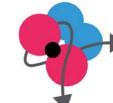
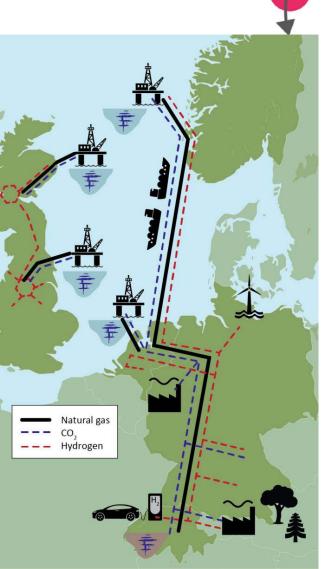

Hydrogen and CCS to reduce emissions from domestic heating and industrial clusters, H21 North of England and Grangemouth case studies, UK

Maxine Akhurst, Nixon Sunny and Ward Goldthorpe

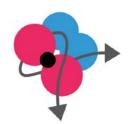
British Geological Survey, Imperial College London, INEOS and Sustainable Decisions Ltd


ELEGANCY Project, Webinar Series, 19 June 2020

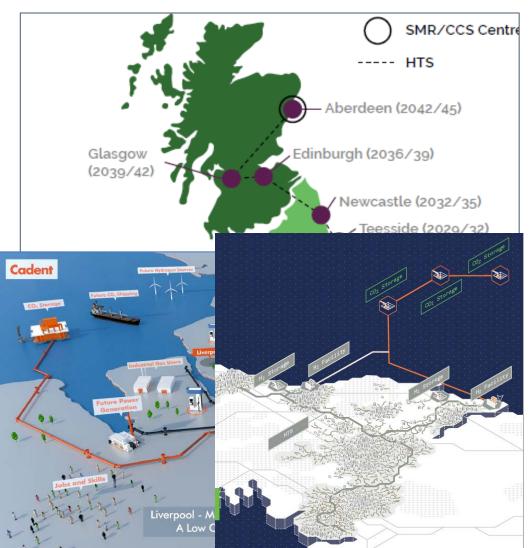
Case study overview


- Context for the ELEGANCY UK case studies for H21 and Grangemouth
- Profiles of CO₂ supply and storage requirements for the case studies
- UK hydrogen storage capacity in salt caverns
- UK network development for net-zero emissions heating with hydrogen:
 - Net-zero emissions from heat; value of hydrogen storage; deployment pathway; net-zero in industrial clusters; cost of CO₂ avoidance
- Conceptual business case for H21 case study:
 - Definition of the business case; business case development; delivery concept; example system business model
- Summary of UK case studies

Context - H21 North of England, Teesside & Grangemouth case studies, UK

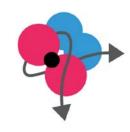

ELEGANCY UK case study

- Research findings and tools developed in ELEGANCY applied to:
 - Grangemouth industrial cluster.
 - H21 North of England conversion of heating to 100% hydrogen
- Profiles of CO₂ supply present day to 2100
- Storage options for CO₂ from Teesside & Grangemouth industry clusters
- Capacity for inter-day and inter-seasonal subsurface storage of hydrogen
- UK constraints have informed application of the ELEGANCY chain tool for network development:
 - Assessed Grangemouth as a case study for a refinery and petrochemical site for emission reduction by implementation of CCS & H₂-CCS
 - Conversion of natural gas supply for heating of seven large cities to 100% hydrogen as planned by H21 North of England
- Business model and business case tool to present an example business system model for the UK

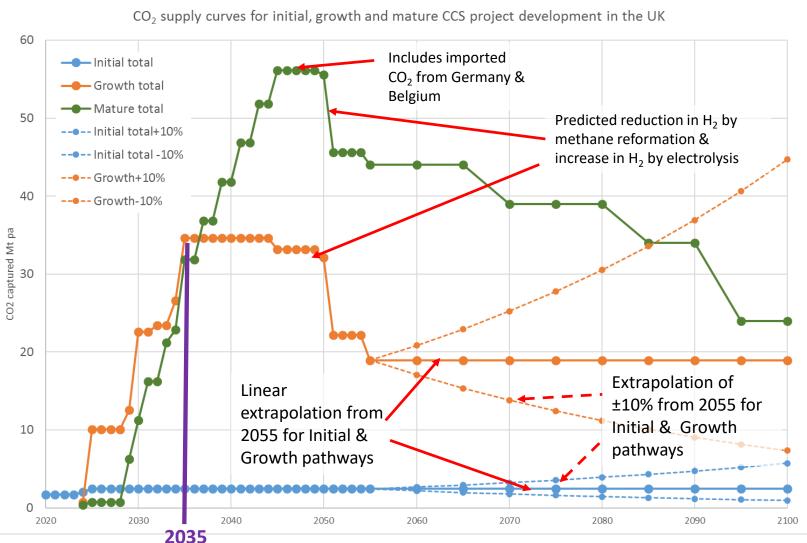

www.sintef.no/elegancy

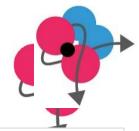
Profiles of CO₂ supply - approach Teesside & Grangemouth

Review existing project concepts for industrial CCS and $\rm H_2\text{-}CCS$ in the UK

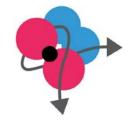

- CCS potential in industrial sectors for Clean Growth Strategy
 - Teesside pre-FEED studies
 - Summit Power's East Coast Network
 - Proposals including Acorn project's estimates for CCS and $\rm H_2$ -CCS in Scotland
- Decarbonisation of heat with H₂ and CCS:
 - H21 Leeds City Gate Northern Gas Network
 - H21 Roadmap, (illustrated)
 - Liverpool-Manchester cluster Cadent's HyNet Project (illustrated)
 - H21 North of England Project (illustrated)
 - Petrochemical and refinery appraisal at Grangemouth – INEOS, ELEGANCY case study

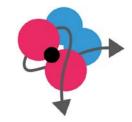
UK profiles of CO_2 supply for H_2 and CCS - approach


- Combined concepts for CCS application in the two regions and different industrial sectors
- Produced one scenario H₂-CCS and CCS for industry and power
- Low, intermediate and high CCS projects deployment variants:
 - Two east coast industrial clusters with North Sea CO₂ storage


CCS projects deployment	UK Scenario variants	Summary
Low	Initial (existing) projects	Mainly existing industries at Teesside and Grangemouth
Intermediate	Growth of projects	More industry sources, Caledonian Clean Energy Project at Grangemouth, H21 Leeds City Gate with large-scale hydrogen at Teesside
High	Mature projects	H21 North of England Import of CO ₂ from Germany & Belgium via the Netherlands

UK CO₂ supply profile to 2100 – variants for Initial, Growth and Mature CCS projects development

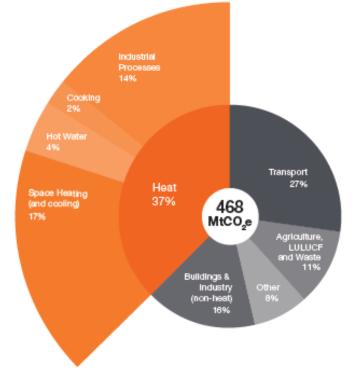
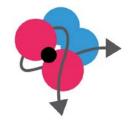
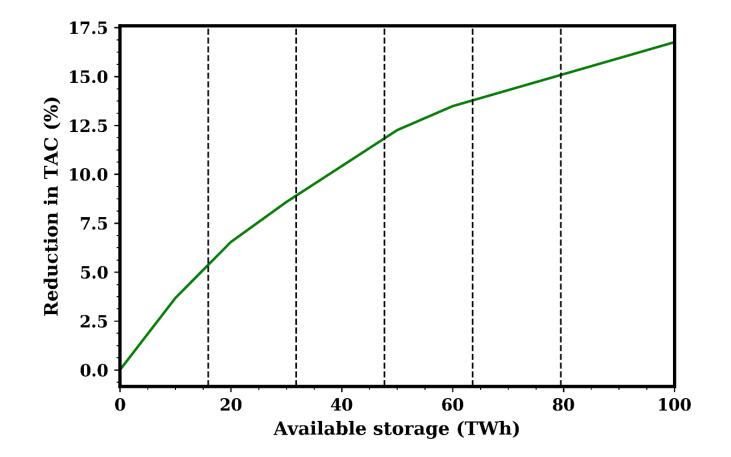

- Plot of planned annual supply to 2055 for existing initial, growth and mature CCS projects
- UK storage target rate of 30 Mt at 2035 exceeded
- Extrapolated to 2100 at constant rate or ±10%
- Required storage capacity by 2055
 - Initial projects 84 Mt
 - Growth projects 576 Mt
 - Mature projects 852 Mt
- Identified and simulated storage options for each supply variant

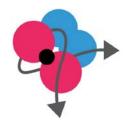


UK subsurface hydrogen storage capacity

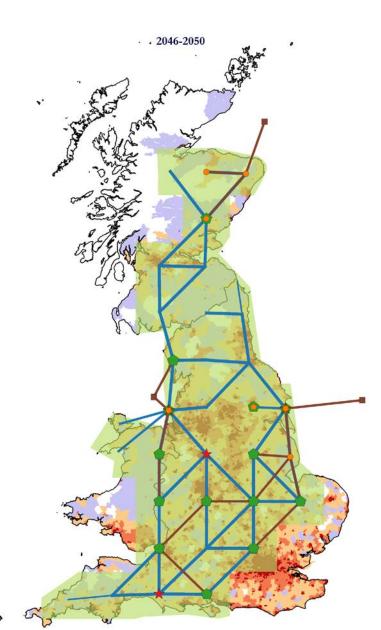
- National-scale theoretical onshore hydrogen storage capacity estimate
 - Three regions suitable for salt cavern construction in Cheshire, East Yorkshire and Wessex
 - Current operating, planned and cancelled hydrogen storage facilities
- Considered new underground salt cavern construction for hypothetical usecases:
 - 60 to 80 GWh capacity for inter-day storage
 - 140 to 160 GWh capacity for inter-seasonal storage
- Estimate represents the theoretical storage capacity, from the total sum of the storage resource available
- Theoretical maximum values, the practical capacity will be less:
 - Detailed screening might preclude some of the modelled cavern locations
 - Comprehensive subsurface characterisation studies are required to validate suitability of any particular area
- Estimated theoretical hydrogen storage capacities significantly exceed:
 - Current operational hydrogen storage capacity
 - Projected storage requirements of H21 Leeds City Gate & H21 North of England
- H₂ storage capacity would not be a constraint on network modelling if cavern construction is determined solely by demand

Net-zero CO₂ emissions from heat

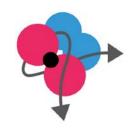





Figure 2.1 UK emissions in 2016 across different sectors⁴

Data for image: BEIS, "Sub-national consumption statistics for 2015", 2018

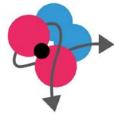


Value of H₂ storage



Deployment pathway: How do we get there?

Net-zero in industrial clusters



- Site emits approximately 3.5 -4 Mt CO₂ yr-1.
- Majority of overall CO₂ emissions as a result of direct combustion of fuel

 primarily refinery fuel gas and imported natural gas.

 Several emission point locations of interest with CO₂ ~ 10 mol%.

UK H21 Conceptual Business Case Definition

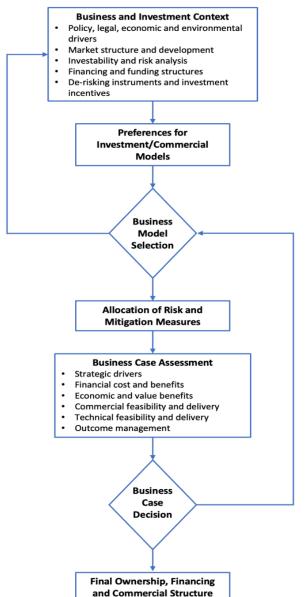
The business case concept definition for the UK H21 case study is directed at the objective to achieve:

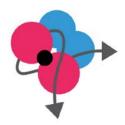
A commitment to phased investment in H_2 -CCS infrastructure to cost effectively decarbonise residential heating in the north of England and to support UK energy system decarbonisation to meet a net zero emissions target by 2050.

A. PROJECT PRESENTATION

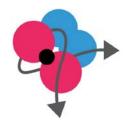
	•				
H2-CCS					
Sectors	Full H_2 -CCS chain, H_2 for gas network conversion and other sectors				
Project	Concept				
Status					
Project Type	First of a Kind Large Scale Infrastructure Deployment				
Project Scale (financial)	CAPEX: £22.78 billion OPEX: £955 million per annum post 2035				
Project Scale (emissions)	CO ₂ emissions reduction 12.5 Mtpa				

North of England			
2023-2035			
Market creation			
General government - to be defined later			
Gas distribution companies (Northern Gas Networks, Cadent), H2 production companies (BOC, Air Liquide), oil and gas companies (BP, Shell, Total, Equinor, ENI, National Grid, Power generation companies			


13


UK H21 System Business Case Development

- Use of WP3 Structured Process and Tools at System Level
 - Business and Investment Context
 - Market Failure Analysis and Policy Needs Analysis
 - Risk Assessment, Mitigation, Sharing and Collaboration
 - Business Model Options
 - Business Case Development with 6 Dimensions

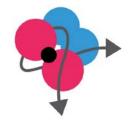

Outcome: Conceptual System Business Case

- Assessment of Business Drivers
- Phased System Delivery Concept
- Strategic Rationale
- Conceptual System Business Model (options)
- High Level System Risk Outcome Management

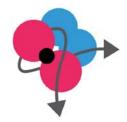
UK H21 Business Case Delivery Concept

Phased system delivery requiring public and private sector collaboration:

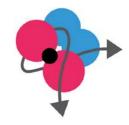
- > An initial commitment is required by 2023 to construction and funding
- > 2026-2029 First phase H₂-CCS network in the north of England to prepare for a gas network conversion
- \geq 2029-2035 north of England network conversion and development of markets for H₂ and CO₂.


The first phase H₂-CCS system commissioned in 2026 will comprise:

- \succ a modular H₂ ATR production facility at scale [initial capacity 1.35 GW];
- \succ associated H₂ transmission pipeline(s) and geological cavern storage;
- \succ facilities and market appliance upgrades for H₂ blended with methane up to 20%;
- conversion or construction of a power station capable of burning blended hydrogen and natural gas up to 90% hydrogen [initial capacity of 2 or 3 x 440 MW turbines];
- > connection to a large industrial cluster [Humber, Teesside, Manchester/Liverpool];
- oversized CO₂ transport and storage infrastructure in the Southern North Sea [initial pipeline capacity of 15-20 Mt per annum] anchored flexibly through combination of power, domestic and industrial users


UK H21 System Business Model

E. BUSINESS MODEL PREFERENCE


Business Model	Ownership	Capital Sourcing	Market Development		Physical Delivery	
			Responsibility	Revenue Model	Responsibility	Business Structure
H ₂ Production	PRIVATE	PRIVATE	PUBLIC	Targeted Revenue Support	PRIVATE	Free Market Enterprise
H ₂ Transmission	PRIVATE	PRIVATE	PUBLIC	Price Regulated Revenue + Construction Support	PRIVATE	Regulated Asset Base (New)
H ₂ Distribution	PRIVATE	PRIVATE	PUBLIC	Price Regulated Revenue	PRIVATE	Regulated Asset Base (Existing)
H ₂ Storage	PUBLIC	PRIVATE	PUBLIC	Price Regulated Revenue	PRIVATE	Public Concession (Design-Build-Finance- Operate)
CO ₂ Capture						
CO ₂ Gathering						
CO ₂ Transmission	JOINT	JOINT	PUBLIC	Price Regulated Revenue	PRIVATE	Joint Venture
CO ₂ Storage	JOINT	JOINT	PUBLIC	Price Regulated Revenue	PRIVATE	Joint Venture
Mobility						
Industry	PRIVATE	PRIVATE	PUBLIC	Targeted Revenue Support	PRIVATE	Free Market Enterprise
Decentralised Heat & Power						
Centralised Heat & Power	PRIVATE	PRIVATE	PUBLIC	Targeted Revenue Support	PRIVATE	Free Market Enterprise

Summary of UK case study

- Presented profiles of CO₂ supply from hydrogen reformation and industrial sources at Teesside for the H21 projects and Grangemouth industrial cluster,
 - Scenarios of initial, growth and mature CCS projects deployment
 - Identified storage options and simulated secure storage for the three scenarios
- Provided a first national-scale theoretical salt cavern hydrogen storage capacity estimate for the UK
- Applied the H₂-CCS full-chain systems simulation and optimization tool to the H21 projects, including hydrogen demand profiles, CO₂ sources and potential infrastructure routes
- Undertaken model studies and analyses of the economic, environmental & energy output to optimize the H₂-CCS system for H21
- Completed an industrial feasibility case study on the potential of CCUS and H₂ at the Grangemouth refinery and petrochemicals site
- Mapped business case parameters, risk allocation, market failures and barriers to investment in the UK case study
- Presented a policy gap analysis and recommendations to address investment and delivery issues raised by regional stakeholders

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), BMWi (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco, Equinor and Total, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

