H2@Scale: Energy System Wide Benefits of Increased Hydrogen Implementation

November 8, 2018 Brussels, Belgium

Presented by Bryan Pivovar National Renewable Energy Lab bryan.pivovar@nrel.gov

Expanded content included in this presenation available at

https://www.hydrogen.energy.gov/pdfs/review18/h2000_pivovar_2018_o.pdf https://www.hydrogen.energy.gov/pdfs/review18/tv045_ruth_2018_o.pdf http://energy.gov/eere/fuelcells/downloads/h2-scale-potential-opportunity-webinar

Ames Lab · Los Alamos

BROOKHAVEN

Air Quality – Downtown Denver

27 September 2016 | GENEVA - A new WHO air quality model confirms that 92% of the world's population lives in places where air quality levels exceed WHO limits. WHO: Air pollution caused one in eight deaths / March 25, 2014

http://www.cnn.com/2014/03/25/health/who-air-pollution-deaths/

Select (Relevant) Megatrends

- Increased global focus on emissions, increased policy regulations (market impact)
- Low, cost intermittent renewable electrons
- Increased electrification
- Connectivity, Autonomy, Machine Learning

When the Planet Looks Like a Climate-Change Ad (9/12/17)

https://www.theatlantic.com/science/archive/2017/09/anextraordinary-week-in-north-american-weather/539544/

Downtown Denver from NREL's Energy System Integration Facility

The Great Barrier Reef's catastrophic coral bleaching, in one map

Changing Energy System – Policy

Renewable Portfolio Standards (RPS)

Senate Bill 100, signed by Gov. Edmund G. Brown, Jr. codifies 60% by 2030 & 100% by 2045 RPS (2018) http://www.energy.ca.gov/renewables/

Zero Emission Vehicles (ZEV)

2016 ZEV Action Plan toward 1.5 million ZEVs by 2025.

https://www.gov.ca.gov/docs/2016_ZEV_Action_Plan.pdf

Renewable Gas Standard

SB-687 Renewable gas standard

http://leginfo.legislature.ca.gov/faces/billNavClient.xht ml?bill_id=201520160SB687

https://www.c2es.org/us-states-regions/policy-maps/zev-program

Renewable electricity price trends

Source: (Arun Majumdar) 1. DOE EERE Sunshot Q1'15 Report, 2. DOE EERE Wind Report, 2015

Renewable Challenges

Denholm et al. 2008

Energy System Challenge

Multi-sector requirements

- Transportation
 - o Industrial

 \circ Grid

How do we supply all these services in the best way?

Dwight D. Eisenhower

"If you can't solve a problem, enlarge it"

Conceptual H₂@Scale Energy System*

*Illustrative example, not comprehensive

Hydrogen at Scale (H₂@Scale): Key to a Clean, Economic, and Sustainable Energy System, Bryan Pivovar, Neha Rustagi, Sunita Satyapal, Electrochem. Soc. Interface Spring 2018 27(1): 47-52; doi:10.1149/2.F04181if

H2@Scale Vision

• Attributes

- Cross-sectoral and temporal energy impact
- Clean, efficient end use

Benefits

- Economic factors (jobs, GDP)
- Enhanced Security (energy, manufacturing)
- Environmental Benefits (air, water)

Getting <u>all</u> these benefits in a single energy system significantly enhances value proposition.

Changing times for H2

First time fuel cell electric mobility ranks #1 trend among automotive executives

H₂ is different and changing fast

H₂ Council*

 Launched in January 2017 its members include leading companies with over \$10 billion in investments along the hydrogen value chain, including transportation, industry, and energy exploration, production, and distribution.

Potential Impacts from Hydrogen Council Roadmap Study. By 2050:

- \$2.5 trillion in global revenues
- 30 million jobs
- 400 million cars, 15-20 million trucks
- 18% of total global energy demand

32 steering members and 20 supporting members (Nov 2018).

*Steering members shown, additional supporting members www.hydrogencouncil.com

Real-world H2@Scale Examples

>5,000 Fuel Cell Vehicles and 35 commercial H₂ fueling stations open in CA.

8,000 gasoline stations vs. 1,000 H2 stations for 1,000,000 FCEVs

https://www.energy.gov/sites/prod/files/2018/08/f54/fcto-h2-scale-kickoff-2018-14-bouwcamp.pdf

Real-world H2@Scale Examples

8.08 AM CEST / 28-Jun-2018 / NEL ASA (OSE:NEL)

Nel ASA: Awarded multi-billion NOK electrolyzer and fueling station contract by Nikola

1,000 kg/day hydrogen stations to be deployed in 14-28 locations for fuel cell trucks (2018; Nikola, Nel)

https://www.energy.gov/sites/prod/files/2018/08/f54/fcto-h2-scale-kickoff-2018-17-schneider.pdf

Real-world H2@Scale Examples

Integration of 1.5-MW of electrolysis with wind and tidal power in Orkney, Scotland (2018; BIG HIT project)

H2@Scale CRADA Call Selections

First round of Selections Include 24 Applications from:

H₂ Station Risk Analysis

- Air Liquide
- California Energy Commission
- Connecticut Center for Advanced
 Technology
- PDC Machines
- Quong & Associates, Inc.

Hydrogen Production R&D

- Honda
- C4-MCP, Inc.
- GinerELX
- GTA, Inc.

Selections and subsequent working group assignments are subject to negotiation.

Hydrogen Integration

- Electric Power Research Institute
- Exelon
- Southern Company / Terrestrial Energy
- Nikola Motor
- Pacific Gas & Electric
- TerraPower

Component R&D

- California Go-Biz Office
- Frontier Energy
- HyET
- Honda
- NanoSonic
- RIX
- Tatsuno

Approach: Analyze the Technical and Economic Potential of the H2@Scale Concept

Technical potential – market and resource potential that is constrained by existing end-uses, real-world geography, and system performance. *Not constrained by economics.*

Economic potential – subset of the technical potential where hydrogen is less expensive than other options that can supply the end use.

Figure Source: Brown, A., P. Beiter, D. Heimiller, C. Davidson, P. Denholm, J. Melius, A. Lopez, D. Hettinger, D. Mulcahy, and G. Porro. 2015. *Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-64503

Accomplishment: Estimated Technical Potential Hydrogen Demand

Demand	Technical potential (MMT* / year)	Metric Ton of Hydrogen per County, Normalized by County Area
Refineries & CPI [§]	8	
Metals	6	Total H2 Demand (metric ton/m ² /yr)
Ammonia	5	20.0-9,100.0 10.0-20.0 5.0-10.0
Methanol	1	
Biofuels	1	Total: 27,382,000 metric ton H2 / (Alaska & Hawaii not shown)
Natural Gas	7	Preliminary This man was produced by the
Light Duty Vehicles	28	Results This analysis represents the total hydrogen demand estimated to be achievable in the U.S. in the following sectors: refineries, biofuels, ammonia, metals, methanol, natural gas systems, and seasonal energy storage. Each industrial sector was summarized by county to identify the total hydrogen demand for the industrial sector and
Other Transport	3	then normalized by area. Data Source: NREL analysis NATIONAL RENEWABLE ENERGY LABORATOR
Electricity Storage	28	Technical Potential Demand: 87 MMT/yr
Total	87	Current U.S. market: ≈ 13 MMT/vr

Including captive generation for ammonia and refining

* MMT: Million metric tonnes

[§] CPI: Chemical Processing Industry not including metals, ammonia, methanol, or biofuels Light duty vehicle calculation basis: 190,000,000 light-duty FCEVs from http://www.nap.edu/catalog/18264/transitions-to-alternative-vehicles-and-fixeds 18

Approach: Estimate Economic Potential as Hydrogen Prices and Quantities at Market Equilibria

Demand Curve: how much are consumers willing and able to pay for a good?

Supply Curve: how much are producers willing and able to produce at various prices?

Economic Equilibrium: Quantity where the demand price is equal to the supply price.

- No excess supply or demand.
- Market will push price and quantity to equilibrium.

Schwartz, Robert A. *Micro Markets A Market Structure Approach to Microeconomic Analysis*. Wiley Finance. Chichester: Wiley, 2010.

Accomplishment: Developed Four Economic Potential Scenarios

Estimated hydrogen market size: 20-31 MMT/yr with AEO Low Oil & Gas

Resource Scenario natural gas prices.

H2@Scale Base Case

H2@Scale Success Upper Bound

\$2.10/kg, 20 MMT/yr, \$41B Revenue \$1.80/kg, 31 MMT/yr, \$57B Revenue

Accomplishment: Initiated Analysis of Spatial and Temporal Issues

In the H2@Scale Success Upper Bound scenario, most of the hydrogen is produced from wind power in the middle of the country and demand is dispersed, but mainly on the coasts.

Supply

Demand

Electrolysis includes low-temperature and high-temperature electrolysis

Accomplishment: Initiated Analysis of Spatial and Temporal Issues

In the H2@Scale Success Upper Bound scenario, initial analyses indicate pipeline transport is the most economic method to get hydrogen from production to demand for most corridors.

Electrolysis includes low-temperature and high-temperature electrolysis

Improving the economics of H2@Scale

Improved Bulk Storage Technologies

Decreasing cost of H₂ production NATIONAL RENEWABLE ENERGY LABORATORY

Optimizing H₂ storage and distribution

https://www.hydrogen.energy.gov/pdfs/review18/tv045_ruth_2018_o.pdf

23

Leveraging of national

laboratories' early-stage

R&D capabilities needed

to develop affordable

technologies for

production, delivery, and

end use applications.

H₂ at Scale Big Idea Teams/Acknowledgement

Thank You