

Optimization of Sorption-Enhanced WGS for use with Basic Oxygen Furnace Gas from the steel plant

Jean Pierre Pieterse (TNO)

22th of June, 2020

Valorisation of steel off-gases to enable economic viable CO₂ storage and utilization

 Presence of diluted energy containing streams: unique feature of current steel making processes

Gas type	CO ₂	CO	N ₂	H ₂	CH ₄	LHV (MJ/Nm³)	
BFG	22	22	49	4		3.2	
BOFG	14	57	14	3		7.5	
COG	2	5	7	62	24	15.3	

- BFG Blast Furnace Gas
- BOFG Basic Oxygen Furnace gas
- COG Cokes Oven gas

10Mt/year Iron&Steel Mill, see IEAGHG report on Iron&Steel, http://www.ieaghg.org/docs/General_Docs/Reports/2013-04.pdf

Valorisation of steel off-gases to enable economic viable CO₂ storage and utilization

 Presence of diluted energy containing streams: unique feature of current steel making processes

Gas type	CO ₂	со	N ₂	H ₂	CH ₄	LHV (MJ/Nm³)
BFG	22	22	49	4		3.2
BOFG	14	57	14	3		7.5
COG	2	5	7	62	24	15.3

- BFG Blast Furnace Gas
- BOFG Basic Oxygen Furnace gas
- COG Cokes Oven gas

10Mt/year Iron&Steel Mill, see IEAGHG report on Iron&Steel, http://www.ieaghg.org/docs/General_Docs/Reports/2013-04.pdf

VALORIZE THE ENERGY IN THE RESIDUAL STREAM

How to transform CO to H₂?

> Add steam and do the water gas shift!

> Water gas shift reaction at 400°C is thermodynamically limited

Combine the Water-Gas-Shift reaction with sorbent material to simultaneously produce H₂ at high temperature whilst also capturing CO₂

Sorption-Enhanced WGS development

• From power production to also H₂ production environment

Residual gas streams in the steel industry

 Presence of diluted energy containing streams: unique feature of current steel making processes

Gas type	CO ₂	CO	N ₂	H ₂	CH ₄	LHV (MJ/Nm ³)	
BFG	22	22	49	4		3.2	
BOFG	14	57	14	3		7.5	
COG	2	5	7	62	24	15.3	

- BFG Blast Furnace Gas
- BOFG Basic Oxygen Furnace gas
- COG Cokes Oven gas

10Mt/year Iron&Steel Mill, see IEAGHG report on Iron&Steel, http://www.ieaghg.org/docs/General_Docs/Reports/2013-04.pdf Elegancy: 1) **BOFG** 2) BOFG + BFG

Objectives SEWGS (scope of Elegancy)

- 1. Prove the ability of water gas shift catalysts to operate in the presence of high carbon content and contaminants
 - For very high CO content gases, the SEWGS system requires a pre-shift section with associated catalyst
- 2. Extend the SEWGS model to steel works gases
- 3. Prepare the ground for the TRL7 deployment of the SEWGS process in high CO content steelworks gases.

To save steam, a split-flow configuration for the pre-shift section

1000+ hr testing BOFG

Commercial Catalyst (state-of the art) Contaminant: **55 ppm NO₂ and 5 ppm SO₂**

Effect of contaminants insignificant

- Multiple reactive separation columns
- Operated dynamically according to defined cycle

	1	2	3	4	5	6	7	8	9	10	11	12
Column 1	Α		R		PE1	PE2	BD	Р		PE2	PE1	RP
Column 2	PE1	RP	Α		R		PE1	PE2	BD	Р		PE2
Column 3	Ρ	PE2	PE1	RP	Α		R		PE1	PE2	BD	Р
Column 4	BD	Р		PE2	PE1	RP	Α		R		PE1	PE2
Column 5	PE1	PE2	BD	Р		PE2	PE1	RP	А		R	
Column 6	R		PE1	PE2	BD	Р		PE2	PE1	RP	Α	

• A (adsorption) R (Rinse) PE (pressure equilization) BD (Blow down) P (Purge) RP (Repress)

High CO2 purity & high Hydrogen recovery

SEWGS modeling is essential for design

Simulations of the CO₂ and steam transients during a CO₂ step in- and decrease to a steam containing feed. The solid lines represent the model, while the dashed lines the experimental observations.

The updated model is capable of predicting cycle performances accurately.

Cycle Design and optimization

Determine
Flow rates
Number of columns
Column height
Column diameter
Step durations

CO₂ purity
Carbon Capture Rated (CCR)
Hydrogen recovery and purity

SEWGS: Cyclic simulations

➤Unit sizing

- Productivity
 - Feed flow, mol/kg
- Purity and CCR

> The cyclic simulations were used for a full scale, 35 kNm³/h BOFG SEWGS design

The cyclic simulations were used for a prototype TRL7 scale design for SEWGS multi-column testing at Swerim (luleå, Sweden)

3) From STEPWISE PILOT to TRL7

STEPWISE: Cost effective CO₂ reduction in the Iron & Steel Industry

3) From STEPWISE PILOT to TRL7

Multi-column SEWGS in Luleå

A positive business case: Urea production from BOFG

- Residual gases in the steel industry contain N₂
- After SEWGS technology
 - N_2 goes with the H_2
 - Treated BOF gas has the right H_2/N_2 ratio for ammonia synthesis

>INITIATE project (H2020, under review)

Summary: SEWGS and Elegancy

- The SEWGS Elegancy work contribute to the decarbonization and valorization of steel works gases, by extending the SEWGS functionality from blast furnace gas (BFG) to basic oxygen furnace gas (BOFG).
- SEWGS technology platform used with BOFG creates the CO2 utilization business cases with energy intensive CCS.
 Commodities can be produced while the remaining CO₂ is available at high purity for sequestration.
- Elegancy work prepares follow up multi column (CC(U)S) demonstration (TRL 7) on steel works gases, the crucial step towards commercial roll out.

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), FZJ/PtJ (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco AS and Statoil Petroleum AS, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

