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ELEGANCY - LCA of H, production
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Lite Cycle View on H, Production with CCS
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Life Cycle Assessment frame

* Functional unit: 1 MJ of H, produced via specified technology with a purity of >99.97%
(SMR, DFB) or >99.9% (ATR, oxyEF) at a pressure of 200 bar.

e Life Cycle Inventory:
— Directly linked to the technical modellings from ETH
— Background database: ecoinvent v3.6 «cut-off» system model
e Life Cycle Impact Assessment:
— ILCD 2.0 2018: 16 impact categories for climate change, ecosystem quality, human health, resources

e Open source software package «Brightway2» https://brightway.dev/;
https://carculator.psi.ch

* Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., Mazzotti, M. 2020. Hydrogen production from natural gas and biomethane with carbon capture and
storage — A techno-environmental analysis. Sustainable Energy & Fuels, 2020, 4, 2967-2986
* Publication on H, production from wet and dry biomass in preparation
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Life Cycle Climate Change impacts:
H, production from natural gas, technical comparison
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SMR: Steam Methane Reforming // ATR: Autothermal Reforming
MDEA: Methyl-Diethylamine // VPSA: Vacuum Pressure Swing Adsorption
GHG: Greenhouse gases Antonini, C., Treyer, K., et al. (2020)



Lite Cycle View on H, Production with CCS
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Life Cycle Climate Change impacts:
H, production from natural gas or biomethane
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SMR: Steam Methane Reforming // ATR: Autothermal Reforming
NG: Natural gas // BM: Biomethane Antonini, C., Treyer, K., et al. (2020)




Lite Cycle View on H, Production with CCS

Allocated to the food/agricultural sector Allocated to the energy sector
Natural gas
Extraction Natural gas Flue Gas
; q — Water Waste
Digestate & Transport (CO,,NO,)
sto‘rkage Upgrading A 4 A
A 4 \ 4 \ 4
. Blogenic Anaerobic Biogas Biomethane H, Production, Pur!flcatlon > Electricity
Agriculture P Waste [ Disestion > Uperadin > T : - and Compression;
Collection & Pg & ranspor N Carbon Capture »1 MJ Hydrogen
Forestry, N Geological
A
Sawing & y Wood Cco, . eocgglca
Wood Chips Transport Storaz .
Chipping Transport y g
Catalysts/ Infl\r/zlas;cru‘ctlure
Adsorbents Ea erais —
Production nergy
Transports




0.2

0.15

0.1

0.05

kg CO,-eq/MJ H,
S

(=]

w [=]

S
=

-0.15

-0.2

And now the big picture:

H, production pathways, climate change impacts
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SMR: Steam Methane Reforming // ATR: Autothermal Reforming
DFB: Steam-blown dual fluidised bed gasifier // EF: oxy-fired entrained flow gasifier

CO, capture rate at H, plant

Woody gasification:

 Less efficient process, i.e. more C
involved, but this is biogenic C.

* Close to 100% CO, capture
possible => more C captured

Carbon-neutral or negative emissions
H, production possible with both
biomethane or wood as feedstock

Availability of (waste) biomass and
CO, storage are the challenges

Combined with CCS, fossil-based
hydrogen («blue hydrogen») is low-
carbon and environmentally
competitive with H, from electrolysis.

Antonini, C., Treyer, K., et al. (2020)



Looking for environmental trade-offs and winners
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Interpreting LCIA results of H, production:
Comparison of passenger transport in passenger cars (1 pkm)
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Take home messages

e Low-carbon H, can be produced from NG (“blue H,”) using commercial
technologies (MDEA) and second generation technologies (VPSA) with
comparable environmental performance.

* H, production can achive neutral climate change impacts or even act as Negative
Emission Technology when using biomethane from waste biomass or wood as
feedstock.

* A net zero-carbon H, industry can potentially be achieved by blue&green H,
combined with negative emissions through biomethane- or wood based H,,.

 Availability of biomass and CO, storage are the challenges.

e Trade-offs with other environmental or human health impacts: Addition of CCS
only slightly increases impacts in other impact categories.
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Backup slide: H, production from
electrolysis

025 'Hydro ENTSO-E

0.20 ,—|—| Electrolysis

0.15 g iy

e =1 7 o0 NG, SMR/ATR, no CCS

T 0.10 = o
S / b= — NG, SMR HTLT VPSA > 98
S 005 _ — 5 —
é 0.00 = == —— NG, ATR HTLT VPSA > 98
O - T L A N -
005 o - — —BM, no CCS, min

-0.10

] _ - = =BM, no CCS, max
_0. 15 — e T
-0.20 - - - BM, CCS, min

000 005 010 015 020 025 030 035 040 045

- - = BM, CCS, max
GHG intensity electricity (kg CO,-eq/kWh)

Antonini, C., Treyer, K., et al. (2020) 13




	Slide Number 1
	Slide Number 2
	Life Cycle View on H2 Production with CCS
	Life Cycle Assessment frame
	Life Cycle Climate Change impacts:�H2 production from natural gas, technical comparison
	Life Cycle View on H2 Production with CCS
	Life Cycle Climate Change impacts:�H2 production from natural gas or biomethane
	Life Cycle View on H2 Production with CCS
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Take home messages
	Backup slide: H2 production from electrolysis

