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Outline
• Residual based estimates
• Local problems
• Recovery estimates
• Lower bounds
• Refinement techniques
• Adaptive algorithms
• Other sources of error
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Poisson Equation
Strong form. Find u ∈ H1

0(Ω) such that

−4u = f in Ω,

u = 0 on ∂Ω.

where f ∈ H−1(Ω), and Ω is the domain.
Weak form. Find u ∈ H1

0(Ω) such that
∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx for all v ∈ H1
0(Ω).
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Discretization
We introduce a finite dimensional space Vh ⊂ H1

0(Ω).
• The mesh consists of elements K ∈ K.
• hK = diam(K) and h(x) = hK for x ∈ K.
• The functions v ∈ Vh are piecewise polynomials.

Finite element method. Find U ∈ Vh such that∫
Ω

∇U · ∇v dx =

∫
Ω

fv dx for all v ∈ Vh.
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Galerkin Orthogonality
We subtract the finite element equations from the
weak form and obtain the following equations for the
error e = u − U ,∫

Ω

∇e · ∇v dx = 0 for all v ∈ Vh,

i.e. the error e is orthogonal to the space Vh in this

sense. We let πv be the interpolant of v.
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Residual Based Estimate

‖∇e‖2 =

∫
Ω

∇e · ∇e dx

=

∫
Ω

∇e · ∇(e − πe) dx

= −
∫

Ω

4e(e − πe) dx

=

∫
Ω

(f + 4U)(e − πe) dx

We need to interpret
∫

Ω(f + 4U)v dx.
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Residual Based Estimate, cnt
∫

Ω

(f + 4U)v dx =
∑
K∈K

∫
K

(f + 4U)v dx

− 0.5

∫
∂K\Γ

[n · ∇U ]v ds

≤
∑
K∈K

‖h(f + 4U)‖K‖h−1v‖K

+ 0.5‖h1/2[n · ∇U ]‖∂K\Γ‖h−1/2v‖∂K\Γ

we let v = e − πe.
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Residual Based Estimate, cnt
Interpolation estimate.

∑
K∈K

‖h−1(e − πe)‖2
K ≤ C‖e‖2

1 ≤ C‖∇e‖2,

where the last inequality is due to Poincare-Friedrichs
Lemma.
Trace inequality.

‖h−1/2(e−πe)‖2
∂K ≤ C‖h−1(e−πe)‖K‖(e−πe)‖K,1

∑
K∈K

‖h−1/2(e − πe)‖2
∂K ≤ C‖∇e‖2
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Residual Based Estimate, cnt
Remember

‖∇e‖2 =

∫
Ω

(f + 4U)(e − πe) dx

≤
∑
K∈K

D

2
‖h(f + 4U)‖2

K +
1

2D
‖h−1e − πe‖2

K

+
D

2
‖0.5 ∗ h1/2[n · ∇U ]‖2

∂K\Γ +
1

2D
‖h−1/2e − πe‖2

∂K\Γ

≤ D

2

∑
K∈K

‖h(f + 4U)‖2
K + ‖0.5 ∗ h1/2[n · ∇U ]‖2

∂K\Γ

+
1

2
‖∇e‖2, D = 2C
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Residual Based Estimate, cnt
We end up with,

‖∇e‖2 ≤ C
∑
K∈K

R2
K ,

where R2
K = h2

K‖f + 4U‖2
K + 1

4hK‖[n · ∇U ]‖2
∂K\Γ
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Residual Based Estimate, cnt
We can extend this result to the case of variable
coefficient,

−∇ · a∇u = f

in this case we get

‖
√

a∇e‖2 ≤ C
∑
K∈K

R2
K ,

where
R2

K = h2
K‖ 1√

a
f+∇·a∇U‖2

K+ 1
4hK‖ 1√

a
[n·a∇U ]‖2

∂K\Γ
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Residual Based Estimate, cnt
• Simple to implement
• Correct h-dependence of the error
• Unknown constants appear
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Local Problems on Stars
Next we turn to estimates on mesh stars.
Nochetto-Carstensen derives the following technique
for the energy norm, let (v, w) =

∫
Ω vw dx,

‖∇e‖2 = (−4e, e)

= (f + 4U, e)

=
n∑

i=1

(ϕi(f + 4U), e)

=
n∑

i=1

(ϕi∇Ei,∇e)Si

Computational Mathematics, and Fraunhofer Centre for Industrial Mathematics – p.13



Local Problems on Stars, cnt
The functions Ei ∈ H1(Si) are defined to solve,

(ϕi∇Ei,∇v)Si
= (ϕi(f + 4U), v)Si

,

for all v ∈ H1(Si). This equation is solvable since the
kernel consists of v = C and (ϕi(f + 4U), C)Si

= 0
from Galerkin Orthogonality.
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Figure 1: The mesh star Si.
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Local Problems on Stars, cnt
We get the following estimate,

‖∇e‖2 =
n∑

i=1

(ϕi∇Ei,∇e)Si
= (

n∑
i=1

ϕi∇Ei,∇e)

By using the Cauchy-Schwarz inequality we get,

‖∇e‖2 ≤ ‖
n∑

i=1

ϕi∇Ei‖2 =
∑
K∈K

‖
n∑

i=1

ϕi∇Ei‖2
K
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Local Problems on Stars, cnt
We perform a similar calculation to get a simpler
version.

‖∇e‖2 = (−4e, e) = (f + 4U, e)

=
n∑

i=1

(ϕi(f + 4U), e) =
n∑

i=1

(∇Ei,∇e)Si

Here Ei is determined by,

(∇Ei,∇v)Si
= (ϕi(f + 4U), v)Si

,

then we get, ‖∇e‖2 ≤
∑

K∈K ‖∇ (
∑n

i=1 Ei) ‖2
K .
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Local Problems on Stars, cnt
We can also solve the equations for Ei on stars of
more layers.
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Figure 2: One and two layer mesh stars S
j
i j = 1, 2.
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Local Problems on Elements
We now use Neumann conditions on the local
problems,

‖∇e‖2 = (∇e,∇e)

=
∑
K∈K

(∇e,∇e)K

=
∑
K∈K

(f + 4U, e)K + (n · ∇e, e)∂K

=
∑
K∈K

(f + 4U, e)K + (Σn − n · ∇U, e)∂K ,

where Σn is a conservative approximation of n · ∇u.
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Local Problems on Elements
We define EK ∈ H1(K) to solve,

(∇EK ,∇v)K = (f +4U, v)K + (Σn − n · ∇U, v)∂K ,

for all v ∈ H1(K). This equation is solvable if

(f + 4U,C)K + (Σn − n · ∇U,C)∂K = 0,

for a constant C i.e.∫
K

f +

∫
∂K

Σn = 0.

We get the following estimate
‖∇e‖2 ≤

∑
K∈K ‖∇EK‖2.
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Local Problems on Elements
The Neumann approach requires

• Computation of equilibrium fluxes Σn

• Solution of local Neumann problems

Some references on computation of equilibrium fluxes
• Ainsworth-Oden
• Baker
• Ladeveze
• Larson-Niklasson
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Local Problems
• No unknown constants
• More efficient
• More complicated
• E needs to be computed numerically
• We get a truth mesh error estimate
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Recovery Estimates
Let GU ∈ V d

h be determined by the equation

(GU, v)Lump = (∇U, v),

for all v ∈ V d
h . Here (·, ·)Lump refers to the lumped

L2(Ω)-product. Then it holds,

‖∇e‖ ≤ C
∑
K∈K

ρ2
K ,

where ρK = ‖GU −∇U‖K .
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Lower Bounds
Assume we compute an approximation of the error
E ∈ Vh ⊂ H1

0(Ω) such that,

(∇e,∇v) = (∇E,∇v),

for all v ∈ Vh. Then we have,

‖∇E‖2 = (∇E,∇E)

= (∇e,∇E)

≤ ‖∇e‖‖∇E‖,

So we get ‖∇E‖ ≤ ‖∇e‖.

Ex: Solve a local Dirichlet problem on each element.
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Lower Bounds, cnt
For estimates based on local Neumann problems on
stars we obtain an approximation E of the error e. E
is discontinuous on element edges and satisfies,

(∇E,∇v) = (∇e,∇v),

for all v ∈ H1
0(Ω) by construction.

Assume we can compute a continuous approx. Ec of
E. Then we have

2λ(∇E,∇Ec) − λ2‖∇Ec‖2 ≤ ‖∇e‖2,

for all λ ∈ R. See (Diez, Pares and Huerta).
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Lower Bounds, cnt

0 ≤ (∇(e − λEc),∇(e − λEc))

= ‖∇e‖2 − 2λ(∇e,∇Ec) + λ2‖∇Ec‖2

= ‖∇e‖2 − 2λ(∇E,∇Ec) + λ2‖∇Ec‖2.

This leads to

‖∇e‖2 ≥ 2λ(∇E,∇Ec) − λ‖∇Ec‖2.

An optimal value λ = (∇E,∇Ec)
‖∇Ec‖2 gives,

‖∇e‖2 ≥ |(∇E,∇Ec)|2
‖∇e‖2
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Refinement Techniques
Bisect triangles. Joining the midpoint of the longest
edge with the opposite vertex.

Divide into four parts.
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Refinement Techniques, cnt

Red refinement.

Blue refinement.
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Refinement Techniques, cnt

Green refinement.
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Refinement Techniques, cnt

Bricks.

Hanging nodes may be dealt with,
• By enforcing strong continuity
• By enforcing weak continuity
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Adaptive Algorithms
• Start on initial mesh
• Solve equations to get the solution U

• Calculate the error indicators EK or RK

• Refine elements K with large values of the
indicator

• Go back to step 2 or stop if the error is small
enough

In practice computer memory or time can also be used

as a natural stopping criteria.
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Adaptive Algorithms, cnt
There are different ways to choose which elements to
refine. Assume that we have an estimate
‖∇e‖2 ≤

∑
K∈K R2

K . Let 0 ≤ θ ≤ 1,

• Refine all elements where RK ≥ θ maxRK .
• Let D ⊂ K such that∑

k∈D

R2
K ≥ θ2

∑
K∈K

R2
K .

Refine elements in D.
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Other Sources of Error
A posteriori estimates can be extended to include

• Errors in data
• Errors in solution of algebraic system of

equations
• Errors in solution due to approximation of

geometry
• Quadrature errors
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Error in Data
We study error in data f ,

(∇e,∇e) = (f + 4U, e)

= (f̃ + 4U, e) + (f − f̃ , e)

≤ |(f̃ + 4U, e − πe)| + C‖f − f̃‖−1‖e‖1,

so we get

‖∇e‖2 ≤ C
∑
K∈K

R2
K + C‖f − f̃‖2

−1.
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Algebraic Error
If the algebraic system of equation is solved
approximately we get,

‖∇e‖2 = (f + 4U, e − πe) + (f + 4U, πe),

where the second term is the algebraic residual.
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Quadrature Error
Finally we consider quadrature error,

‖∇e‖2 = (f + 4U, e − πe)

+ (∇e,∇πe) − (∇e,∇πe)h

= (f + 4U, e − πe)

+ (f, πe) − (f, πe)h

+ (∇U,∇πe) − (∇U,∇πe)h,

where (·, ·)h in the form obtained by quadrature.
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