Automatic Differentiation — Lecture No 1

Warwick Tucker

The CAPA group
Department of Mathematics
Uppsala University, Sweden

eScience Winter School, Geilo

UPPSALA
UNIVERSITET

Introduction to AD
When do we use derivatives?

[
ey
UPPSALA
UNIVERSITET

Introduction to AD
When do we use derivatives?

@ (1:st order) Solving non-linear equations: Newton's method,
monotonicity. Stability.

Introduction to AD
When do we use derivatives?

@ (1:st order) Solving non-linear equations: Newton's method,
monotonicity. Stability.

@ (2:nd order) Optimization: convexity.

e
itrers)

Introduction to AD
When do we use derivatives?

@ (1:st order) Solving non-linear equations: Newton's method,
monotonicity. Stability.

@ (2:nd order) Optimization: convexity.

@ (n:th order) High-order approximations, quadrature,
differential equations.

e
itrers)

Introduction to AD
When do we use derivatives?

@ (1:st order) Solving non-linear equations: Newton's method,
monotonicity. Stability.

@ (2:nd order) Optimization: convexity.

@ (n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f(™) (), where

sin e€°s a:+2965
€

fz) =

PSALA
UNIVERSITET

Introduction to AD
When do we use derivatives?

@ (1:st order) Solving non-linear equations: Newton's method,
monotonicity. Stability.

@ (2:nd order) Optimization: convexity.

@ (n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f(™) (), where

sin e€°s a:+2965
€

fz) =

for xtg = 4+1 and n = 1?7 [Undergraduate maths - but tedious]

PSALA
UNIVERSITET

Introduction to AD
When do we use derivatives?

@ (1:st order) Solving non-linear equations: Newton's method,
monotonicity. Stability.

@ (2:nd order) Optimization: convexity.

@ (n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f(™) (), where

sin e€°s a:+2965
€

fz) =

for xtg = 4+1 and n = 1?7 [Undergraduate maths - but tedious]
for o = —2 and n = 100? [Undergraduate maths - impossible?] | =

PSALA
UNIVERSITET

Introduction to AD
How do we compute derivatives in practice?

2SALA
ERSITET

Introduction to AD
How do we compute derivatives in practice?

@ (Symbolic representation) Generates exact formulas for
£ f ..., f™ ... This is very memory/time consuming.
Produces enormous formulas. Actually too much information.

2SALA
ERSITET

Introduction to AD

How do we compute derivatives in practice?

@ (Symbolic representation) Generates exact formulas for
£ f ..., f™ ... This is very memory/time consuming.
Produces enormous formulas. Actually too much information.

o (Finite differences) Generates numerical approximations of the

value of a derivative, e.g. f/(zg) ~ M based on

f@o+ h) = f(xo) + hf'(x0) + B f" (zo) + O(RP).

Various errors: roundoff, cancellation, discretization. Which h
is optimal? How does the error behave? Can't really handle
high-order derivatives.

2SALA
ERSITET

Introduction to AD
How do we compute derivatives in practice?

@ (Symbolic representation) Generates exact formulas for
£ f ..., f™ ... This is very memory/time consuming.
Produces enormous formulas. Actually too much information.

o (Finite differences) Generates numerical approximations of the

f(@oth)—f(wo)
2

value of a derivative, e.g. f/(zg) ~ , based on

f@o+ h) = f(xo) + hf'(x0) + B f" (zo) + O(RP).

Various errors: roundoff, cancellation, discretization. Which h
is optimal? How does the error behave? Can't really handle
high-order derivatives.
o (Complex differentiation) A nice “trick” using complex
. IR 3 .
extensions: f'(zg) ~ M, where S(z +1y) = y.
Avoids cancellation, and gives quadratic approximation, but B
requires a complex extension of the function.

Introduction to AD

sin e€os T+2x

5
. Let h =27 for
k=0,...,80, and compute the two approximations

Consider our test function f(z) = e

f() = f+h)
h

and f;(h) = W

fx(h) =

UNIVERSITET

Introduction to AD

H COS T 175
Consider our test function f(z) = eS¢ ™™ et h =27 for

k=0,...,80, and compute the two approximations
1)—f(1+h S(f(1+h
iy = IOy) U kiR

fz(h) is plotted in blue,
f=(h) is plotted in red.
Notice that f,(h) is not af-
' fected by cancellation due
to a small h.

Plot of k versus f.(h) and f.(h).

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

e
itrers)

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

UPPSALA
UNIVERSITET

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

@ No discretization errors.

UPPSALA
UNIVERSITET

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

@ No discretization errors.

@ No huge memory consumption.

UPPSALA
UNIVERSITET

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

@ No discretization errors.
@ No huge memory consumption.

@ No complex “tricks".

UPPSALA
UNIVERSITET

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

@ No discretization errors.
@ No huge memory consumption.
@ No complex “tricks".

@ Very easy to understand.

UPPSALA
UNIVERSITET

First-order scalar AD - definitions

An arithmetic for differentiation

We will perform all computations with ordered pairs of real
numbers
i = (u,u).

e
itrers)

First-order scalar AD - definitions

An arithmetic for differentiation

We will perform all computations with ordered pairs of real
numbers

i = (u,u).
The first component holds the value of the function f(z); the
second component holds the value of the derivative f’(xg). In
what follows, we assume that f: R — R.

‘f}f\m

i

UPPSALA
UNIVERSITET

First-order scalar AD - definitions

An arithmetic for differentiation

We will perform all computations with ordered pairs of real
numbers

i = (u,u).
The first component holds the value of the function f(z); the
second component holds the value of the derivative f’(xg). In
what follows, we assume that f: R — R.

Basic arithmetic

a4+ (u+wv,u’ +)
-7 = (u—v,u —70)
Ux v = (uv,uv’ +u'v)
i+7 = (u/v, (W = (u/v))/v),

2SALA
ERSITET

where we demand that v # 0 when dividing.

First-order scalar AD - definitions

We need to know how constants and the independent variable =
are treated. Following the usual rules of differentiation, we define

Z=(z,1) and ¢=(c,0).

‘f}f\m

i

UPPSALA
UNIVERSITET

First-order scalar AD - definitions

We need to know how constants and the independent variable =
are treated. Following the usual rules of differentiation, we define

Z=(z,1) and ¢=(c,0).

Example

Let f(x) = % We wish to compute the values of f(3)
and f/(3). It is easy to see that f(3) = 2/3. The value of f'(3),
however, is not immediate.

First-order scalar AD - definitions

We need to know how constants and the independent variable =
are treated. Following the usual rules of differentiation, we define

Z=(z,1) and ¢=(c,0).

Example

Let f(x) = % We wish to compute the values of f(3)
and f/(3). It is easy to see that f(3) = 2/3. The value of f'(3),
however, is not immediate. Applying the techniques of

differentiation arithmetic, we define

f@ = E+DE=9 _ (@) +(1,0) x (1) - (2,0))
s (z,1) + (3,0) -

Inserting the AD-variable & = (3,1) into fproduces...

z
3

First-order scalar AD - definitions

. (B, +(1,0)) x ((3,1) — (2,0))
f(3’1) - ,)+(3,0)
. (4,1)x(1,1) (4,5) 2 13
- 6,1) (6,1 =GR

uuuuuuuuu

First-order scalar AD - definitions

B (4,1)><(1,1) (4,5) 2 13
N (6,1) ~(6,1) (3 18)

From this calculation it follows that f(3) = 2/3 (which we already
knew) and f’(3) = 13/18. Note that we never used the expression
for f.

First-order scalar AD - definitions

A1) = 56
(4,1 x(1,1) (45 213
B (6,1) ~(6,1) (3 18)

From this calculation it follows that f(3) = 2/3 (which we already
knew) and f’(3) = 13/18. Note that we never used the expression
for f.

If we use the different (but equivalent) representation

) =1 — 2£2 \we arrive at the same result by a completel
z+3 y p Yy

different route. Try it!

First-order scalar AD - definitions

AD for standard functions

We can extend the ideas to standard functions using the chain rule:

g(i) = glu,u') = (g(u),u'g (u)).

=
[l
UNIVERSITET

First-order scalar AD - definitions

AD for standard functions

We can extend the ideas to standard functions using the chain rule:

g(i) = glu,u') = (g(u),u'g (u)).

Applying this to some common functions yields:

sind = sin(u,u’) = (sinu,u cosu)

cost = cos(u,u) = (cosu —u' sinu)

v = elu) = (e, u'e")

logg = log(u,v) = (logu, u’/u) (u>0)

@ = |wu)] = (|ul,sign(u)) (u#0)

u® = (u,u)” = (u®u'au*1t) (sometimes).

. Lo
Feel free to add your own favourites! =

First-order scalar AD - definitions

Let f(z) = (1 + x + €*)sinz, and compute f’(0).

First-order scalar AD - definitions

Let f(z) = (1 + 2+ €”)sinx, and compute f/(0). Set

—

f(@) =0+ &+ e%)sing,

and evaluate it at ¥ = (0, 1).

First-order scalar AD - definitions

Let f(z) = (1 + 2+ €”)sinx, and compute f/(0). Set

f(@ =0+z+) sin,
and evaluate it at Z = (0,1). This gives

—

£(0,1) = ((1,0) + (0,1) + @) sin (0,1)
= ((1,1) + (e*,€%)(sin0,cos0) = (2,2)(0,1) = (0,2).

From this calculation, it follows that f(0) = 0 and f/(0) = 2.

First-order scalar AD - definitions

Let f(z) = (1 + x + €®) sinz, and compute f'(0). Set
f(@ =0+z+) sin,
and evaluate it at Z = (0,1). This gives

—

£(0,1) = ((1,0) + (0,1) + @) sin (0,1)
= ((1,1) + (e*,€%)(sin0,cos0) = (2,2)(0,1) = (0,2).

From this calculation, it follows that f(0) = 0 and f/(0) = 2.

Note that the differentiation arithmetic is well-suited for
implementations using operator overloading (C++, MATLAB Java).

First-order scalar AD - implementations

Implementing the class constructor is straight-forward in MATLAB.

01
02
03
04
05
06
07
08
09
10
11

function ad = autodiff(val, der)
% A naive autodiff constructor.
ad.val = val;
if nargin == 1
der = 0.0;
end
if strcmp(der,’variable’)
der = 1.0;
end
ad.der = der;
ad = class(ad, ’autodiff’);

UPPSALA
UNIVERSITET

First-order scalar AD - implementations

Implementing the class constructor is straight-forward in MATLAB.

01
02
03
04
05
06
07
08
09
10
11

function ad = autodiff(val, der)
% A naive autodiff constructor.
ad.val = val;
if nargin == 1
der = 0.0;
end
if strcmp(der,’variable’)
der = 1.0;
end
ad.der = der;
ad = class(ad, ’autodiff’);

Lines 04-06 automatically cast a real number ¢ into an AD-type
constant ¢ = (c,0).

UPPSALA
UNIVERSITET

First-order scalar AD - implementations

Implementing the class constructor is straight-forward in MATLAB.

01 function ad = autodiff(val, der)
02 % A naive autodiff constructor.
03 ad.val = val;

04 if nargin ==

05 der = 0.0;

06 end

07 if strcmp(der,’variable’)
08 der = 1.0;

09 end

10 ad.der = der;
11 ad = class(ad, ’autodiff’);

Lines 04-06 automatically cast a real number ¢ into an AD-type
constant ¢ = (c,0).

Lines 07-09 manually cast a real number z into a AD-type variable
Z=(z,1).

UPPSALA
UNIVERSITET

First-order scalar AD - implementations

The display of autodiff objects is handled via display.m:

01 function display(ad)

02 7 A simple output formatter for the autodiff class.
03 disp([inputname(1), ’ = ’]1);

04 fprintf(’> (%17.17f, %17.17f)\n’, ad.val, ad.der);

ONNERSITET

First-order scalar AD - implementations

The display of autodiff objects is handled via display.m:

01 function display(ad)

02 7 A simple output formatter for the autodiff class.
03 disp([inputname(1), ’ = ’]1);

04 fprintf(’> (%17.17f, %17.17f)\n’, ad.val, ad.der);

We can now input/output autodiff objects within the MATLAB
environment:

>> a = autodiff(3), b = autodiff(2, ’variable’)
a =

(3.00000000000000000, 0.00000000000000000)
b =

(2.00000000000000000, 1.00000000000000000)

UPPSALA
UNIVERSITET

First-order scalar AD - implementations

Arithmetic is easy to implement. Here is (matrix) multiplication:

01
02
03
04
05
06

function result = mtimes(a, b)
% Overloading the ’*’ operator.
[a, b] = cast(a, b);

val = a.valxb.val;

der = a.valxb.der + a.der*b.val;
result = autodiff(val, der);

UPPSALA
UNIVERSITET

First-order scalar AD - implementations

Arithmetic is easy to implement. Here is (matrix) multiplication:

01 function result = mtimes(a, b)
02 % Overloading the ’*’ operator.
03 [a, b] = cast(a, b);

04 val = a.val*b.val;

05 der = a.val*b.der + a.derx*b.val;
06 result = autodiff(val, der);

And here is the logarithm:

01 function result = log(a)

02 % Overloading the ’log’ operator.

03 if (a.val <= 0.0)

04 error(’log undefined for non-positive arguments.’);
05 end

06 val = log(a.val);

07 der = a.der/a.val;

08 result = autodiff(val, der);

UPPSALA
UNIVERSITET

First-order scalar AD - implementations

Here is a simple function that returns the derivative of a general
function f at a given point xg:

01 function dx = computeDerivative(fcnName, x0)

02 f = inline(fcnName);
03 x = autodiff(x0, ’variable’);
04 dx = getDer(f(x));

e
itrers)

First-order scalar AD - implementations

Here is a simple function that returns the derivative of a general
function f at a given point xg:

01 function dx = computeDerivative(fcnName, x0)
02 f = inline(fcnName);

03 x = autodiff(x0, ’variable’);

04 dx = getDer(f(x));

A typical usage is

>> dfx = computeDerivative(’ (1 + x + exp(x))*sin(x)’, 0)
dfx =
2
>> dfx = computeDerivative(’exp(sin(exp(cos(x) + 2*power(x,5))))’, 1)
dfx =
129.6681309181679

Great for checking your calculus homework

First-order scalar AD - implementations

A more practical application is solving non-linear equations.

01 function y = newtonSearch(fcnName, x, tol)
02 f = inline(fcnName);

03 y = newtonStep(f, x);

04 while (abs(x-y) > tol)

05 X =Y;

06 y = newtonStep(f, x);
07 end

08 end

09

10 function Nx = newtonStep(f, x)
11 xx = autodiff(x, ’variable’);
12 fx = f(xx);

13 Nx = x - getVal(£fx)/getDer (fx);
14 end

UPPSALA
UNIVERSITET

First-order scalar AD - implementations

A more practical application is solving non-linear equations.

01 function y = newtonSearch(fcnName, x, tol)
02 f = inline(fcnName);

03 y = newtonStep(f, x);

04 while (abs(x-y) > tol)

05 X =Y;

06 y = newtonStep(f, x);
07 end

08 end

09

10 function Nx = newtonStep(f, x)

11 xx = autodiff(x, ’variable’);
12 fx = f(xx);

13 Nx = x - getVal(£fx)/getDer (fx);
14 end

Note that this function “hides” the AD from the user: all
input/output is scalar.

First-order scalar AD - implementations

Some sample outputs:

>> x = newtonSearch(’sin(exp(x) + 1)’, 1, 1le-10)
x =

0.761549782880894
>> x = newtonSearch(’sin(exp(x) + 1)’, 0, 1le-10)
x =

2.131177121086310

0.8

0.6

0.4

0.2

-0.6

0.8}

-1

UPPSALA
UNIVERSITET

Second-order scalar AD - definitions
An arithmetic for differentiation

Extend the ideas to computations with ordered tripples of real
numbers

= (u,u,u").

ONNERSITET

Second-order scalar AD - definitions
An arithmetic for differentiation

Extend the ideas to computations with ordered tripples of real
numbers

= (u,u,u").

The third component holds the value of the second derivative
f"(z0). As before, we assume that f: R — R.

ONNERSITET

Second-order scalar AD - definitions
An arithmetic for differentiation

Extend the ideas to computations with ordered tripples of real
numbers

= (u,u,u").

The third component holds the value of the second derivative
f"(xo). As before, we assume that f: R — R.

Basic arithmetic

T+7 = (utv,u +0,u" +")

T—v = (u—v,u —v,u" —2")

ixT = (uwv,uv +uv,u” + 2u'v + u"v)

i+7 = (ufv,(w = (w/o))/v, (u" = 2(u/v)v" = (u/v)v")/v),

2SALA

where we demand that v # 0 when dividing.

Second-order scalar AD - definitions

Constants and the independent variable x are treated as before.
Following the usual rules of differentiation, we define

Z=(x,1,0) and ¢=(c0,0).

e
UPPSALA
UNIVERSITET

Second-order scalar AD - definitions

Constants and the independent variable x are treated as before.
Following the usual rules of differentiation, we define

Z=(x,1,0) and ¢=(c0,0).

AD for standard functions
Similarly, standard functions are implemented via the chain rule:

g(@) = gu,u’,u") = (g(u),w'g'(w),u"g' (w) + (u)’g" (w)).

L

Second-order scalar AD - definitions

Constants and the independent variable x are treated as before.
Following the usual rules of differentiation, we define

Z=(x,1,0) and ¢=(c0,0).

AD for standard functions
Similarly, standard functions are implemented via the chain rule:

g(@) = gu,u’,u") = (g(u),w'g'(w),u"g' (w) + (u)’g" (w)).

Applying this to some useful functions yields:

sind = sin(u,v,u"”) = (sinu,u cosu,u” cosu— (u')
’E: ! 1

e — e(u,u 'l — (eu7 u/eu7 u'et + (u/)2eu)

Straight-forward, but tedious!!! .

Taylor series AD - definitions

A more effective (and perhaps less error-prone) approach to
high-order automatic differentiation is obtained through the
calculus of Taylor series:

k

f(x) = fo+ filr —x0) + -+ frlx —w0)" + ...,

Here we use the notation f, = fi(z0) = £ (x0)/k!

Taylor series AD - definitions

A more effective (and perhaps less error-prone) approach to
high-order automatic differentiation is obtained through the
calculus of Taylor series:

f@) = fo+ file —x0) + - + falw —x0)* + ...,
Here we use the notation f, = fi(z0) = £ (x0)/k!

Basic arithmetic

(f+9r = fetor
f=9r = fe— 9k

k
(fx9k = Y fighi
i=0

. k-1
(f+9k = 7 <fk - Z(f+g)igki> - -

1=0

Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

(e 9]

kaw—l‘o /ngﬂf—wo = (f + 9r(z — z0)*.

k=0

Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

(e 9]

kaw—l‘o /ngﬂf—wo :Z i@ — 0)*.

k=0

Multiplying both sides with the Taylor series for g produces

o0
kal‘—fﬂo = (f + 9)klz — o) ngl‘—xo)k,
) k=0

Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

(e 9]

kax—xo /ngaz—xo :Z x—xo)k.

k=0

Multiplying both sides with the Taylor series for g produces

o0
kal‘—fﬂo = (f + 9)klz — o) ngl‘—ﬂfo)k,
) k=0

and, by the rule for multiplication, we have

k k—1

fe =Y (f = 9igr—i = D_(f + Qigr—i + (f + 9)rg0.

i=0 1=0

Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

(e 9]

kax—xo /ngaz—xo :Z x—xo)k.

k=0

Multiplying both sides with the Taylor series for g produces

o0
kal‘—fﬂo = (f + 9)klz — o) ngl‘—ﬂfo)k,
) k=0

and, by the rule for multiplication, we have

k k—1

fe =Y (f = 9igr—i = D_(f + Qigr—i + (f + 9)rg0.

i=0 1=0

Solving for (f + g)x produces the desired result. [fasre

Taylor series AD - definitions

Constants and the independent variable x are treated as expected:
seen as functions, these have particularly simple Taylor expansions:

r = zo+1-(x—20)+0 - (x—20)>+---4+0-(z—z0)"+...,
c = ¢+0-(x—20)+0-(x—x0)?+- +0-(x—z)F+....

L
UPPSALA
UNIVERSITET

Taylor series AD - definitions

Constants and the independent variable x are treated as expected:
seen as functions, these have particularly simple Taylor expansions:

r = zo+1-(x—20)+0 - (x—20)>+---4+0-(z—z0)"+...,
c = ¢+0-(x—20)+0-(x—x0)?+- +0-(x—z)F+....

We now represent a function as a, possibly infinite, string of its
Taylor coefficients:

F@o) ~ (foo fioeeos frnee) fro= fP (@) /k.

Taylor series AD - definitions

Constants and the independent variable x are treated as expected:
seen as functions, these have particularly simple Taylor expansions:

r = zo+1-(x—20)+0 - (x—20)>+---4+0-(z—z0)"+...,
c = ¢+0-(x—20)+0-(x—x0)?+- +0-(x—z)F+....

We now represent a function as a, possibly infinite, string of its
Taylor coefficients:

F@o) ~ (foo fioeeos frnee) fro= fP (@) /k.

Write down the formal expression for f x f using the rule for
multiplication. Using the appearing symmetry, find a more efficient |

formula for computing the square f? of a function f.

2SALA
VERSITET

Taylor series AD - definitions

Taylor series AD for standard functions

Given a function g whose Taylor series is known, how do we
compute the Taylor series for, say, e9?

UPPSALA
UNIVERSITET

Taylor series AD - definitions

Taylor series AD for standard functions

Given a function g whose Taylor series is known, how do we
compute the Taylor series for, say, e9?

Let us formally write

g(x) = ng(x - xo)k and) = Z(eg)k(x - :):O)k,
k=0

and use the fact that

urrsaLe
oNvERSITEr

Taylor series AD - definitions

Taylor series AD for standard functions

Given a function g whose Taylor series is known, how do we
compute the Taylor series for, say, e9?

Let us formally write

= ng(x —z0)F and 9@ = Z(eg)k(x — z0)",
k=0

and use the fact that

d
%69() = ¢ (z)ed®). (1)
Plugging the formal expressions for ¢(x) and €9(*) into (1)

produces

Zkeg :):—xo Zkgk:v—xoklzeg :z:—xo,

which, after multiplying both sides with (z — xo), becomes

LA
UNIVERSITET

Taylor series AD - definitions

Zk(eg)k(x—xo)k:Zkgk(m—xo kZ gz — 20)*
k=1 k=0

k=1

ALA
UNIVERSITET

Taylor series AD - definitions

Zk(eg)k(x—xo)k:Zkgk(m—xo kZ gz — 20)*
k=1 k=0

k=1

Using the rule for multiplication then yields

k
Nk = igi(e")p—s (k>0).
=1

ALA
UNIVERSITET

Taylor series AD - definitions

Zk(eg)k(x—xo)k:Zkgk(m—xo kZ gz — 20)*
k=1 k=0

k=1

Using the rule for multiplication then yields

k
Nk = igi(e")p—s (k>0).
i=1
Since we know that the constant term is given by (e9)y = €90, we

arrive at:
e if k=0,
k=91 <k ; 4 _
E 2 ie11gi(e9)p—; if k>0,

Taylor series AD - definitions

More standard functions (k > 0)

k—1
1 1=
(Ing) = (gk_k Z(lng)igk—i>
go i=1
(9%) g (<a+1>i 1)gi(g%)
E = — —1)gi(9")k—i
Jol= &
1 k
(sing = + > igi(cos gl
=il
k
1 .
(cosghe = —5 D igilsingis.
=1

Taylor series AD - definitions

More standard functions (k > 0)

k—1
1 1=
(Ing) = (gk_k Z(lng)igk—i>
go i=1
(9%) g (<a+1>i 1)gi(g%)
E = — —1)gi(9")k—i
Jol= &
1 k
(sing = + > igi(cos gl
=il
k
1 .
(cosghe = —5 D igilsingis.
=1

Remember that we always have (f o g)o = f(g(x0)).

Taylor series AD - implementations

We begin by implementing a taylor class constructor in MATLAB.

01 function ts = taylor(a, N, str)
02 % A naive taylor constructor.
03 if nargin ==

04 if isa(a,’taylor’)

05 ts = a;

06 else

o7 ts.coeff = a;

08 end

09 elseif nargin ==

10 ts.coeff = zeros(1,N);

11 if strcmp(str,’variable’)

12 ts.coeff(1) = a; ts.coeff(2) = 1;
13 elseif strcmp(str,’constant’);

14 ts.coeff(1l) = a; ts.coeff(2) = 0;
15 end

16 end

17 ts = class(ts, ’taylor’); i
UpPSALA
ONVERSTET

Taylor series AD - implementations

Next, we implement the way to display the class objects:

01 function display(ts)

02 % A simple output formatter for the taylor class.
03 disp([inputname(1), ’ = ’]1);

04 fprintf(’[’)

05 for i=1:length(ts.coeff)-1

06 fprintf(’%17.17f, ’, ts.coeff(i));

07 end

08 fprintf(’%17.17£f]1\n’, ts.coeff(end));

UPPSALA
UNIVERSITET

Taylor series AD - implementations

Next, we implement the way to display the class objects:

01 function display(ts)

02 7, A simple output formatter for the taylor class.
03 disp([inputname(1), ’ = ’]1);

04 fprintf(’[’)

05 for i=1:length(ts.coeff)-1

06 fprintf(’%17.17f, ’, ts.coeff(i));

07 end

08 fprintf(’%17.17£f]1\n’, ts.coeff(end));

We can now input/output taylor objects within the MATLAB
environment:

>> x = taylor(1.5, 3, ’variable’), c = taylor(pi, 2, ’constant’)
x =

[1.50000000000000000, 1.00000000000000000, 0.00000000000000000]
C=

[3.14159265358979312, 0.00000000000000000]

UPPSALA
UNIVERSITET

Taylor series AD - implementations

Here is an implementation for division

01 function result = mrdivide(a, b)
02 % Overloading the ’/’ operator.
03 [a, b] = cast(a, b);

04 if ((b.coeff(1) == 0.0))

05 error (’Denominator is zero.’);

06 else

07 N = length(a.coeff);

08 coeff = zeros(1,N);

09 coeff(1) = a.coeff(1)/b.coeff(1);
10 for k=1:N-1

11 sum = a.coeff(k+1);

12 for i=0:k-1

13 sum = sum - coeff(i+1)*b.coeff(k-i+1);
14 end

15 coeff(k+1) = sum/b.coeff(1);
16 end

17 result = taylor(coeff);

18 end Nt
UPPSALA
UNIVERSITET

Taylor series AD - implementations

A very clean implementation for arbitrary order differentiation:

01 function dx = computeDerivative(fcnName, x0, order)
02 f = inline(fcnName);

03 x taylor (x0, order+l, ’variable’);

04 dx = getDer(f(x), order);

UPPSALA
UNIVERSITET

Taylor series AD - implementations

A very clean implementation for arbitrary order differentiation:

01 function dx = computeDerivative(fcnName, x0, order)
02 f = inline(fcnName);

03 x taylor (x0, order+l, ’variable’);

04 dx = getDer(f(x), order);

Here, getDer converts a Taylor coefficient into a derivative by
multiplying it by the proper factorial.

‘f}f\m

i

UPPSALA
UNIVERSITET

Taylor series AD - implementations

A very clean implementation for arbitrary order differentiation:

01 function dx = computeDerivative(fcnName, x0, order)
02 f = inline(fcnName);

03 x taylor (x0, order+l, ’variable’);

04 dx = getDer(f(x), order);

Here, getDer converts a Taylor coefficient into a derivative by
multiplying it by the proper factorial.

>> df100 = computeDerivative(’exp(sin(exp(cos(x) + 2*x~5)))’, -2, 100)
df100 =
1.3783e+177

UPPSALA
UNIVERSITET

Taylor series AD - special implementations

01 function result = mrdivide(a, b)

02 % Overloading the ’/’ operator for 1’Hopital’s rule.

03 [a, b] = cast(a, b);

04 a_ind = find(a.coeff,1,’first’); b_ind = find(b.coeff,1,’first’);
05 if (a_-ind < b_ind)

06 error (’Denominator is zero.’);

07 else

08 a = taylor(a.coeff(b_ind:end)); b = taylor(b.coeff(b.ind:end));
09 N = length(a.coeff);

10 coeff = zeros(1,N);

11 coeff(1) = a.coeff(1)/b.coeff(1);

12 for k=1:N-1

13 sum = a.coeff(k+1);

14 for i=0:k-1

15 sum = sum - coeff(i+1)*b.coeff(k-i+1);
16 end

17 coeff(k+1) = sum/b.coeff(1);

18 end

19 result = taylor(coeff);

G
20 end oNvERSITEr

Taylor series AD - special implementations

We can now handle removable singularities too:

e
itrers)

Taylor series AD - special implementations

We can now handle removable singularities too:

>> x = taylor(0, 4, ’variable’)
x =

[0.0000000, 1.0000000, 0.0000000, 0.0000000]
>> y = sin(x)

[0.0000000, 1.0000000, 0.0000000,-0.1666666]
>> z = sin(x)/x

[1.0000000, 0.0000000,-0.1666666]
(exp(x)-1)/x

=
1]

[1.0000000, 0.5000000, 0.1666666]

UPPSALA
UNIVERSITET

Taylor series AD - special implementations

We can now handle removable singularities too:

>> x = taylor(0, 4, ’variable’)
x =

[0.0000000, 1.0000000, 0.0000000, 0.0000000]
>> y = sin(x)

[0.0000000, 1.0000000, 0.0000000,-0.1666666]
>> z = sin(x)/x

[1.0000000, 0.0000000,-0.1666666]
(exp(x)-1)/x

=
1]

[1.0000000, 0.5000000, 0.1666666]

Note that the resulting Taylor series are shortened accordingly.

UPPSALA
UNIVERSITET

