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Introduction to AD

When do we use derivatives?

(1:st order) Solving non-linear equations: Newton’s method,
monotonicity. Stability.

(2:nd order) Optimization: convexity.

(n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f (n)(x0), where

f(x) = esin e
cos x+2x5

for x0 = +1 and n = 1? [Undergraduate maths - but tedious]
for x0 = −2 and n = 100? [Undergraduate maths - impossible?]
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Introduction to AD

How do we compute derivatives in practice?

(Symbolic representation) Generates exact formulas for
f, f ′, . . . , f (n), . . . . This is very memory/time consuming.
Produces enormous formulas. Actually too much information.

(Finite differences) Generates numerical approximations of the

value of a derivative, e.g. f ′(x0) ≈ f(x0+h)−f(x0)
h , based on

f(x0 + h) = f(x0) + hf ′(x0) + h2f ′′(x0) +O(h3).

Various errors: roundoff, cancellation, discretization. Which h
is optimal? How does the error behave? Can’t really handle
high-order derivatives.

(Complex differentiation) A nice “trick” using complex

extensions: f ′(x0) ≈ =(f(x0+ih))
h , where =(x+ iy) = y.

Avoids cancellation, and gives quadratic approximation, but
requires a complex extension of the function.
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Introduction to AD

Example

Consider our test function f(x) = esin e
cos x+2x5

. Let h = 2−k for
k = 0, . . . , 80, and compute the two approximations

fx(h) =
f(1)− f(1 + h)

h
and fz(h) =

=(f(1 + ih))
h

.
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Plot of k versus fz(h) and fz(h).

fx(h) is plotted in blue,
fz(h) is plotted in red.
Notice that fz(h) is not af-
fected by cancellation due
to a small h.
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Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

No discretization errors.

No huge memory consumption.

No complex “tricks“.

Very easy to understand.
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First-order scalar AD - definitions

An arithmetic for differentiation

We will perform all computations with ordered pairs of real
numbers

~u = (u, u′).

The first component holds the value of the function f(x0); the
second component holds the value of the derivative f ′(x0). In
what follows, we assume that f : R→ R.

Basic arithmetic

~u+ ~v = (u+ v, u′ + v′)
~u− ~v = (u− v, u′ − v′)
~u× ~v = (uv, uv′ + u′v)
~u÷ ~v = (u/v, (u′ − (u/v)v′)/v),

where we demand that v 6= 0 when dividing.
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First-order scalar AD - definitions

We need to know how constants and the independent variable x
are treated. Following the usual rules of differentiation, we define

~x = (x, 1) and ~c = (c, 0).

Example

Let f(x) = (x+1)(x−2)
x+3 . We wish to compute the values of f(3)

and f ′(3). It is easy to see that f(3) = 2/3. The value of f ′(3),
however, is not immediate. Applying the techniques of
differentiation arithmetic, we define

~f(~x) =
(~x+~1)(~x−~2)

~x+~3
=

(
(x, 1) + (1, 0)

)
×
(
(x, 1)− (2, 0)

)
(x, 1) + (3, 0)

.

Inserting the AD-variable ~x = (3, 1) into ~f produces...
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First-order scalar AD - definitions

Example

~f(3, 1) =

(
(3, 1) + (1, 0)

)
×
(
(3, 1)− (2, 0)

)
(3, 1) + (3, 0)

=
(4, 1)× (1, 1)

(6, 1)
=

(4, 5)
(6, 1)

= (
2
3
,
13
18

).

From this calculation it follows that f(3) = 2/3 (which we already
knew) and f ′(3) = 13/18. Note that we never used the expression
for f ′.

If we use the different (but equivalent) representation
f(x) = x− 4x+2

x+3 , we arrive at the same result by a completely
different route. Try it!
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First-order scalar AD - definitions

AD for standard functions

We can extend the ideas to standard functions using the chain rule:

~g(~u) = ~g(u, u′) = (g(u), u′g′(u)).

Applying this to some common functions yields:

sin ~u = sin (u, u′) = (sinu, u′ cosu)
cos ~u = cos (u, u′) = (cosu,−u′ sinu)
e~u = e(u,u

′) = (eu, u′eu)
log ~u = log (u, u′) = (log u, u′/u) (u > 0)
|~u| = |(u, u′)| = (|u|, u′sign(u)) (u 6= 0)
~uα = (u, u′)α = (uα, u′αuα−1) (sometimes).

Feel free to add your own favourites!
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First-order scalar AD - definitions

Example

Let f(x) = (1 + x+ ex) sinx, and compute f ′(0).

Set

~f(~x) = (~1 + ~x+ e~x) sin ~x,

and evaluate it at ~x = (0, 1). This gives

~f(0, 1) =
(
(1, 0) + (0, 1) + e(0,1)

)
sin (0, 1)

=
(
(1, 1) + (e0, e0)

)
(sin 0, cos 0) = (2, 2)(0, 1) = (0, 2).

From this calculation, it follows that f(0) = 0 and f ′(0) = 2.

Note that the differentiation arithmetic is well-suited for
implementations using operator overloading (C++, MATLAB Java).
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First-order scalar AD - implementations

Implementing the class constructor is straight-forward in MATLAB.

01 function ad = autodiff(val, der)

02 % A naive autodiff constructor.

03 ad.val = val;

04 if nargin == 1

05 der = 0.0;

06 end

07 if strcmp(der,’variable’)

08 der = 1.0;

09 end

10 ad.der = der;

11 ad = class(ad, ’autodiff’);

Lines 04-06 automatically cast a real number c into an AD-type
constant ~c = (c, 0).
Lines 07-09 manually cast a real number x into a AD-type variable
~x = (x, 1).
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First-order scalar AD - implementations

The display of autodiff objects is handled via display.m:

01 function display(ad)

02 % A simple output formatter for the autodiff class.

03 disp([inputname(1), ’ = ’]);

04 fprintf(’ (%17.17f, %17.17f)\n’, ad.val, ad.der);

We can now input/output autodiff objects within the MATLAB
environment:

>> a = autodiff(3), b = autodiff(2, ’variable’)

a =

(3.00000000000000000, 0.00000000000000000)

b =

(2.00000000000000000, 1.00000000000000000)
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First-order scalar AD - implementations

Arithmetic is easy to implement. Here is (matrix) multiplication:

01 function result = mtimes(a, b)

02 % Overloading the ’*’ operator.

03 [a, b] = cast(a, b);

04 val = a.val*b.val;

05 der = a.val*b.der + a.der*b.val;

06 result = autodiff(val, der);

And here is the logarithm:

01 function result = log(a)

02 % Overloading the ’log’ operator.

03 if (a.val <= 0.0 )

04 error(’log undefined for non-positive arguments.’);

05 end

06 val = log(a.val);

07 der = a.der/a.val;

08 result = autodiff(val, der);
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First-order scalar AD - implementations

Here is a simple function that returns the derivative of a general
function f at a given point x0:

01 function dx = computeDerivative(fcnName, x0)

02 f = inline(fcnName);

03 x = autodiff(x0, ’variable’);

04 dx = getDer(f(x));

A typical usage is

>> dfx = computeDerivative(’(1 + x + exp(x))*sin(x)’, 0)

dfx =

2

>> dfx = computeDerivative(’exp(sin(exp(cos(x) + 2*power(x,5))))’, 1)

dfx =

129.6681309181679

Great for checking your calculus homework



First-order scalar AD - implementations

Here is a simple function that returns the derivative of a general
function f at a given point x0:
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First-order scalar AD - implementations

A more practical application is solving non-linear equations.

01 function y = newtonSearch(fcnName, x, tol)

02 f = inline(fcnName);

03 y = newtonStep(f, x);

04 while ( abs(x-y) > tol )

05 x = y;

06 y = newtonStep(f, x);

07 end

08 end

09

10 function Nx = newtonStep(f, x)

11 xx = autodiff(x, ’variable’);

12 fx = f(xx);

13 Nx = x - getVal(fx)/getDer(fx);

14 end

Note that this function “hides” the AD from the user: all
input/output is scalar.
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First-order scalar AD - implementations

Some sample outputs:

>> x = newtonSearch(’sin(exp(x) + 1)’, 1, 1e-10)

x =

0.761549782880894

>> x = newtonSearch(’sin(exp(x) + 1)’, 0, 1e-10)

x =

2.131177121086310
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Second-order scalar AD - definitions

An arithmetic for differentiation

Extend the ideas to computations with ordered tripples of real
numbers

~u = (u, u′, u′′).

The third component holds the value of the second derivative
f ′′(x0). As before, we assume that f : R→ R.

Basic arithmetic

~u+ ~v = (u+ v, u′ + v′, u′′ + v′′)
~u− ~v = (u− v, u′ − v′, u′′ − v′′)
~u× ~v = (uv, uv′ + u′v, uv′′ + 2u′v′ + u′′v)
~u÷ ~v = (u/v, (u′ − (u/v)v′)/v, (u′′ − 2(u/v)′v′ − (u/v)v′′)/v),

where we demand that v 6= 0 when dividing.
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Second-order scalar AD - definitions

Constants and the independent variable x are treated as before.
Following the usual rules of differentiation, we define

~x = (x, 1, 0) and ~c = (c, 0, 0).

AD for standard functions

Similarly, standard functions are implemented via the chain rule:

~g(~u) = ~g(u, u′, u′′) = (g(u), u′g′(u), u′′g′(u) + (u′)2g′′(u)).

Applying this to some useful functions yields:

sin ~u = sin (u, u′, u′′) = (sinu, u′ cosu, u′′ cosu− (u′)2 sinu)
e~u = e(u,u

′,u′′) = (eu, u′eu, u′′eu + (u′)2eu)

Straight-forward, but tedious!!!
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Taylor series AD - definitions

A more effective (and perhaps less error-prone) approach to
high-order automatic differentiation is obtained through the
calculus of Taylor series:

f(x) = f0 + f1(x− x0) + · · ·+ fk(x− x0)k + . . . ,

Here we use the notation fk = fk(x0) = f (k)(x0)/k!

Basic arithmetic

(f + g)k = fk + gk

(f − g)k = fk − gk

(f × g)k =
k∑
i=0

figk−i

(f ÷ g)k =
1
g0

(
fk −

k−1∑
i=0

(f ÷ g)igk−i

)
.
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Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

∞∑
k=0

fk(x− x0)k/
∞∑
k=0

gk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k.

Multiplying both sides with the Taylor series for g produces

∞∑
k=0

fk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k
∞∑
k=0

gk(x− x0)k,

and, by the rule for multiplication, we have

fk =
k∑
i=0

(f ÷ g)igk−i =
k−1∑
i=0

(f ÷ g)igk−i + (f ÷ g)kg0.

Solving for (f ÷ g)k produces the desired result.
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Taylor series AD - definitions

Constants and the independent variable x are treated as expected:
seen as functions, these have particularly simple Taylor expansions:

x = x0 + 1 · (x− x0) + 0 · (x− x0)2 + · · ·+ 0 · (x− x0)k + . . . ,

c = c+ 0 · (x− x0) + 0 · (x− x0)2 + · · ·+ 0 · (x− x0)k + . . . .

We now represent a function as a, possibly infinite, string of its
Taylor coefficients:

f(x0) ∼ (f0, f1, . . . , fk, . . . ) fk = f (k)(x0)/k.

Exercise

Write down the formal expression for f × f using the rule for
multiplication. Using the appearing symmetry, find a more efficient
formula for computing the square f2 of a function f .
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Taylor series AD - definitions

Taylor series AD for standard functions

Given a function g whose Taylor series is known, how do we
compute the Taylor series for, say, eg?

Let us formally write

g(x) =
∞∑
k=0

gk(x− x0)k and eg(x) =
∞∑
k=0

(eg)k(x− x0)k,

and use the fact that

d

dx
eg(x) = g′(x)eg(x). (1)

Plugging the formal expressions for g′(x) and eg(x) into (1)
produces
∞∑
k=1

k(eg)k(x− x0)k−1 =
∞∑
k=1

kgk(x− x0)k−1
∞∑
k=0

(eg)k(x− x0)k,

which, after multiplying both sides with (x− x0), becomes
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Taylor series AD - definitions

∞∑
k=1

k(eg)k(x− x0)k =
∞∑
k=1

kgk(x− x0)k
∞∑
k=0

(eg)k(x− x0)k.

Using the rule for multiplication then yields

k(eg)k =
k∑
i=1

igi(eg)k−i (k > 0).

Since we know that the constant term is given by (eg)0 = eg0 , we
arrive at:

(eg)k =

{
eg0 if k = 0,
1
k

∑k
i=1 igi(e

g)k−i if k > 0.
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Taylor series AD - definitions

More standard functions (k > 0)

(ln g)k =
1
g0

(
gk −

1
k

k−1∑
i=1

i(ln g)igk−i

)

(ga)k =
1
g0

k∑
i=1

((a+ 1)i
k

− 1
)
gi(ga)k−i

(sin g)k =
1
k

k∑
i=1

igi(cos g)k−i

(cos g)k = −1
k

k∑
i=1

igi(sin g)k−i.

Remember that we always have (f ◦ g)0 = f(g(x0)).
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Taylor series AD - implementations

We begin by implementing a taylor class constructor in MATLAB.

01 function ts = taylor(a, N, str)

02 % A naive taylor constructor.

03 if nargin == 1

04 if isa(a,’taylor’)

05 ts = a;

06 else

07 ts.coeff = a;

08 end

09 elseif nargin == 3

10 ts.coeff = zeros(1,N);

11 if strcmp(str,’variable’)

12 ts.coeff(1) = a; ts.coeff(2) = 1;

13 elseif strcmp(str,’constant’);

14 ts.coeff(1) = a; ts.coeff(2) = 0;

15 end

16 end

17 ts = class(ts, ’taylor’);



Taylor series AD - implementations

Next, we implement the way to display the class objects:

01 function display(ts)

02 % A simple output formatter for the taylor class.

03 disp([inputname(1), ’ = ’]);

04 fprintf(’[’)

05 for i=1:length(ts.coeff)-1

06 fprintf(’%17.17f, ’, ts.coeff(i));

07 end

08 fprintf(’%17.17f]\n’, ts.coeff(end));

We can now input/output taylor objects within the MATLAB
environment:

>> x = taylor(1.5, 3, ’variable’), c = taylor(pi, 2, ’constant’)

x =

[1.50000000000000000, 1.00000000000000000, 0.00000000000000000]

c =

[3.14159265358979312, 0.00000000000000000]
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Taylor series AD - implementations

Here is an implementation for division

01 function result = mrdivide(a, b)

02 % Overloading the ’/’ operator.

03 [a, b] = cast(a, b);

04 if ( (b.coeff(1) == 0.0) )

05 error(’Denominator is zero.’);

06 else

07 N = length(a.coeff);

08 coeff = zeros(1,N);

09 coeff(1) = a.coeff(1)/b.coeff(1);

10 for k=1:N-1

11 sum = a.coeff(k+1);

12 for i=0:k-1

13 sum = sum - coeff(i+1)*b.coeff(k-i+1);

14 end

15 coeff(k+1) = sum/b.coeff(1);

16 end

17 result = taylor(coeff);

18 end



Taylor series AD - implementations

A very clean implementation for arbitrary order differentiation:

01 function dx = computeDerivative(fcnName, x0, order)

02 f = inline(fcnName);

03 x = taylor(x0, order+1, ’variable’);

04 dx = getDer(f(x), order);

Here, getDer converts a Taylor coefficient into a derivative by
multiplying it by the proper factorial.

>> df100 = computeDerivative(’exp(sin(exp(cos(x) + 2*x^5)))’, -2, 100)

df100 =

1.3783e+177
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Taylor series AD - special implementations

01 function result = mrdivide(a, b)

02 % Overloading the ’/’ operator for l’Hopital’s rule.

03 [a, b] = cast(a, b);

04 a ind = find(a.coeff,1,’first’); b ind = find(b.coeff,1,’first’);

05 if (a ind < b ind)

06 error(’Denominator is zero.’);

07 else

08 a = taylor(a.coeff(b ind:end)); b = taylor(b.coeff(b ind:end));

09 N = length(a.coeff);

10 coeff = zeros(1,N);

11 coeff(1) = a.coeff(1)/b.coeff(1);

12 for k=1:N-1

13 sum = a.coeff(k+1);

14 for i=0:k-1

15 sum = sum - coeff(i+1)*b.coeff(k-i+1);

16 end

17 coeff(k+1) = sum/b.coeff(1);

18 end

19 result = taylor(coeff);

20 end



Taylor series AD - special implementations

We can now handle removable singularities too:

>> x = taylor(0, 4, ’variable’)

x =

[0.0000000, 1.0000000, 0.0000000, 0.0000000]

>> y = sin(x)

y =

[0.0000000, 1.0000000, 0.0000000,-0.1666666]

>> z = sin(x)/x

z =

[1.0000000, 0.0000000,-0.1666666]

w = (exp(x)-1)/x

w =

[1.0000000, 0.5000000, 0.1666666]

Note that the resulting Taylor series are shortened accordingly.
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Taylor series AD - special implementations

We can now handle removable singularities too:

>> x = taylor(0, 4, ’variable’)

x =

[0.0000000, 1.0000000, 0.0000000, 0.0000000]

>> y = sin(x)

y =

[0.0000000, 1.0000000, 0.0000000,-0.1666666]

>> z = sin(x)/x

z =

[1.0000000, 0.0000000,-0.1666666]

w = (exp(x)-1)/x

w =

[1.0000000, 0.5000000, 0.1666666]

Note that the resulting Taylor series are shortened accordingly.


