
can be either messages on the screen containing the requested information, or a Pandas 
DataFrame containing the weather data, formatted with timestamps in rows and the different 
measurements in columns. Errors are handled through descriptive explanations and suggestions to 
the user. 

Subordinates and platform dependencies 

https://frost.met.no/auth/requestCredentials.html
https://frost.met.no/termsofuse2.html
https://www.met.no/en/About-us/privacy
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MAI is available on any platform that can run Python 3.x. 

Licenses, etc.  (free for use in the project) 
none 
TRL for overall component/tool and any parts/subordinates 
none 
References – incl. web etc. 
none 
To be considered in particular for the following COGNITWIN pilots 
Hydro. 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
FUSE  
Defined in task 
5.1 (5.4) 
Short Description – incl. Purpose 
FUSE is a tool for process input and state estimation, fusing plant physical model 
predictions with process measurements. The model and measurements are fused in 
nonlinear state estimation using an unscented Kalman filtering (UKF)-based approach. 
 
In particular, the tool is developed for estimation of combustion boiler input fuel 
composition characteristics. The tool uses a physical model of the CFB boiler hotloop 
(fluidization and combustion) as well as on-line measurements from the process (flue gas, 
furnace temperatures, etc). The approach can be applied for alternative state estimation 
purposes, given that a suitable plant model and measurements are provided. A 
generalized version is under development. 
 
The UKF algorithm is well known and many implementations are available (e.g. in Matlab 
Control System Toolbox and Matlab Central open exchange). The FUSE tool focuses on 
practical aspects: enabling the selection of states/inputs to estimate, measurement 
selection, data validation and reconciliation, physical model tuning, UKF tuning, and 
reduction of computational load, so as to support exploitation of computationally heavy 
physical models in plant operation and control. 
Progress since last milestone 
The tool has been developed (designed, implemented, and verified) after the last milestone in 
2/2020. A paper has been published on the physical model tuning, available in IEEE Xplore (see 
References). 

Examples of usage / illustrations 
The tool originates from solving the WP3 pilot problem on fuel characterization, as a part of the 
heat exchanger fouling monitoring problem. The tool was tuned and tested using real full scale 
boiler plant design and measurement data.  

Figure 1 illustrates the estimation filter outcomes during fuel test experiments.  
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Figure: FUSE fuel characterization during one-week CFB operation. 

The top left picture shows the estimated fuel characteristics as a function of time. The coloured 
lines show the mass flow feed for pure forest wood chips, design fuel mix, and moisture. The black 
lines show the estimated and measured total fuel feed (indistinguishable). The bottom left picture 
illustrates the elementary composition of the estimated fuel feed. The right plots show the 
measured and predicted flue gas oxygen and sulfur dioxide concentrations and furnace 
temperatures during an eight-day plant operation period. The estimated fuel feeds match with the 
feeds during five known test setup periods (3 to 8 hours), also performance outside of test periods 
appears feasible. 

Interfaces  (in/out) – system/user 
The physical model and measurements are set up in the Matlab m-files. Input data 
(measurements) are provided as numerical vectors. Interactive tuning is enabled by Matlab 
interface/graphics. Estimation outcomes are provided as numerical vectors. 

A link with StreamPipes is enabled by an OPC-UA client/server component (see FUSE OPC-UA 
tool). 

Subordinates and platform dependencies 
The tool is implemented using Matlab language (m-files). Matlab from the Mathworks is required 
(FUSE has been tested on Matlab 2020b).  
 
Matlab (2020b) is available on all major operating systems, including Windows 7, Ubuntu 16, 
Debian 9, MacOS 10 and newer. No particular Matlab Toolboxes are required. Open software such 
as Octave is known to be able to interpret m-files, but FUSE-codes have not been tested with 
Octave.  
Licenses, etc.  (free for use in the project) 
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The FUSE code is free for use in the project (contact Enso.Ikonen@oulu.fi).  The CFB hotloop 
physical model is Sumitomo SHI FW Energia Oy proprietary. The plant measurement data in its 
unprocessed form is proprietary of the pilot plant. 

TRL for overall component/tool and any parts/subordinates 
Current state is TRL 5 (validated in a relevant environment) currently being raised to TRL 6 
(demonstrated in a relevant environment). 

References – incl. web etc. 
Ikonen & Selek (2020) Calibration of Physical Models with Process Data Using FIR filtering. 
Australian and New Zealand Control Conference, Gold Coast, pp-143-148.  

The generalized Matlab-tool is available at http://cc.oulu.fi/~iko/COGNITWIN/  

To be considered in particular for the following COGNITWIN pilots 
Sumitomo SHI FW Energia Oy 

 

  

http://cc.oulu.fi/%7Eiko/COGNITWIN/
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
SubFUSE   

Defined in Task 
5.1 / 5.4  

Short Description – incl. Purpose 
SubFUSE is a state estimation (soft-sensory) tool which fuses subspace methods for system 
identification with Kalman filtering. The tool is solely data-driven, it requires IO data 
(measurements) as input. 
 
In particular, the tool is developed for the estimation of input fuel characteristics of 
combustion-thermal power plants. Relying on regular process data including flue gas 
composition measurements, an estimate of the chemical structure of the fuel fed to the 
furnace of a CFB boiler is provided. The approach can be applied for alternative state 
estimation purposes as well, given that a suitable plant model can be generated and proper 
measurements are provided.  
 
The tool has been tested in a simulated environment which aims to replicate the dynamics of 
the pilot problem. Validation of the tool using data from pilot will be conducted in 2021, a 
generalized version will be developed based on validation results. 
 
The tool has been implemented in MATLAB, and is available in script format. 
 
Progress since last milestone 
The tool has been developed (designed, implemented, and verified) after the last milestone in 2/2020.  

Examples of usage / illustrations 
The tool target is solving the WP3 pilot problem on fuel characterization, as a part of the heat exchanger 
fouling monitoring problem. Using IO data pairs of the process of interest, the tool proceeds in two 
steps: first, a sufficient Linear Time-Invariant approximation of the governing dynamics is conducted 
utilizing subspace identification. Once the approximate dynamics is available, a standard Kalman filter 
is used for state estimation.  

For example, Figures 1 and 2 illustrate the performance of the tool in soft-sensing the chemical 
composition of the fuel fed to a CFB boiler. In the learning phase (figure 1) the tool learns to mimic the 
dynamics of combustion. 
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Figure: The identified Linear Time Invariant model (red) of a nonlinear combustion dynamic using IO 
measurement pairs (blue). Training data (left) are separated from the validation data (right) by a black 
line located at timestep 600.   

Based on the IO relationship identified from data, the tool estimates (soft-senses) the chemical 
composition of the fuel using standard flue gas measurement data available at the power plant of 
interest (figure 2). 

 

Figure: Actual (blue) and estimated (red) nitrogen content of the fuel used for heat generation in the 
combustion-thermal power plant of interest. 

Interfaces (in/out) – system/user 
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The tool is implemented in MATLAB script (.m file). Input data (measurements) are provided as 
numerical vectors (matrices). Estimation outcomes are provided as numerical vectors (matrices). 

A link with StreamPipes is enabled by an OPC-UA client/server component (see FUSE OPC-UA tool). 

Subordinates and platform dependencies 
The tool is implemented in MATLAB script (.m file). MATLAB, a product Mathworks is required 
to run the application. (SubFUSE has been tested on MATLAB version 2020b).   
 
MATLAB (2020b) is available on all major operating systems, including Windows, Unix/Linux 
and MacOS. The tool uses the MATLAB core, additional toolboxes are not required. Open 
software such as Octave is known to be able to interpret m-files, but FUSE-codes have not been 
tested with Octave.  
 
Licenses, etc.  (free for use in the project) 
The SubFUSE code is free for use in the project (contact Istvan.Selek@oulu.fi). 

TRL for overall component/tool and any parts/subordinates 
Current state is TRL 4 (validated in lab) currently being raised to TRL 5 (validated in a relevant 
environment). 

References – incl. web etc. 
Istvan Selek (Istvan.Selek@oulu.fi) 
Markus Neuvonen (Markus.Neuvonen@oulu.fi) 

To be considered in particular for the following COGNITWIN pilots 
Sumitomo SHI FW Energia Oy 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
STEEL 4.0- TMLL Teknopar Machine Learning Library 
Defined in task 
T5.1, T5.2 
Short Description – incl. Purpose 
STEEL 4.0- TMLL provides and enables the application of machine learning algorithms and needed 
to perform smart predictive maintenance for the SWP machinery. TMLL utilizes supervised, 
unsupervised, multidimensional scaling, and reinforcement learning algorithms as needed. 

To compare ML models used for predictive analysis, GUIs have been developed. 

Progress since last milestone 
Since the last milestone, frontend and backend software of TMLL were developed. 

Multiple machine learning algorithms have been applied to the data passing through the 
incremental PCA stage to detect anomalies. RF, Gradient boosted tree, LSTM, SVM, KNN, and MLP 
algorithms have been used. 

Unal, P., et.al. (2021) “Data-driven Artificial Intelligence and Predictive Analytics for the 
Maintenance of Industrial Machinery Based on an Event Processing Platform” 

Examples of usage / illustrations 
 

Interfaces  (in/out) – system/user 
IDBA data is used by TMLL as input. TMLL output is visualized by ICPV. 

Subordinates and platform dependencies 
None (platform independent web application) 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to license 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 4 (validated in laboratory environment) running to be TRL 6. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Neuroscope 

Defined in Task 
Task 5.2: Multi-variate Sensor analytics with Deep Learning 

Short Description – incl. Purpose 
Neuroscope is a visual debugger for convolutional neural networks. The software is an interactive 
tool with a graphical user interface intended for interactive use by data scientists on the 
application level.  

The purpose of the Neuroscope software is to allow data scientists to gain insight into the inner 
workings of a neural network, in the case of a system malfunction or misbehavior. The approach 
taken by Neuroscope is a network visualization approach, which means that the weights of the 
inner layers are visualized in a human-interpretable way, which is helpful for understanding why a 
certain misbehavior occurred. In the context of COGNITWIN, the Neuroscope software will be 
useful as part of a software toolbox to make machine learning technology practically useable.  

The software supports the following major features: (1) visualization of network architectures 
loaded from PyTorch or TensorFlow files as graph representation, visualization of trained weights 
by means of (2) activation maps, (3) saliency map, (4) guided back propagation, (5) grad-CAM, (6) 
guided Grad-CAM, and (7) grad-CAM plus. 

The software supports arbitrary networks architectures for classification and semantic 
segmentation of image-like data and is currently being extended to multi-object detection and 
localization architectures. 

Neuroscope is comparable to systems like Tensorboard. The major difference is the support of 
exchangeable machine learning backends (TensorFlow and PyTorch), and the interactive use via a 
graphical user interface. 

Progress since last milestone 
Since the last milestone, we added the following features to the project: (1) support for semantic 
segmentation network architectures, and (2) support for guided Grad-CAM. We are currently 
raising the technology readiness level to TL 7 by bug fixing and implementing smaller 
improvements. We are currently implementing (3) support for multi-object detection and 
localization architectures. 

We are currently writing a publication concerning the software: 

Schorr, C., Godarzi, P., Chen, F., Dahmen, T. (2021) Neuroscope - An explainable AI toolbox for 
semantic segmentation and classification of deep neural nets, in: Applied Sciences, 
Special issue on explainable artificial intelligence (manuscript under review). 

Examples of usage / illustrations 
The example synthetic image of billet rolling process illustrates the capability of Neuroscope to 
analyze a given neural network (top left). The task is to segment the image regarding the class 
“billet” as a component of automatic optical detection and tracking process. Using a saliency 
metric, a diffuse image of pixels sensitive to the class “billet” is computed (top right). The second 
visualization method called guided Grad-CAM shows clear regions of high activation in places of 
billets, as well as some localized areas of low activation (bottom left). The activation map 
computed by Guided Backpropagation method (bottom right) highlights pixels of high activation 
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exactly at billet locations.  The analysis of these 3 types of visualization maps raises the question of 
why the activation maps do not show high activated pixels monotonously within the bounds of 
billets. This observation could be the indicator of a poorly trained deep learning model or scarce 
training data. 

  

 
 

Figure: Visualization of the class “billet“ using Neuroscope: top left: original image, top right: 
saliency map, bottom left: guided Grad-CAM, bottom right: guided backpropagation. 

Interfaces  (in/out) – system/user 
The system features a graphical user interface and is intended for interactive use only. The system 
can load network architectures and weights in TensorFlow and PyTorch format. It is able to export 
visualization results in common image formats.  

Subordinates and platform dependencies 
Neuroscope is available for Linux and Windows. It supports PyTorch and TensorFlow as backends. 

Licenses, etc.  (free for use in the project) 
We provide a community version under GPL. For commercial licenses, contact DFKI directly 
(Tim.Dahmen@dfki.de). 

TRL for overall component/tool and any parts/subordinates 
6, currently being raised to 7 

References – incl. web etc. 
https://github.com/c3di/neuroscope 

To be considered in particular for the following COGNITWIN pilots 
Saarstahl. 

  

https://github.com/c3di/neuroscope
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Aerial Photogrammetry 

Defined in Task 
Task 5.2: Multi-variate Sensor analytics with Deep Learning 

Short Description – incl. Purpose 
Photogrammetry is a technique for the capturing of three-dimensional (3D) models from real 
world environments. The technique works by taking images from manually selected positions and 
reconstructing a 3D model from the images. As the camera parameters (position and orientation) 
are unknown, the most important step is to computationally determine position and orientation of 
each image.  

Photogrammetry has a reduced surface precision compared to laser-based surface scanners, but 
has the immense advantage that it generates textured models in a single step, i.e. the generated 
models can immediately be used for photorealistic rendering. Another advantage is that 
photogrammetry is applicable to a wide range of length scales. If combined with macro 
photography, photogrammetry can capture details on the micrometer scale, if combined with 
handheld cameras it can produce centimeter scale objects, and combined with drones (aerial 
photogrammetry), the capture area can extend over several square kilometers. 

In the course of this project, we will provide a process for aerial photogrammetry which allows the 
capturing of entire sections of production plants, such as the Saarstahl milling plant. This workflow 
will be assembled from commercially available components but adapted to the specific needs if 
being used in a large indoor-environment with harsh production conditions. The purpose of the 
captured 3D models is the generation of training data for machine learning applications. 

Progress since last milestone 
A number of datasets was captured using different flight patterns from a drone and using a 
handheld and tripod-mounted camera system. Reconstruction results were compared to 
determine the optimal capturing mode.  

A commercially available photogrammetry software (Agisoft Metashape) was purchased, installed 
on suitable server hardware, and reconstruction settings were optimized to work with the 
available datasets.  

Examples of usage / illustrations 
The first example depicts a photogrammetric model reconstruction of Saarstahl’s steel billet chunk 
with dimensions 10x10x10 cm. The chunk was shot from different viewpoints by a handheld 
camera. 44 unpreprocessed photographs were used as an input for Agisoft Metashape software.  

    



 DT-SPIRE-06-2019 (870130) Deliverable D5.2  

Classification Public Page 51 of 85 

Figure: Photogrammetric reconstruction of Saarstahl’s billet chunk. Left: one of 44 original 
photographs of the billet chunk. Middle: a viewport of Agisoft Metashape with indicated camera 
positions. Right: a reconstructed untextured 3D model.  

The second example is a usage of photogrammetry for synthesizing training data for deep learning 
applications. In particular, in the course of the project we explore the ability of using synthetically 
generated images for training billet tracking models.  To begin the simulation process, a large 
number of high-resolution overlapping photos was taken over the area of Saarstahl’s blooming 
train. Here, we conducted image capturing by a drone as well as by a tripod-mounted camera. Using 
Agisoft Metashape software, we reconstructed the 3D shape of the scenery, which replicates the 
real environment in correct dimension proportions (Figure top). Next, the 3D model of the blooming 
train was repaired and cleaned up.  After 3D parametric models of billets were inserted into the 
scene, the wide-angle lens distortion was applied (Figure, bottom left).  To simulate changes in 
scenery and lightning conditions, the 3D setting was composed with original footage captured by 
surveillance cameras (Figure, bottom middle). Finally, we rendered images paired with billet 
segmentation masks (Figure, bottom right) which are used as a training data for billet detection and 
tracking models.    

 

   

Figure: Process of synthesizing training data. Top: a textured 3D model of Saarstahl’s blooming 
train. Bottom left: a 3D setting of billet rolling process. Bottom middle: a generated image. Bottom 
right: a generated instance segmentation mask. 

Interfaces  (in/out) – system/user 
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Agisoft Metashape software is a stand-along software that performs photogrammetric processing 
of digital photographs. It loads arbitrary number of unpreprocessed images in common formats 
and generates a 3D model of a scenery. Here it is important to capture high-quality and highly 
overlapping images of the setting to compute the best quality model. It is recommended to 
employ a camera with 5Mpx resolution at least and to shoot photographs with 80% overlap. 

Subordinates and platform dependencies 
Recommended configurations for Agisoft Metashape: 

• Windows 7 SP 1 or later (64 bit), Mac OS X Mountain Lion or later, Debian/Ubuntu with 
GLIBC 2.13+(64 bit) 

• Intel Core i7 or AMD Ryzen 7 processor 
• Discrete NVIDIA or AMD GPU 
• 32 GB of RAM 

Licenses, etc.  (free for use in the project) 
The component is realized as a non-disclosed inhouse workflow. 

TRL for overall component/tool and any parts/subordinates 
7 

References – incl. web etc. 
https://www.software3d.de/agisoft-metashape-pro 

To be considered in particular for the following COGNITWIN pilots 
Saarstahl. 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Bonzai 
Defined in Task 
Task 5.3: Deep Learning Performance 
Short Description – incl. Purpose 
Bonzai is Scortex python library handling everything related to deep learning on images. 

Bonzai is built on top of Keras / Tensorflow. It uses as input a connection to a mongo database for 
annotations and meta-information (dates, part reference, acquisition system version, ...), as well 
as an azure filesystem for image storage. The main output is the production of deep learning 
model in tf.keras format (topology in .json and weights in .h5). 

With this library, Scortex engineers manipulate and clean images and their metadata. They use it 
to train deep learning models and properly evaluate these models. 
Progress since last milestone 
Scortex has greatly improved its machine learning library.  

A large focus was puton the maintainability and traceability of the deployed systems. From any 
deployed model, Scortex is able to retrace which images, metadata, and preprocessing was used 
to train it. 

Scortex extended its library to user use cases as well. Previously, only defect detection was 
supported. Now, the library can handle part detection/segmentation as well as anomaly detection. 

Related to inference speed: 

Scortex worked on a way to improve all models inference time and published a blog post about it: 
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/. This 
technology is now deployed at some of Scortex’ clients.  

Scortex worked on improving the architecture speed of the network they are using at their clients. 
Typically using a smaller / shallower network. The difficulty of this is to maintain good robustness 
(mostly for repeatability. See this other blog post: https://scortex.io/robustness-and-repeatability-
of-modern-deep-neural-networks-a-review/). 
 
Scortex devised real time / light architectures for the task of detection / semantic segmentation as 
well as anomaly detection. 

Scortex has investigated pruning networks but that did not provide good results for inference 
time, as most software / hardware (example: GPU + TensorFlow) do not support leverage sparsity. 
It is our hope FPGA technology will be able to do so. 

“Distillation”:  Scortex successfully managed to transfer knowledge from a large network to a 
smaller one. The performance is not as good as the large model but better than the performance 
of the smaller model trained on its own. 

By combining, Scortex managed to deploy a station capable of a complex inspection of rotating 
parts. The Scortex box handles the inspection of 3 parts per second, which requires inference of 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
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300 (3 x 100) 1280x640 grayscale images per second. To the best of our knowledge, Scortex is the 
only company able to achieve such performances in a real-life deployment. 

Some experiments such as “Pruning “or “distillation” are not yet in production as the benefits did 
not outweigh the implementation cost as of today. 

Scortex is also working on improving training speed as shown by this blog post: 
https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/. 

Its new unsupervised demonstrator allows one second training for a very constrained set up. 
Examples of usage / illustrations 
Below is an example image from our unsupervised anomaly detection demonstrator. 

The user can train a model with a few un-annotated images and the model will detect anomalies. 

The result shows the original image with a defect score and a defect localization. Here is detects a 
tiny pen mark on the business card the model was trained on. 

 

Example of detections on our supervised demonstrator (less constrained). The part goes on the 
conveyor belt. Inside the Scortex dark “box” there are 2 cameras filming continuously 1920x1200 
colored images. One report is created per part. The (defect) detection is shown with closeups on 
the bottom of the screen.  

 

https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/
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There is currently no frontend to train supervised models using only the mouse but we are hoping 
to be able to work on this in 2021. 
Interfaces  (in/out) – system/user 
Bonzai connects to mongodb and other database systems to get images and meta-data (e.g.: 
annotations). Outputs are deep learning Keras/Tensorflow models and pipelines to be used in 
productions. 
Subordinates and platform dependencies 
keras/tensorflow, mongodb. 
Licenses, etc.  (free for use in the project) 
Proprietary. In development, remains the property of Scortex. Will be used by Scortex exclusively. 
TRL for overall component/tool and any parts/subordinates 
   TRL 7 
References – incl. web etc. 
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/ 

https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/ 

https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/ 
To be considered in particular for the following COGNITWIN pilots 
Saarstahl, Sumitomo 

 
  

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Machine learning to FPGA conversion: Keras2RTL 
Defined in Task 
Task 5.3: Deep learning performance 
Short Description – incl. Purpose 
This tool allows to fill the gap between machine / deep learning development environments and 
FPGA development environments.  
 
Machine learning development environments are typically based on the python programming 
language and libraries such as Keras and Tensorflow (or pytorch) relying on the Nvidia low level 
computing library named CUDA. 
 
Meanwhile, FPGA developments are based on VHDL programming language and integrated 
development environments (IDE) provided by the company providing the FPGA component. For a 
Xilinx Virtex Ultrascale+ VU9P, the IDE is named Vivado. 
 
Keras2RTL takes as input a tf.keras model that is a file with .h5 extension which contains the 
topology of the machine learning neural network and the weights. At Scortex, the Keras model is 
generated using the bonzai library (see other 5.3 components). 
 
Keras2RTL converts the topology from the .h5 file and generates the VHDL configuration files. 
These files will be used by Vivado to generate Honir. 
 
Progress since last milestone 
This task is currently handled manually by following a defined process to verify the corner cases 
and technically cover 100% of the scope to unlock the automation of this process. 
 
Its 100% automation will be part of the next steps. 
Examples of usage / illustrations 
The overall usage flow is: 

- Train a tf.keras / keras model (typically using bonzai). 
- Quantize the model (or train it in a quantized way immediately). 
- Convert it using keras2RTL. 

Use this model to run inference on images using the Honir component. 

https://www.xilinx.com/products/design-tools/vivado.html
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As a demonstrator, Scortex trained a Keras model on data from one of its demonstrators. The 
model allows defect detection on common goods parts, such as Lego bricks, electrical switches 
and door handles. 
This deep learning model was quantized using the bonzai tool (see other component) and then 
processed by Keras2RTL process manually. The VHDL files produced was used for the configuration 
of the inference engine (Honir: in task 4.4).  
In a more general manner, the tool should be used to allow automatic and fast conversion from a 
Keras machine learning model to a VHDL config file that can be used for Honir creation.  
  

 

Interfaces  (in/out) – system/user 
At a user level (a command line tool) 
IN : keras .h5 file (topology + weights) 
OUT : VHDL config file (for Honir tool build in T4.4) 
 
Subordinates and platform dependencies 
This module can work in standalone. It is, however, necessary for Honir (inference engine) to work 
properly. Today the tool will support only keras models. 
Licenses, etc.   
In development, remains the property of Scortex. Will be used by Scortex exclusively. 
TRL for overall component/tool and any parts/subordinates 
   TRL5 
References – incl. web etc. 

- https://www.h5py.org/ 
- https://www.tensorflow.org/guide/keras/save_and_serialize  
- https://github.com/keras-team/keras  

To be considered in particular for the following COGNITWIN pilots 
- The Honir platform will be considered as a way to run the tracking system for the Saarstahl  

use case. In which case, keras2TL will be used to generate Honir configuration. 
- But it could be extended to any other pilots running deep learning on images. 

  

https://www.h5py.org/
https://www.tensorflow.org/guide/keras/save_and_serialize
https://github.com/keras-team/keras
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
TMat SynDat MATLAB Synthetic Data Generator 
Defined in task 
T5.4 
Short Description – incl. Purpose 
TMat SynDat (MATLAB Synthetic Data Generator for Electro Mechanical parts) is a synthetic data 
generator for common electro-mechanical parts, including electric DC motors and a hydraulic 
shaft. 

The purpose of TMat SynDat is to generate synthetic of fault data from the model elements. 
Hence, the generation of such data enables users to have a model-driven digital twin for a 
common DC motor, gearbox, and hydraulic shaft and their associated components.  

TMat SynDat utilizes several 1st order models: DC motor and gearbox models, and a hydraulic 
press model. For both of these models, random sources of errors (degradation of the components) 
are introduced. A load representative to what they may experience in the real world is then 
applied. Virtual sensors will collect data for several specific degradation scenarios. The outcome is 
a supervised and annotated dataset. The latter will be used in training a ML classifier. The classifier 
will be used to monitor the condition of the machine in operation and provide early warning for 
potential fault.  

In the context of COGNITWIN, the TMat SynDat output will be useful in conducting the predictive 
maintenance of the modelled elements.  

 

Progress since last milestone 
Since the last milestone, sensors have been added to the 1st order principal models. Current and 
temperature sensors have been added to the motor and gearbox model, while a hydraulic press 
sensor has been added to the previously developed hydraulic press model. 

Following the sensor implementations for the models, model parameters have been calibrated 
and the random error sources have been introduced to the model. Thus, the model has been 
updated to be ready for predictive maintenance algorithms by introducing sources of random 
errors to be used in predictive maintenance, adding appropriate sensors to observe the effect of 
these error sources on important variables of the models and calibrating the geometrical, 
electrical, and hydraulic parameters of components to make the model as applicable and as 
realistic as possible. 

Examples of usage / illustrations 
MATLAB Simulink is used to develop and update the models. 

Interfaces  (in/out) – system/user 
TMat SynDat generates output data in  .mat format and/or .csv format.  

Subordinates and platform dependencies 
TMat SynDat works with MATLAB Simulink and it converted to operate a standalone executable 
program.  

Licenses, etc.  (free for use in the project) 
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TBD 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 4 (validated in laboratory environment) running to be TRL 5. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Pragmatism in physics-based modeling (PPBM) 

Defined in Task 
Task 5.4: Hybrid Digital Twins 

Short Description – incl. Purpose 
"Pragmatism in physics-based modeling" (PPBM) is a method/framework for developing physics-
based mathematical models. Such models may serve as a digital twin alone or as companion with 
data-based AI/ML methods, to form hybrid digital twins to exploit the combination of data and 
physics-based modeling. 

The purpose of PPBM is to devise a generic methodology for development of physics-based 
models for application in digital twins. The PPBM provides a recipe for attacking a digital twin 
development, starting out from problem definition, information collection, including exact 
definitions of the output requirements for the model, assembling a system architects team, model 
specification, use of sub-level empirical or computed data, model building and application. The 
PPBM can only be developed further through application in industrial cases, like the Sidenor pilot 
case. 

The physics, chemistry, and numerical methods to be used may differ between applications, but 
PPBM should help the developers (system architects) to run through a set of well-defined steps on 
the way from problem definition to final application. For each new application using the PPBM, 
new learning must be extracted and reported (published). 

In the Sidenor pilot case offline data is used. The data has multiple challenges. We now explore 
extending the PPBM to applying a PPBM based application to clean the available data, but also 
provide additional simulated data. These combined data will be further be explored in a hybrid 
approach. 

Progress since last milestone 
Since the last milestone, we extended the method/framework through development of a physics-
based model for the Sidenor pilot. Following elements have been in focus: 

• i) Methods to assure the industrial challenge is fully understood, ii) Define the problem in a 
problem document. Consolidation with the industrial partner. Defining and collecting the 
needed information, iii) Process to agree on model requirements, iv) Writing model 
specification, v) Model implementation and adaptation, vi) Model verification 

The Sidenor pilot is a good case for further development of the pragmatism method. The models 
are defined to explain the thermal evolution of a steel ladle during its lifetime and predict the 
refractory erosion from heat to heat. In order to handle the major and complex physics and 
thermodynamics (multiphase flows, slag heater, radiation, thermal stress erosion, interface waves, 
local heat and mass transfer, chemical equilibrium of complex metal-slag systems, dissolution of 
refractory components) several simplifications are introduced, some based on using 
Computational Fluid Dynamics (CFD) to create data that can be applied in the simpler and faster 
model. 

In this pilot we apply and extend the PPBM to be implemented in the Python framework where 
many tools available for Python may be explored when hybridization will be introduced. 
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The work, involving extensions of the PPBM, will be published under "Pragmatism in industrial 
modeling, applied to ladle life in the steel industry". A particularly important contribution is to 
show how such a model can reveal the goodness of the industrial data. This is critical as industrial 
data, for many good reasons, may be completely incorrect, and it may in some cases be impossible 
to build automated filters that can fix the problem. 

Examples of usage / illustrations 
In the Sidenor pilot, applying and extending the PPBM method, we are developed a model for the 
ladle refractory erosion. The thermal model is now possible to operate and an example is shown 
below. The erosion models are under development. 

We can see that the steel level was surprisingly low in this case. This was found to be an error in 
the data. However, the thermal model alone demonstrates that different erosion levels on the 
inside of the lade will lead to different dynamics surface temperatures. In this case it supports that 
combining PPBM, thermal imaging and ML/AI a route to keep track on ladle life is possible. 

 

Figure 1: We see the outer surface 
temperature at time 131 min after metal was 
filled into the ladle. The ladle was initially 
eroded. 

Figure 2: Same case as in Figure A, but ladle 
has no initial erosion. The outer surface 
temperature of the ladle is significantly 
modified. 

 

Interfaces  (in/out) – system/user 
The Sidenor application of the PPBM is currently reading data in ascii format (*.csv, *.xls) and 
output is saved as files in similar formats. In addition, data can be saved in the VTK *.vts format. 
These files can be loaded into the Paraview (https://www.paraview.org/ ) tool for 3D visualization 
of the results. 

Subordinates and platform dependencies 
The Sidenor model is using Python 3 and standard Python libraries. It can be run on both Windows 
and Linux systems. 

Licenses, etc.  (free for use in the project) 

https://www.paraview.org/
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The model will be open (free use) and at the end of the project to be published at 
https://github.com. 

TRL for overall component/tool and any parts/subordinates 
Currently it is TRL-3. As this belongs to the class of methods it may be developed into a technical 
standard at a later stage. https://en.wikipedia.org/wiki/Technical_standard  

References – incl. web etc. 
[ZOR+15]  J. Zoric, S. T. Johansen, K. E. Einarsrud, and A. Solheim, ‘ON PRAGMATISM IN 

INDUSTRIAL MODELING’, Progress in Applied CFD, Selected papers from 10th 
International Conference on Computational Fluid Dynamics in the Oil & Gas, 
Metallurgical and Process Industries, vol. 1, pp. 9–24, 2015. Available: 
https://www.sintefbok.no/book/download/1038  

[ZOR+15b] J. Zoric et al., ‘On Pragmatism in industrial modeling - Part II: Workflows and 
associated data and metadata’, Melbourne, Australia, 7-9 December, 2015, 2015, 
p. 7 pages, [Online]. Available: 
http://www.cfd.com.au/cfd_conf15/PDFs/032JOH.pdf .  

[JOH+17] S. T. Johansen, E. A. Meese, J. Zoric, A. Islam, and D. W. Martins, ‘On Pragmatism in 
Industrial Modeling, Part III: Application to Operational Drilling’, in Progress in 
Applied CFD – CFD2017 Selected papers from 12th International Conference on 
Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process 
Industries, Trondheim, 2017, p. 11, [Online]. Available: 
http://hdl.handle.net/11250/2465068 . 

To be considered in particular for the following COGNITWIN pilots 
Sidenor and Sumitomo.  

In addition, the Sidenor application may be exploited by COGNITWIN partners Elkem and 
Saarstahl. 

 

  

  

https://en.wikipedia.org/wiki/Technical_standard
https://www.sintefbok.no/book/download/1038
http://www.cfd.com.au/cfd_conf15/PDFs/032JOH.pdf
http://hdl.handle.net/11250/2465068
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica CENIT  
Defined in Task 
5.4 Hybrid Digital Twins 
Short Description – incl. Purpose 
Cybernetica CENIT is a tool for online estimation and nonlinear model predictive control. It can be 
used as both a soft sensing application and a control application. 
 
Model Predictive control is an advanced control method where a mathematical model of the 
process is used to predict future behavior. The predictions from the model are used in a 
mathematical optimization algorithm that calculates the optimal process inputs in order to 
achieve optimal future behavior of selected variables in the process. Constraints and setpoints 
may be imposed both on the manipulated process inputs variables and the controlled process 
output variables. Model predictive control also has the advantage that couplings between 
variables in the process are taken into account. 
Progress since last milestone 
Cybernetica CENIT has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Cybernetica CENIT has further been extended with routines for validation of the input data and its 
own calculation results. This includes new interface routines for the application components. This 
extension forms a basis for the development of the proposed “Cognitive CENIT” tool. 

Examples of usage / illustrations 
Main components of Cybernetica CENIT: 
 

 
Cybernetica CENIT consists of a generic part and an application-specific part, namely the process 
model. A Cybernetica CENIT application is defined as Cybernetica CENIT and some process model 
together. 
The following table describes the main components of a Cybernetica CENIT application: 

Cenit
MMI

TCP/IP OPC

DatabaseOffline
analysis
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Component Purpose 
CenitKernel This is the main component of Cybernetica CENIT. It implements 

communication with the process control system and the calculation 
algorithms (estimator and nonlinear model predictive controller). 

CenitMMI This is an engineering interface used to configure and supervise CenitKernel, 
mainly during the engineering phase of the project. The operators interface 
is normally integrated in the existing DCS interface. 

Process model This is the application-specific part of a Cybernetica CENIT application. It 
implements a mathematical representation of the process that is controlled.  

Database An optional database for logging parameters and calculated data from 
CenitKernel. The data is used both by CenitMMI and for offline data analysis, 
and can be used to trend inputs, states and other calculated values. 

Control system This is the process control system (DCS/ PLC), which handles the low-level 
communication with the process. This system is not a part of Cybernetica 
CENIT and should implement an OPC server on a standard form to handle 
the communication with CenitKernel. Both OPC Classic and OPC UA 
interfaces are supported by Cenit. The communication includes process 
measurements, manipulated variables and possibly other variables as well. 

 
The model component is implemented as a Microsoft Windows dynamic link library (DLL). One or 
more model interfaces can be implemented in such a DLL, depending on which calculation modules 
shall be used. It is not necessary to implement unused interfaces. 
The interfaces do not depend on each other, and it is possible to implement different models for 
each interface, i.e., a complex model for the simulator interface and a simpler model for the 
controller. However, it is quite common to implement the same model for all the interfaces. The 
figure below shows how to do this. In this figure, there is a common inner model code base for all 
the interfaces: 

 
 
The available interfaces are: 

• Sim interface: Used to simulate the process. 
• GenEst interface: Used by the Kalman Filter. 
• MHE interface: Used by the Moving Horizon Estimator. 

Sim interface

GenEst interface

MHE interface

Nmpc interface

ModelFit interface

AsyncData interface

Discrete model

Integration algorithm 
or DAE solver

Continous model
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• Nmpc interface: Used by the non-linear predictive controller 
• ModelFit interface: Used by Cybernetica ModelFit. 
• AsyncData interface: Used by Cybernetica Cenit to handle input data that requires special 

handling; e.g. registration of process event data. 

Interfaces  (in/out) – system/user 
Data can be presented to the user by using Cybernetica CenitMMI, or extracted from the database 
using the included tool getdbdata. 
 
Example of CenitMMI displaying some historical trend and prediction plots for some manipulated 
variables: 
 

 
Subordinates and platform dependencies 
May use PostgreSQL database. 
Licenses, etc.  (free for use in the project) 
Cybernetica Cenit licenses are provided free of charge for the duration of the CogniTwin-project 
for project partners who need such license to execute their work in the project. Should the project 
result be taken into permanent use after the end of the project, licenses are provided on fair and 
reasonable terms as stated in the Grant Agreement. 
TRL for overall component/tool and any parts/subordinates 
9 - Commercial product. 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/ 

To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica ProXim  
Defined in Task 
5.4 Hybrid Digital Twins 
Short Description – incl. Purpose 
Cybernetica ProXim is a software platform for building tailor-made process simulators using the 
same kind of process models as Cybernetica CENIT.  
The platform includes components for simulation and data visualisation.  

Progress since last milestone 
This product has not been updated since last milestone, but the description is included as it will be 
used at a later stage in the Elkem and Hydro pilots. 
Examples of usage / illustrations 
Example of the user interface of a process simulator:  
  

  
 
Interfaces  (in/out) – system/user 
 
Subordinates and platform dependencies 
 
Licenses, etc.  (free for use in the project)  
Cybernetica ProXim licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
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project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
  
TRL for overall component/tool and any parts/subordinates 
8 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica RealSim  
Defined in Task 
5.4 Hybrid Digital Twins 
Short Description – incl. Purpose 
Cybernetica RealSim is a plant replacement process simulator used for testing of CENIT or other 
control applications. It communicates over the OPC protocol in order to replicate the interface to 
the DCS at the plant as closely as possible.  It interfaces to Cybernetica Model and Application 
Components. The plant replacement model might be the same as the model used in CENIT or it 
might be a different one in order to evaluate how the controller responds to model uncertainty 
and unknown process disturbances. Cybernetica RealSim is typically used during application 
development and for factory acceptance tests.  

Progress since last milestone 
Cybernetica RealSim has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Support for using OPC UA servers for data exchange has been added. 

Examples of usage / illustrations 
Example of Cybernetica RealSim user interface:  
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Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA)  
The following figure shows how Cybernetica RealSim works as a plant replacement tool 
for Cybernetica CENIT:  
  

  
  

 

Interfaces  (in/out) – system/user 
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Subordinates and platform dependencies 
 
Licenses, etc.  (free for use in the project) 
Cybernetica RealSim licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
  
TRL for overall component/tool and any parts/subordinates 
8 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica Modelfit  
Defined in Task 
5.4 Hybrid Digital Twins 
Short Description – incl. Purpose 
Cybernetica ModelFit is a tool used for off-line estimation of model states and parameters, for 
model validation, and for design of the on-line estimation part of Cybernetica CENIT 
applications. ModelFit is used to decide which model parameters should be estimated on-line, to 
design the on-line estimators, and to estimate the parameters that are considered 
constant. ModelFit interfaces to Cybernetica Model and Application Components, and it supports 
the same model formats as CENIT.  

Progress since last milestone 
Cybernetica Modelfit has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Examples of usage / illustrations 
Cybernetica ModelFit user interface:  
  

 The features of Cybernetica ModelFit include:  
 Design and tuning of on-line estimators in CENIT applications.  
• Estimation of constant or time varying model parameters.  
• Estimation of initial states.  
• Simultaneous use of multiple data sets.  
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• Parameter identifiability analysis.  
Cybernetica ModelFit is flexible with respect to configuration of the parameter estimation. 
Parameters can be time varying or constant. Multiple data sets from different operating conditions 
may be used to find the best parameter fit taken all data sets into account.  
 
Interfaces  (in/out) – system/user 
 
Subordinates and platform dependencies 
 
Licenses, etc.  (free for use in the project) 
Cybernetica ModelFit licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
TRL for overall component/tool and any parts/subordinates 
9 – Commercial product. 
References – incl. web etc.  
http://cybernetica.no/technology/model-predictive-control/  
To be considered in particular for the following COGNITWIN pilots  

Hydro, Elkem. 
  

http://cybernetica.no/technology/model-predictive-control/
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
TStreamPipes-ML Teknopar Machine Learning on StreamPipes as a Data Processor 
Defined in task 
T5.5 
Short Description – incl. Purpose 
TStreamPipes-ML is an Apache StreamPipes based tool, it enables none technical users to select 
and execute machine learning algorithms for predictive maintenance purposes. The performances 
and the results obtained by the executed Machine Learning algorithms are presented in forms of 
graphs.  

The tool has an easy-to-use, drag and drop user interface.  Different data sources can be used as 
inputs to the ML algorithms of TStreamPipes-ML, including data from Kafka, and .csv files. The ML 
algorithms are MLP, GBT, LSTM, RF, SVM, and KNN. 

Progress since last milestone 
Since the last milestone a data processor to conduct an ML application has been developed. 
Examples of usage / illustrations 
Data coming from Kafka or .csv files can be used by the user selected machine learning algorithms, 
and the results of the predictive maintenance applied by the selected algorithms are displayed on 
the presented GUI above.  

Interfaces  (in/out) – system/user 
User selected set of ML algorithms are executed on the stream and the results of the algorithms 
can be compared and graphically presented. Stream data contains sensor data in vector form. 

Subordinates and platform dependencies 
Apache StreamPipes, Apache Kafka, Fiware 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to License 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 4 running to be TRL 6. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica Viewer  

Defined in Task 
5.4 Hybrid Digital Twins 

Short Description – incl. Purpose 
Cybernetica Viewer is a tool for creating user interfaces to display and manipulate data from an 
OPC server in various ways.  

Progress since last milestone 
This product has not been updated since last milestone, but the description is included as it will be 
used at a later stage in the Elkem and Hydro pilots. 
Examples of usage / illustrations 
The following figure shows an example of Cybernetica Viewer. The user interface is tailor made for 
the specific application: 
 

 
 
Interfaces  (in/out) – system/user 
OPC classic + OPC UA 
Subordinates and platform dependencies 
 
Licenses, etc.  (free for use in the project) 
Cybernetica Viewer licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
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TRL for overall component/tool and any parts/subordinates 
9 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
TMat- PdM 
Defined in task 
T5.5 
Short Description – incl. Purpose 
TMat- PdM (MATLAB Predictive Maintenance for Electro Mechanical Components) is a model used 
for predictive maintenance of DC motor, gearbox and hydraulic press. 

By studying random scenarios, due to the changes in gearbox efficiency, resistance and damping 
coefficient values multiple random scenarios can be generated. Using the data fault code, labeling 
is performed. TMat-PdM uses different ML Models. 

Progress since last milestone 
All of the related work related to TMat-PdM is conducted after the last milestone. 

Examples of usage / illustrations 
TMat-PdM presents some graphs to display the difference between simulation outputs. 

 

 

Interfaces  (in/out) – system/user 
TMat-PdM uses data generated by MATLAB SynData-EM as input. 
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TMat-PdM enables visualization of confusion matrix for the algorithms used.  

Subordinates and platform dependencies 
TMAT-PDM uses Predictive Maintenance Toolbox of MATLAB and Classification Learner App.  

Licenses, etc.  (free for use in the project) 
TBD 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 4 (validated in laboratory environment) running to be TRL 5. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica Cognitive CENIT  
Defined in Task 
5.5 Cognitive Digital Twins 
Short Description – incl. Purpose 

This is a planned extension of the existing Cybernetica CENIT that will add cognition to the 
application.  
  
The goals of the extension are to:  

• Add self-diagnosing capability to CENIT by use of data analysis 
• Combine mechanistic modelling of physical processes with machine learning/ AI  
• Exploit big data sets from the process to improve the model  

 
Both generic functionality and application specific in the form of a new model interface will be 
added. The cognitive extension may either extend the current estimator (digital twin) or it may 
replace it entirely.  
 
Cybernetica CENIT already implements adaption in the form of parameter estimation.   
In addition we would like develop and implement methods for real-time and offline analysis of the 
estimator (digital twin) performance related to process data.  
  
In this way it should be possible to automatically classify types of errors: sensor failure, input error 
or model error. Ultimately, the goal will be to suggest model improvements based on this analysis.  
Progress since last milestone 
The development of an extension of Cybernetica CENIT that enables self-diagnosing has been 
started. A framework for self-monitoring of the MPC application via stage-cost monitoring has 
been developed. The framework consists of the following steps:  

• Estimate the measurement error distribution.  
• Propagate that noise distribution through the closed-loop MPC model via Monte Carlo 

simulations  
• Compare the resulting distribution of the average stage cost to the actual average stage 

cost from the actual plant. If average stage cost is significantly off from the theoretical 
distribution, this indicates an error in the closed-loop model. 

 
After monitoring and error detection, the next step is to develop error classification and correction 
routines.  

Examples of usage / illustrations 
Example 1: Error detection 
The performance of the MPC system will eventually degrade over time due to changing plant 
conditions, i.e. increased plant-model-mismatch. To prevent poor controller performance, the 
error/performance degradation first must be detected. There are currently no self-diagnosing 
capabilities in CENIT. An important part of Cognitive CENIT will be the ability to perform self-
diagnosis and detect when the controller performance is unsatisfactory. In the case where 
unacceptable levels of control performance degradation has been found, further action (such as 
error classification and error correction) is needed.  
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Example 2: Error classification 
Estimators are generally unable to distinguish between prediction deviations resulting from the 
following errors:  

• Faulty input data (requires correction or scepticism)  
• Faulty model (suggest adaption)  

  
Being able to distinguish between these errors is important because the required response is very 
different:  
In the case of input error, the appropriate response is some combination of correcting the faulty 
input signal and minimizing the faulty signal’s impact on the model-predictive control.  
This can include:  

• Using a default signal instead of the faulty signal,  
• Ignoring model state variables that are highly correlated with the faulty signal, and  
• Altogether turning off estimation for the affected data points.  

 
In the case of model error, the appropriate response is to try to adapt the model to most accurately 
reproduce the process data.  
  
An important goal for Cognitive CENIT will be to distinguish between these cases based on an offline 
training of a classification algorithm.  
  
Example 3:  
Situations where the model structure is incomplete or wrong may be identified using an automated 
analysis of the prediction error distributions. Currently Cybernetica CENIT estimators assume that 
the model structure is correct, and that the prediction error is normally distributed around a mean 
value, which the estimator tries to centre at zero. In many cases this is not true, and significant 
deviation from normally distributed error may imply error in the model structure. Identifying this 
error is non-trivial and may be a well-suited task for an AI extension.  
Interfaces  (in/out) – system/user 
TBD 
Subordinates and platform dependencies 

• May use PostgreSQL database. 
• May use Python and some of its stat. analysis packages such as pandas, numpy, scipy, 

pyspark, etc. 
 
Licenses, etc.  (free for use in the project) 
Cybernetica Cenit licenses are provided free of charge for the duration of the CogniTwin-project 
for project partners who need such license to execute their work in the project. Should the project 
result be taken into permanent use after the end of the project, licenses are provided on fair and 
reasonable terms as stated in the Grant Agreement. 
TRL for overall component/tool and any parts/subordinates 
Cybernetica CENIT: TRL 9 
Cybernetica Cognitive CENIT: TRL 1-2 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
SpinPro – Speech support in Production 

Defined in Task 
Task 5.2 
Short Description – incl. Purpose 
The goal of this component is to formalize human tacit knowledge and make it available to other 
software components. This will be done by generating machine-processable rules based on spoken 
input. In addition, the knowledge base will be extended by the "discovered" rules, while at the same 
time ensuring the consistency of the knowledge base (e.g., avoiding contradictory rules).  
The component will be realized by combining three different types of technologies and by using 
commodity software:  

- Speech2Text to convert audio to text by using open-source software for speech recognition 
like cmuSphinx, DeepSpeech, etc.  

- Shallow NLP to analyse the content by using the background knowledge (e.g. provided in a 
form of domain-related vocabulary);  

- Formalisation of extracted information in form of Event-Condition-Action rules which will 
be evaluated by e.g. Siddhi engine or the VISPAR component (more information is provided 
in D4.2 deliverable as result of T4.4).  
 

Progress since last milestone 
During the reporting period, we have defined the conceptual architecture (see below) and 
performed detailed analysis of the existing speech recognition frameworks. 

Today, many speech recognition frameworks archive good accuracies on given test sets like 
LibriSpeech (Panayotov, Chen, Povey, & Khudanpur, 2015). However, these results often are not 
applicable to an industrial and commercial usage. Consequently, we focus on making these 
techniques more robust to their respective environments. Moreover, domain specific language 
must be recognized as well. Therefore, possibilities for efficient addition of vocabulary to existing 
frameworks needs to be found. As a first step, we made an overview on some speech recognition 
frameworks available now and evaluates a subset of them. Additionally, we discuss the possibility 
to use multiple speech recognition frameworks and evaluate the margin for improvement by using 
the proposed technique. Moreover, possibilities to add vocabulary by using the proposed technique 
are presented. 

Recently several frameworks for speech recognition were published. Some of them are compared 
in  

. The data for the comparison is obtained from the linked repositories and connected websites. The 
word error rate (WER) is obtained from the papers describing the approaches. Most of the 
frameworks are written either in C++ or Python. In order to evaluate the performance of a 
framework, the WER on the LibriSpeech test-clean dataset (Panayotov, Chen, Povey, & Khudanpur, 
2015) is used. Comparing the WERs, RETURNN (Zeyer, Alkhouli, & Ney, 2018) and Espresso (Wang, 
et al., 2019) archive the best performance with 2.3 % and 2.8 % WER respectively. Kaldi (Povey, 
2020) archived 3.76 % WER and therefore archives the best performance of the C++ frameworks. 
Even though Kaldi is only the third best performing framework of the compared ones, it is the most 
important one. Many frameworks are based on Kaldi, for example Vosk (Inc., 2020) and Espresso. 
The frameworks differ in their approaches. DeepSpeech, Espresso, Eesen, RETRUNN, wav2letter++ 
and NVIDIA NeMo utilize machine learning approaches. Vosk uses a database to minimize training 
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time and utilize a bigger pool of audio transcripts. In the following the project descriptions of some 
frameworks are gathered. 

 
Table 1: Comparison of speech recognition frameworks 

In the following we will focus on: 

- Sphinx-4, because it has a native JAVA binding that we needed at the time we first 
experimented with the frameworks 

- DeepSpeech, because it offers one of the best trained open-source models, and  

- Vosk, because it uses an alternative approach.  

All of them are easy to use, offline and open source and therefore fulfil our most basic requirements. 
Sphinx-4 slowed down the evaluation process significantly. As seen in  Figure, Sphinx-4s 
performance is significantly worse. The recognition time takes about 1.8 times the length of the 
audio part to recognize. In contrast DeepSpeech only takes about 0.68 and Vosk only 0.15 times the 
audio length. Since also the accuracy of Sphinx-4 is twice as bad as the accuracy of the other ones, 
the usage of Sphinx-4 is impractical. 

Another observation out of  Figure is, that Vosk (vosk-model-small-en-us-0.3) needs only about half 
the time to recognize long audio samples than DeepSpeech (deepspeech-0.8.1-models.pbmm). If 
Vosk and DeepSpeech are used in parallel, this difference is utilizable by reducing the resources for 
Vosk. Therefore, the recognition is less expensive. Another possibility is using the additional time to 
improve the accuracy of the result. One facility is to additionally preprocess the audio sample and 
run the original as well as the preprocessed sample through the recognition process. Thereafter an 
algorithm combines the two results into one result by utilizing the differences in the recognition 
results. 
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Figure: A performance comparison of CMUSphinx, DeepSpeech (deepspeech-0.8.1-models.pbmm) 
and Vosk (vosk-model-smallen-us-0.3) on a randomly chosen subset of LibriSpeech’s test-clean. On 
the x-axis the duration of the given audio segment to recognize is given. On the y-axis the needed 
time to recognize the audio is described. The results are divided by cold start and initialized. Cold 
start times include the time needed for preparation when initializing a framework. Initialized times 
do not include any file independent preparation time, like model loading. 

In order to evaluate the potential of such an algorithm, the impact of preprocessing on the 
recognition results must be estimated first. Therefore, three preprocessings were chosen and the 
differences in the WERs per audio sample compared. For each of the two LibriSpeech test sets (test-
clean/test-other) three additional test sets were created. In the *-normalized test sets, the volume 
of the audio samples is raised to a threshold of −1.0 decibel. In the *-compressed test sets, a 
compressor was used to reduce dynamic in the audio samples and afterwards normalize them. For 
the *-equalized test sets, the intensity of very high and low frequencies was reduced. 

In  Figure and Error! Reference source not found. the fraction of audio samples with an 
improvement and a debasement is shown. Files with no change are not shown. On average over all 
test-other test sets and tested framework model combinations about 28% of the entries changed 
with a maximum of 54.6% for vosk-model-small-en-us-0.3 at test-other-compressed. About half of 
them improved the WER. If the algorithm is capable to distinguish between improvements and 
debasements, the WER on about 14% (average) of the audio samples is improvable. Consequently, 
these variabilities lead to a margin for improvement of speech recognition frameworks. 

Moreover, a combination algorithm could use specialized frameworks for recognizing domain 
specific language. Those frameworks only need to recognize a few words similar to finding keywords 
for speech assistants. This task is significantly easier than a complete speech recognition and 
therefore allows for smaller models that are trained more easily. This method can also be applied 
to recognize words that are important for the later use of the recognition result. This use may be 
the control of a machine or similar tasks. Those tasks usually use a rather limited vocabulary, and it 
may increase the accuracy if the words are recognized by specialized frameworks. It is important to 
note that the framework is still usable for the general case even if it uses specialized frameworks, 
because the general tasks are still done by generic speech recognition frameworks. The specialized 
frameworks only improve accuracy where possible. 

For the purpose of developing an algorithm that combines the result of different preprocessing for 
an audio sample recognized by different frameworks with different models, more research has to 
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be done. Most likely an evaluation of the results on word level is needed to be able to distinct 
features, that give hints over the accuracy of a recognized audio sample. Ideally generic relations 
between the preprocessing framework model combination and the accuracy of the recognition of 
special kinds of words or auditory events are found. However, it is likely, that such generic rules do 
not exist or lead to bad results due to the complexity of the underlaying recognition process. 
Nonetheless it may be interesting to try using machine learning approaches for the algorithm. We 
will try to combine several recognitions of an audio sample into one sentence the reduction of post 
recognition error (RPRE) and will continue to research in this topic. 

 
Figure: An illustration of changes in accuracy per preprocessed file with respect to the original file 
on LibriSpeech test-clean. Positive entries signalize an improvement in WER and negative entries 
signalize a debasement. The original test-clean LibriSpeech corpus contains 2620 entries. The other 
corpi were created by applying an audio effect to each file. Consequently, each of the corpi contains 
2620 entries. 

 
An illustration of changes in accuracy per preprocessed file with respect to the original file on 
LibriSpeech test-other. Positive entries signalize an improvement in WER and negative entries 
signalize a debasement. The original test-other LibriSpeech corpus contains 2939 entries. The other 
corpi were created by applying an audio effect to each file. Consequently, each of the corpi contains 
2939 entries.  

Examples of usage / illustrations 
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Interfaces  (in/out) – system/user 
 In – spoken text 

Out -rule(s)  

Subordinates and platform dependencies 
SpinPro is divided in several components as illustrated in Figure below. The process is split into two 
parts, the speech recognition and the rule creation. Each part is capsulated in one program 
component. The speech recognition is performed in the Speech to Text component (StTC) and the 
rule creation in the Core component (Core). The Main component (MC) manages the StTC and the 
Core. Furthermore, the MC provides the APIs for user interaction and contains the entry point of 
SpinPro. Those three components use a fourth component called Configuration component 
(Config). The Config provides a logging framework, the application preferences and messages in 
multiple languages used as error and logging messages. Moreover, the Config contains a framework 
for the loading of services.  Services are user definable and exchangeable components, that are 
loaded at the start of the application.  The Core and the StTC both use services in order to maximize 
customizability. All services and all components, besides the MC, use a fifth SpinPro component 
called Service Library (SL). The SL provides the definitions for all interfaces used in services. 
Furthermore, it contains definitions of the predefined actions and several parsers for arithmetic and 
Boolean expressions as well as for parsing single variables and events. 
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Licenses, etc.  (free for use in the project) 
License will be defined when the component is ready. 

TRL for overall component/tool and any parts/subordinates 
TR4 

References – incl. web etc. 
Inc., A. C. (2020). Vosk. Tratto da Vosk: https://alphacephei.com/en/ 
Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An ASR corpus 

based on public domain audio books. 2015 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), (p. 5206-5210). 

Povey, D. (2020). Kaldi. Tratto da Kaldi: https://kaldi-asr.org/ 
Wang, Y., Chen, T., Xu, H., Ding, S., Lv, H., Shao, Y., . . . Khudanpur, S. (2019). Espresso: A 

Fast End-to-end Neural Speech Recognition Toolkit. Espresso: A Fast End-to-end 
Neural Speech Recognition Toolkit. 

Zeyer, A., Alkhouli, T., & Ney, H. (2018). RETURNN as a generic flexible neural toolkit with 
application to translation and speech recognition. 

Frameworks 
• Sphinx-4 - https://github.com/cmusphinx/sphinx4 
• DeepSpeech - https://github.com/mozilla/DeepSpeech 
• Kaldi - http://kaldi-asr.org/doc/about.html 
• VOSK - https://github.com/alphacep/vos 

https://github.com/c3di/neuroscope 
To be considered in particular for the following COGNITWIN pilots 
 TBD - Relevant in consideration for Cognitive services. 

 

https://github.com/cmusphinx/sphinx4
https://github.com/mozilla/DeepSpeech
http://kaldi-asr.org/doc/about.html
https://github.com/c3di/neuroscope
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