

The influence of thermodynamic properties on CO₂ storage in saline aquifers

J P Martin Trusler and Geraldine Torín-Ollarves ELEGANCY webinar 22 June 2020

Geological Carbon Storage Mechanisms

Solubility trapping:

Mineral trapping:

Residual

trapping:

cool Porous Rock

Images used with permission: © copyright CO₂ Capture Project www.co2captureproject.com

Thermodynamic State and Composition

Components slate:

- Carbon dioxide
- Diluents: N_2 , O_2 , CO, Ar, H_2
- Acid Gases: H₂S, COS, SO₂
- Aqueous species: H₂O, amines, salts
- Hydrocarbons: Gas, condensates, oils
- Others: NO_x, trace elements

Hydrogen + CCS: CO₂ for storage will contain H₂ impurity

Role of Thermophysical Properties in CO₂ Storage

Process	Properties	Controlling
Structural & residual trapping	Interfacial tension	Capillary pressure
	Contact angle	
Solubility trapping	Mutual solubility	Driving force
	Diffusion coefficients	Mass transfer rate
	Density, viscosity	Convective flow
Mineral trapping	pН	Mineral dissolution rate

Focus in ELEGANCY: effects of H₂ impurity on properties

5

Objectives of ELEGANCY for CO₂-Brine-Impurity Properties

- Develop advanced models for the thermodynamic properties of systems containing CO₂, brines and impurity gases (especially H₂)
 - Model development requires experimental data, on (pseudo) binary mixtures, e.g. CO₂ + brine, H₂ + brine
 - Lack of solubility data for H₂ in brines at storage-reservoir conditions
- Measure the solubility of H₂ in water and brine

Model development: RUB

Imperial College

London

Experimental solubility measurements: ICL

Bespoke experimental apparatus

- Operation conditions: pressures ≤ 70 MPa and temperatures ≤ 473.15 K
- Fill gas \rightarrow inject liquid \rightarrow Disappearance of bubble \rightarrow PV analysis

7

Imperial College London

Available Literature data: H₂ solubility in H₂O

Solubility expressed in units of moles of H₂ per kg of water

Add new data: H₂ solubility in H₂O and NaCl brine

•, new data H_2 on water; \blacksquare , new data H_2 in 2.5 mol/kg NaCl brine

Solubility expressed in units of moles of H₂ per kg of water

Salting-Out Effect

For sparingly-soluble gases like H₂:

$$\ln\left(\frac{\text{solubility in brine}}{\text{solubility in water}}\right) = -k_{\text{s}}b_{\text{s}}$$

- b_s = molality of salt
 (mole of salt per kg of water)
- $k_{\rm S}$ = Sechenov coefficient (function of temperature, independent of pressure)

Iow-pressure, low-temperature seawater studies
 new high-pressure study (this work)

Summary and Conclusions:

- Available data for H₂ solubility in water extended to higher temperatures
- First measurements of salting-out effect for H₂ in brine at reservoir temperature
- Provides the necessary data for model development

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), FZJ/PtJ (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco AS and Statoil Petroleum AS, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

