
Automatic Differentiation – Lecture No 1

Warwick Tucker

The CAPA group
Department of Mathematics
Uppsala University, Sweden

eScience Winter School, Geilo

Introduction to AD

When do we use derivatives?

(1:st order) Solving non-linear equations: Newton’s method,
monotonicity. Stability.

(2:nd order) Optimization: convexity.

(n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f (n)(x0), where

f(x) = esin e
cos x+2x5

for x0 = +1 and n = 1? [Undergraduate maths - but tedious]
for x0 = −2 and n = 100? [Undergraduate maths - impossible?]

Introduction to AD

When do we use derivatives?

(1:st order) Solving non-linear equations: Newton’s method,
monotonicity. Stability.

(2:nd order) Optimization: convexity.

(n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f (n)(x0), where

f(x) = esin e
cos x+2x5

for x0 = +1 and n = 1? [Undergraduate maths - but tedious]
for x0 = −2 and n = 100? [Undergraduate maths - impossible?]

Introduction to AD

When do we use derivatives?

(1:st order) Solving non-linear equations: Newton’s method,
monotonicity. Stability.

(2:nd order) Optimization: convexity.

(n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f (n)(x0), where

f(x) = esin e
cos x+2x5

for x0 = +1 and n = 1? [Undergraduate maths - but tedious]
for x0 = −2 and n = 100? [Undergraduate maths - impossible?]

Introduction to AD

When do we use derivatives?

(1:st order) Solving non-linear equations: Newton’s method,
monotonicity. Stability.

(2:nd order) Optimization: convexity.

(n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f (n)(x0), where

f(x) = esin e
cos x+2x5

for x0 = +1 and n = 1? [Undergraduate maths - but tedious]
for x0 = −2 and n = 100? [Undergraduate maths - impossible?]

Introduction to AD

When do we use derivatives?

(1:st order) Solving non-linear equations: Newton’s method,
monotonicity. Stability.

(2:nd order) Optimization: convexity.

(n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f (n)(x0), where

f(x) = esin e
cos x+2x5

for x0 = +1 and n = 1? [Undergraduate maths - but tedious]
for x0 = −2 and n = 100? [Undergraduate maths - impossible?]

Introduction to AD

When do we use derivatives?

(1:st order) Solving non-linear equations: Newton’s method,
monotonicity. Stability.

(2:nd order) Optimization: convexity.

(n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f (n)(x0), where

f(x) = esin e
cos x+2x5

for x0 = +1 and n = 1? [Undergraduate maths - but tedious]

for x0 = −2 and n = 100? [Undergraduate maths - impossible?]

Introduction to AD

When do we use derivatives?

(1:st order) Solving non-linear equations: Newton’s method,
monotonicity. Stability.

(2:nd order) Optimization: convexity.

(n:th order) High-order approximations, quadrature,
differential equations.

Example (A simple calculus task)

What is the value of f (n)(x0), where

f(x) = esin e
cos x+2x5

for x0 = +1 and n = 1? [Undergraduate maths - but tedious]
for x0 = −2 and n = 100? [Undergraduate maths - impossible?]

Introduction to AD

How do we compute derivatives in practice?

(Symbolic representation) Generates exact formulas for
f, f ′, . . . , f (n), This is very memory/time consuming.
Produces enormous formulas. Actually too much information.

(Finite differences) Generates numerical approximations of the

value of a derivative, e.g. f ′(x0) ≈ f(x0+h)−f(x0)
h , based on

f(x0 + h) = f(x0) + hf ′(x0) + h2f ′′(x0) +O(h3).

Various errors: roundoff, cancellation, discretization. Which h
is optimal? How does the error behave? Can’t really handle
high-order derivatives.

(Complex differentiation) A nice “trick” using complex

extensions: f ′(x0) ≈ =(f(x0+ih))
h , where =(x+ iy) = y.

Avoids cancellation, and gives quadratic approximation, but
requires a complex extension of the function.

Introduction to AD

How do we compute derivatives in practice?

(Symbolic representation) Generates exact formulas for
f, f ′, . . . , f (n), This is very memory/time consuming.
Produces enormous formulas. Actually too much information.

(Finite differences) Generates numerical approximations of the

value of a derivative, e.g. f ′(x0) ≈ f(x0+h)−f(x0)
h , based on

f(x0 + h) = f(x0) + hf ′(x0) + h2f ′′(x0) +O(h3).

Various errors: roundoff, cancellation, discretization. Which h
is optimal? How does the error behave? Can’t really handle
high-order derivatives.

(Complex differentiation) A nice “trick” using complex

extensions: f ′(x0) ≈ =(f(x0+ih))
h , where =(x+ iy) = y.

Avoids cancellation, and gives quadratic approximation, but
requires a complex extension of the function.

Introduction to AD

How do we compute derivatives in practice?

(Symbolic representation) Generates exact formulas for
f, f ′, . . . , f (n), This is very memory/time consuming.
Produces enormous formulas. Actually too much information.

(Finite differences) Generates numerical approximations of the

value of a derivative, e.g. f ′(x0) ≈ f(x0+h)−f(x0)
h , based on

f(x0 + h) = f(x0) + hf ′(x0) + h2f ′′(x0) +O(h3).

Various errors: roundoff, cancellation, discretization. Which h
is optimal? How does the error behave? Can’t really handle
high-order derivatives.

(Complex differentiation) A nice “trick” using complex

extensions: f ′(x0) ≈ =(f(x0+ih))
h , where =(x+ iy) = y.

Avoids cancellation, and gives quadratic approximation, but
requires a complex extension of the function.

Introduction to AD

How do we compute derivatives in practice?

(Symbolic representation) Generates exact formulas for
f, f ′, . . . , f (n), This is very memory/time consuming.
Produces enormous formulas. Actually too much information.

(Finite differences) Generates numerical approximations of the

value of a derivative, e.g. f ′(x0) ≈ f(x0+h)−f(x0)
h , based on

f(x0 + h) = f(x0) + hf ′(x0) + h2f ′′(x0) +O(h3).

Various errors: roundoff, cancellation, discretization. Which h
is optimal? How does the error behave? Can’t really handle
high-order derivatives.

(Complex differentiation) A nice “trick” using complex

extensions: f ′(x0) ≈ =(f(x0+ih))
h , where =(x+ iy) = y.

Avoids cancellation, and gives quadratic approximation, but
requires a complex extension of the function.

Introduction to AD

Example

Consider our test function f(x) = esin e
cos x+2x5

. Let h = 2−k for
k = 0, . . . , 80, and compute the two approximations

fx(h) =
f(1)− f(1 + h)

h
and fz(h) =

=(f(1 + ih))
h

.

0 10 20 30 40 50 60 70 80
−200

−150

−100

−50

0

50

Plot of k versus fz(h) and fz(h).

fx(h) is plotted in blue,
fz(h) is plotted in red.
Notice that fz(h) is not af-
fected by cancellation due
to a small h.

Introduction to AD

Example

Consider our test function f(x) = esin e
cos x+2x5

. Let h = 2−k for
k = 0, . . . , 80, and compute the two approximations

fx(h) =
f(1)− f(1 + h)

h
and fz(h) =

=(f(1 + ih))
h

.

0 10 20 30 40 50 60 70 80
−200

−150

−100

−50

0

50

Plot of k versus fz(h) and fz(h).

fx(h) is plotted in blue,
fz(h) is plotted in red.
Notice that fz(h) is not af-
fected by cancellation due
to a small h.

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

No discretization errors.

No huge memory consumption.

No complex “tricks“.

Very easy to understand.

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

No discretization errors.

No huge memory consumption.

No complex “tricks“.

Very easy to understand.

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

No discretization errors.

No huge memory consumption.

No complex “tricks“.

Very easy to understand.

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

No discretization errors.

No huge memory consumption.

No complex “tricks“.

Very easy to understand.

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

No discretization errors.

No huge memory consumption.

No complex “tricks“.

Very easy to understand.

Introduction to AD

Automatic differentiation

Generates evaluations (and not formulas) of the derivatives. Based
on a strategy similar to symbolic differentiation, but does not use
placeholders for constants or variables. All intermediate expressions
are evaluated as soon as possible; this saves memory, and removes
the need for later simplification.

Bonus properties

No discretization errors.

No huge memory consumption.

No complex “tricks“.

Very easy to understand.

First-order scalar AD - definitions

An arithmetic for differentiation

We will perform all computations with ordered pairs of real
numbers

~u = (u, u′).

The first component holds the value of the function f(x0); the
second component holds the value of the derivative f ′(x0). In
what follows, we assume that f : R→ R.

Basic arithmetic

~u+ ~v = (u+ v, u′ + v′)
~u− ~v = (u− v, u′ − v′)
~u× ~v = (uv, uv′ + u′v)
~u÷ ~v = (u/v, (u′ − (u/v)v′)/v),

where we demand that v 6= 0 when dividing.

First-order scalar AD - definitions

An arithmetic for differentiation

We will perform all computations with ordered pairs of real
numbers

~u = (u, u′).

The first component holds the value of the function f(x0); the
second component holds the value of the derivative f ′(x0). In
what follows, we assume that f : R→ R.

Basic arithmetic

~u+ ~v = (u+ v, u′ + v′)
~u− ~v = (u− v, u′ − v′)
~u× ~v = (uv, uv′ + u′v)
~u÷ ~v = (u/v, (u′ − (u/v)v′)/v),

where we demand that v 6= 0 when dividing.

First-order scalar AD - definitions

An arithmetic for differentiation

We will perform all computations with ordered pairs of real
numbers

~u = (u, u′).

The first component holds the value of the function f(x0); the
second component holds the value of the derivative f ′(x0). In
what follows, we assume that f : R→ R.

Basic arithmetic

~u+ ~v = (u+ v, u′ + v′)
~u− ~v = (u− v, u′ − v′)
~u× ~v = (uv, uv′ + u′v)
~u÷ ~v = (u/v, (u′ − (u/v)v′)/v),

where we demand that v 6= 0 when dividing.

First-order scalar AD - definitions

We need to know how constants and the independent variable x
are treated. Following the usual rules of differentiation, we define

~x = (x, 1) and ~c = (c, 0).

Example

Let f(x) = (x+1)(x−2)
x+3 . We wish to compute the values of f(3)

and f ′(3). It is easy to see that f(3) = 2/3. The value of f ′(3),
however, is not immediate. Applying the techniques of
differentiation arithmetic, we define

~f(~x) =
(~x+~1)(~x−~2)

~x+~3
=

(
(x, 1) + (1, 0)

)
×
(
(x, 1)− (2, 0)

)
(x, 1) + (3, 0)

.

Inserting the AD-variable ~x = (3, 1) into ~f produces...

First-order scalar AD - definitions

We need to know how constants and the independent variable x
are treated. Following the usual rules of differentiation, we define

~x = (x, 1) and ~c = (c, 0).

Example

Let f(x) = (x+1)(x−2)
x+3 . We wish to compute the values of f(3)

and f ′(3). It is easy to see that f(3) = 2/3. The value of f ′(3),
however, is not immediate.

Applying the techniques of
differentiation arithmetic, we define

~f(~x) =
(~x+~1)(~x−~2)

~x+~3
=

(
(x, 1) + (1, 0)

)
×
(
(x, 1)− (2, 0)

)
(x, 1) + (3, 0)

.

Inserting the AD-variable ~x = (3, 1) into ~f produces...

First-order scalar AD - definitions

We need to know how constants and the independent variable x
are treated. Following the usual rules of differentiation, we define

~x = (x, 1) and ~c = (c, 0).

Example

Let f(x) = (x+1)(x−2)
x+3 . We wish to compute the values of f(3)

and f ′(3). It is easy to see that f(3) = 2/3. The value of f ′(3),
however, is not immediate. Applying the techniques of
differentiation arithmetic, we define

~f(~x) =
(~x+~1)(~x−~2)

~x+~3
=

(
(x, 1) + (1, 0)

)
×
(
(x, 1)− (2, 0)

)
(x, 1) + (3, 0)

.

Inserting the AD-variable ~x = (3, 1) into ~f produces...

First-order scalar AD - definitions

Example

~f(3, 1) =

(
(3, 1) + (1, 0)

)
×
(
(3, 1)− (2, 0)

)
(3, 1) + (3, 0)

=
(4, 1)× (1, 1)

(6, 1)
=

(4, 5)
(6, 1)

= (
2
3
,
13
18

).

From this calculation it follows that f(3) = 2/3 (which we already
knew) and f ′(3) = 13/18. Note that we never used the expression
for f ′.

If we use the different (but equivalent) representation
f(x) = x− 4x+2

x+3 , we arrive at the same result by a completely
different route. Try it!

First-order scalar AD - definitions

Example

~f(3, 1) =

(
(3, 1) + (1, 0)

)
×
(
(3, 1)− (2, 0)

)
(3, 1) + (3, 0)

=
(4, 1)× (1, 1)

(6, 1)
=

(4, 5)
(6, 1)

= (
2
3
,
13
18

).

From this calculation it follows that f(3) = 2/3 (which we already
knew) and f ′(3) = 13/18. Note that we never used the expression
for f ′.

If we use the different (but equivalent) representation
f(x) = x− 4x+2

x+3 , we arrive at the same result by a completely
different route. Try it!

First-order scalar AD - definitions

Example

~f(3, 1) =

(
(3, 1) + (1, 0)

)
×
(
(3, 1)− (2, 0)

)
(3, 1) + (3, 0)

=
(4, 1)× (1, 1)

(6, 1)
=

(4, 5)
(6, 1)

= (
2
3
,
13
18

).

From this calculation it follows that f(3) = 2/3 (which we already
knew) and f ′(3) = 13/18. Note that we never used the expression
for f ′.

If we use the different (but equivalent) representation
f(x) = x− 4x+2

x+3 , we arrive at the same result by a completely
different route. Try it!

First-order scalar AD - definitions

AD for standard functions

We can extend the ideas to standard functions using the chain rule:

~g(~u) = ~g(u, u′) = (g(u), u′g′(u)).

Applying this to some common functions yields:

sin ~u = sin (u, u′) = (sinu, u′ cosu)
cos ~u = cos (u, u′) = (cosu,−u′ sinu)
e~u = e(u,u

′) = (eu, u′eu)
log ~u = log (u, u′) = (log u, u′/u) (u > 0)
|~u| = |(u, u′)| = (|u|, u′sign(u)) (u 6= 0)
~uα = (u, u′)α = (uα, u′αuα−1) (sometimes).

Feel free to add your own favourites!

First-order scalar AD - definitions

AD for standard functions

We can extend the ideas to standard functions using the chain rule:

~g(~u) = ~g(u, u′) = (g(u), u′g′(u)).

Applying this to some common functions yields:

sin ~u = sin (u, u′) = (sinu, u′ cosu)
cos ~u = cos (u, u′) = (cosu,−u′ sinu)
e~u = e(u,u

′) = (eu, u′eu)
log ~u = log (u, u′) = (log u, u′/u) (u > 0)
|~u| = |(u, u′)| = (|u|, u′sign(u)) (u 6= 0)
~uα = (u, u′)α = (uα, u′αuα−1) (sometimes).

Feel free to add your own favourites!

First-order scalar AD - definitions

Example

Let f(x) = (1 + x+ ex) sinx, and compute f ′(0).

Set

~f(~x) = (~1 + ~x+ e~x) sin ~x,

and evaluate it at ~x = (0, 1). This gives

~f(0, 1) =
(
(1, 0) + (0, 1) + e(0,1)

)
sin (0, 1)

=
(
(1, 1) + (e0, e0)

)
(sin 0, cos 0) = (2, 2)(0, 1) = (0, 2).

From this calculation, it follows that f(0) = 0 and f ′(0) = 2.

Note that the differentiation arithmetic is well-suited for
implementations using operator overloading (C++, MATLAB Java).

First-order scalar AD - definitions

Example

Let f(x) = (1 + x+ ex) sinx, and compute f ′(0). Set

~f(~x) = (~1 + ~x+ e~x) sin ~x,

and evaluate it at ~x = (0, 1).

This gives

~f(0, 1) =
(
(1, 0) + (0, 1) + e(0,1)

)
sin (0, 1)

=
(
(1, 1) + (e0, e0)

)
(sin 0, cos 0) = (2, 2)(0, 1) = (0, 2).

From this calculation, it follows that f(0) = 0 and f ′(0) = 2.

Note that the differentiation arithmetic is well-suited for
implementations using operator overloading (C++, MATLAB Java).

First-order scalar AD - definitions

Example

Let f(x) = (1 + x+ ex) sinx, and compute f ′(0). Set

~f(~x) = (~1 + ~x+ e~x) sin ~x,

and evaluate it at ~x = (0, 1). This gives

~f(0, 1) =
(
(1, 0) + (0, 1) + e(0,1)

)
sin (0, 1)

=
(
(1, 1) + (e0, e0)

)
(sin 0, cos 0) = (2, 2)(0, 1) = (0, 2).

From this calculation, it follows that f(0) = 0 and f ′(0) = 2.

Note that the differentiation arithmetic is well-suited for
implementations using operator overloading (C++, MATLAB Java).

First-order scalar AD - definitions

Example

Let f(x) = (1 + x+ ex) sinx, and compute f ′(0). Set

~f(~x) = (~1 + ~x+ e~x) sin ~x,

and evaluate it at ~x = (0, 1). This gives

~f(0, 1) =
(
(1, 0) + (0, 1) + e(0,1)

)
sin (0, 1)

=
(
(1, 1) + (e0, e0)

)
(sin 0, cos 0) = (2, 2)(0, 1) = (0, 2).

From this calculation, it follows that f(0) = 0 and f ′(0) = 2.

Note that the differentiation arithmetic is well-suited for
implementations using operator overloading (C++, MATLAB Java).

First-order scalar AD - implementations

Implementing the class constructor is straight-forward in MATLAB.

01 function ad = autodiff(val, der)

02 % A naive autodiff constructor.

03 ad.val = val;

04 if nargin == 1

05 der = 0.0;

06 end

07 if strcmp(der,’variable’)

08 der = 1.0;

09 end

10 ad.der = der;

11 ad = class(ad, ’autodiff’);

Lines 04-06 automatically cast a real number c into an AD-type
constant ~c = (c, 0).
Lines 07-09 manually cast a real number x into a AD-type variable
~x = (x, 1).

First-order scalar AD - implementations

Implementing the class constructor is straight-forward in MATLAB.

01 function ad = autodiff(val, der)

02 % A naive autodiff constructor.

03 ad.val = val;

04 if nargin == 1

05 der = 0.0;

06 end

07 if strcmp(der,’variable’)

08 der = 1.0;

09 end

10 ad.der = der;

11 ad = class(ad, ’autodiff’);

Lines 04-06 automatically cast a real number c into an AD-type
constant ~c = (c, 0).

Lines 07-09 manually cast a real number x into a AD-type variable
~x = (x, 1).

First-order scalar AD - implementations

Implementing the class constructor is straight-forward in MATLAB.

01 function ad = autodiff(val, der)

02 % A naive autodiff constructor.

03 ad.val = val;

04 if nargin == 1

05 der = 0.0;

06 end

07 if strcmp(der,’variable’)

08 der = 1.0;

09 end

10 ad.der = der;

11 ad = class(ad, ’autodiff’);

Lines 04-06 automatically cast a real number c into an AD-type
constant ~c = (c, 0).
Lines 07-09 manually cast a real number x into a AD-type variable
~x = (x, 1).

First-order scalar AD - implementations

The display of autodiff objects is handled via display.m:

01 function display(ad)

02 % A simple output formatter for the autodiff class.

03 disp([inputname(1), ’ = ’]);

04 fprintf(’ (%17.17f, %17.17f)\n’, ad.val, ad.der);

We can now input/output autodiff objects within the MATLAB
environment:

>> a = autodiff(3), b = autodiff(2, ’variable’)

a =

(3.00000000000000000, 0.00000000000000000)

b =

(2.00000000000000000, 1.00000000000000000)

First-order scalar AD - implementations

The display of autodiff objects is handled via display.m:

01 function display(ad)

02 % A simple output formatter for the autodiff class.

03 disp([inputname(1), ’ = ’]);

04 fprintf(’ (%17.17f, %17.17f)\n’, ad.val, ad.der);

We can now input/output autodiff objects within the MATLAB
environment:

>> a = autodiff(3), b = autodiff(2, ’variable’)

a =

(3.00000000000000000, 0.00000000000000000)

b =

(2.00000000000000000, 1.00000000000000000)

First-order scalar AD - implementations

Arithmetic is easy to implement. Here is (matrix) multiplication:

01 function result = mtimes(a, b)

02 % Overloading the ’*’ operator.

03 [a, b] = cast(a, b);

04 val = a.val*b.val;

05 der = a.val*b.der + a.der*b.val;

06 result = autodiff(val, der);

And here is the logarithm:

01 function result = log(a)

02 % Overloading the ’log’ operator.

03 if (a.val <= 0.0)

04 error(’log undefined for non-positive arguments.’);

05 end

06 val = log(a.val);

07 der = a.der/a.val;

08 result = autodiff(val, der);

First-order scalar AD - implementations

Arithmetic is easy to implement. Here is (matrix) multiplication:

01 function result = mtimes(a, b)

02 % Overloading the ’*’ operator.

03 [a, b] = cast(a, b);

04 val = a.val*b.val;

05 der = a.val*b.der + a.der*b.val;

06 result = autodiff(val, der);

And here is the logarithm:

01 function result = log(a)

02 % Overloading the ’log’ operator.

03 if (a.val <= 0.0)

04 error(’log undefined for non-positive arguments.’);

05 end

06 val = log(a.val);

07 der = a.der/a.val;

08 result = autodiff(val, der);

First-order scalar AD - implementations

Here is a simple function that returns the derivative of a general
function f at a given point x0:

01 function dx = computeDerivative(fcnName, x0)

02 f = inline(fcnName);

03 x = autodiff(x0, ’variable’);

04 dx = getDer(f(x));

A typical usage is

>> dfx = computeDerivative(’(1 + x + exp(x))*sin(x)’, 0)

dfx =

2

>> dfx = computeDerivative(’exp(sin(exp(cos(x) + 2*power(x,5))))’, 1)

dfx =

129.6681309181679

Great for checking your calculus homework

First-order scalar AD - implementations

Here is a simple function that returns the derivative of a general
function f at a given point x0:

01 function dx = computeDerivative(fcnName, x0)

02 f = inline(fcnName);

03 x = autodiff(x0, ’variable’);

04 dx = getDer(f(x));

A typical usage is

>> dfx = computeDerivative(’(1 + x + exp(x))*sin(x)’, 0)

dfx =

2

>> dfx = computeDerivative(’exp(sin(exp(cos(x) + 2*power(x,5))))’, 1)

dfx =

129.6681309181679

Great for checking your calculus homework

First-order scalar AD - implementations

A more practical application is solving non-linear equations.

01 function y = newtonSearch(fcnName, x, tol)

02 f = inline(fcnName);

03 y = newtonStep(f, x);

04 while (abs(x-y) > tol)

05 x = y;

06 y = newtonStep(f, x);

07 end

08 end

09

10 function Nx = newtonStep(f, x)

11 xx = autodiff(x, ’variable’);

12 fx = f(xx);

13 Nx = x - getVal(fx)/getDer(fx);

14 end

Note that this function “hides” the AD from the user: all
input/output is scalar.

First-order scalar AD - implementations

A more practical application is solving non-linear equations.

01 function y = newtonSearch(fcnName, x, tol)

02 f = inline(fcnName);

03 y = newtonStep(f, x);

04 while (abs(x-y) > tol)

05 x = y;

06 y = newtonStep(f, x);

07 end

08 end

09

10 function Nx = newtonStep(f, x)

11 xx = autodiff(x, ’variable’);

12 fx = f(xx);

13 Nx = x - getVal(fx)/getDer(fx);

14 end

Note that this function “hides” the AD from the user: all
input/output is scalar.

First-order scalar AD - implementations

Some sample outputs:

>> x = newtonSearch(’sin(exp(x) + 1)’, 1, 1e-10)

x =

0.761549782880894

>> x = newtonSearch(’sin(exp(x) + 1)’, 0, 1e-10)

x =

2.131177121086310

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Second-order scalar AD - definitions

An arithmetic for differentiation

Extend the ideas to computations with ordered tripples of real
numbers

~u = (u, u′, u′′).

The third component holds the value of the second derivative
f ′′(x0). As before, we assume that f : R→ R.

Basic arithmetic

~u+ ~v = (u+ v, u′ + v′, u′′ + v′′)
~u− ~v = (u− v, u′ − v′, u′′ − v′′)
~u× ~v = (uv, uv′ + u′v, uv′′ + 2u′v′ + u′′v)
~u÷ ~v = (u/v, (u′ − (u/v)v′)/v, (u′′ − 2(u/v)′v′ − (u/v)v′′)/v),

where we demand that v 6= 0 when dividing.

Second-order scalar AD - definitions

An arithmetic for differentiation

Extend the ideas to computations with ordered tripples of real
numbers

~u = (u, u′, u′′).

The third component holds the value of the second derivative
f ′′(x0). As before, we assume that f : R→ R.

Basic arithmetic

~u+ ~v = (u+ v, u′ + v′, u′′ + v′′)
~u− ~v = (u− v, u′ − v′, u′′ − v′′)
~u× ~v = (uv, uv′ + u′v, uv′′ + 2u′v′ + u′′v)
~u÷ ~v = (u/v, (u′ − (u/v)v′)/v, (u′′ − 2(u/v)′v′ − (u/v)v′′)/v),

where we demand that v 6= 0 when dividing.

Second-order scalar AD - definitions

An arithmetic for differentiation

Extend the ideas to computations with ordered tripples of real
numbers

~u = (u, u′, u′′).

The third component holds the value of the second derivative
f ′′(x0). As before, we assume that f : R→ R.

Basic arithmetic

~u+ ~v = (u+ v, u′ + v′, u′′ + v′′)
~u− ~v = (u− v, u′ − v′, u′′ − v′′)
~u× ~v = (uv, uv′ + u′v, uv′′ + 2u′v′ + u′′v)
~u÷ ~v = (u/v, (u′ − (u/v)v′)/v, (u′′ − 2(u/v)′v′ − (u/v)v′′)/v),

where we demand that v 6= 0 when dividing.

Second-order scalar AD - definitions

Constants and the independent variable x are treated as before.
Following the usual rules of differentiation, we define

~x = (x, 1, 0) and ~c = (c, 0, 0).

AD for standard functions

Similarly, standard functions are implemented via the chain rule:

~g(~u) = ~g(u, u′, u′′) = (g(u), u′g′(u), u′′g′(u) + (u′)2g′′(u)).

Applying this to some useful functions yields:

sin ~u = sin (u, u′, u′′) = (sinu, u′ cosu, u′′ cosu− (u′)2 sinu)
e~u = e(u,u

′,u′′) = (eu, u′eu, u′′eu + (u′)2eu)

Straight-forward, but tedious!!!

Second-order scalar AD - definitions

Constants and the independent variable x are treated as before.
Following the usual rules of differentiation, we define

~x = (x, 1, 0) and ~c = (c, 0, 0).

AD for standard functions

Similarly, standard functions are implemented via the chain rule:

~g(~u) = ~g(u, u′, u′′) = (g(u), u′g′(u), u′′g′(u) + (u′)2g′′(u)).

Applying this to some useful functions yields:

sin ~u = sin (u, u′, u′′) = (sinu, u′ cosu, u′′ cosu− (u′)2 sinu)
e~u = e(u,u

′,u′′) = (eu, u′eu, u′′eu + (u′)2eu)

Straight-forward, but tedious!!!

Second-order scalar AD - definitions

Constants and the independent variable x are treated as before.
Following the usual rules of differentiation, we define

~x = (x, 1, 0) and ~c = (c, 0, 0).

AD for standard functions

Similarly, standard functions are implemented via the chain rule:

~g(~u) = ~g(u, u′, u′′) = (g(u), u′g′(u), u′′g′(u) + (u′)2g′′(u)).

Applying this to some useful functions yields:

sin ~u = sin (u, u′, u′′) = (sinu, u′ cosu, u′′ cosu− (u′)2 sinu)
e~u = e(u,u

′,u′′) = (eu, u′eu, u′′eu + (u′)2eu)

Straight-forward, but tedious!!!

Taylor series AD - definitions

A more effective (and perhaps less error-prone) approach to
high-order automatic differentiation is obtained through the
calculus of Taylor series:

f(x) = f0 + f1(x− x0) + · · ·+ fk(x− x0)k + . . . ,

Here we use the notation fk = fk(x0) = f (k)(x0)/k!

Basic arithmetic

(f + g)k = fk + gk

(f − g)k = fk − gk

(f × g)k =
k∑
i=0

figk−i

(f ÷ g)k =
1
g0

(
fk −

k−1∑
i=0

(f ÷ g)igk−i

)
.

Taylor series AD - definitions

A more effective (and perhaps less error-prone) approach to
high-order automatic differentiation is obtained through the
calculus of Taylor series:

f(x) = f0 + f1(x− x0) + · · ·+ fk(x− x0)k + . . . ,

Here we use the notation fk = fk(x0) = f (k)(x0)/k!

Basic arithmetic

(f + g)k = fk + gk

(f − g)k = fk − gk

(f × g)k =
k∑
i=0

figk−i

(f ÷ g)k =
1
g0

(
fk −

k−1∑
i=0

(f ÷ g)igk−i

)
.

Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

∞∑
k=0

fk(x− x0)k/
∞∑
k=0

gk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k.

Multiplying both sides with the Taylor series for g produces

∞∑
k=0

fk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k
∞∑
k=0

gk(x− x0)k,

and, by the rule for multiplication, we have

fk =
k∑
i=0

(f ÷ g)igk−i =
k−1∑
i=0

(f ÷ g)igk−i + (f ÷ g)kg0.

Solving for (f ÷ g)k produces the desired result.

Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

∞∑
k=0

fk(x− x0)k/
∞∑
k=0

gk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k.

Multiplying both sides with the Taylor series for g produces

∞∑
k=0

fk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k
∞∑
k=0

gk(x− x0)k,

and, by the rule for multiplication, we have

fk =
k∑
i=0

(f ÷ g)igk−i =
k−1∑
i=0

(f ÷ g)igk−i + (f ÷ g)kg0.

Solving for (f ÷ g)k produces the desired result.

Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

∞∑
k=0

fk(x− x0)k/
∞∑
k=0

gk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k.

Multiplying both sides with the Taylor series for g produces

∞∑
k=0

fk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k
∞∑
k=0

gk(x− x0)k,

and, by the rule for multiplication, we have

fk =
k∑
i=0

(f ÷ g)igk−i =
k−1∑
i=0

(f ÷ g)igk−i + (f ÷ g)kg0.

Solving for (f ÷ g)k produces the desired result.

Taylor series AD - definitions

Proof: (formula for division).

By definition, we have

∞∑
k=0

fk(x− x0)k/
∞∑
k=0

gk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k.

Multiplying both sides with the Taylor series for g produces

∞∑
k=0

fk(x− x0)k =
∞∑
k=0

(f ÷ g)k(x− x0)k
∞∑
k=0

gk(x− x0)k,

and, by the rule for multiplication, we have

fk =
k∑
i=0

(f ÷ g)igk−i =
k−1∑
i=0

(f ÷ g)igk−i + (f ÷ g)kg0.

Solving for (f ÷ g)k produces the desired result.

Taylor series AD - definitions

Constants and the independent variable x are treated as expected:
seen as functions, these have particularly simple Taylor expansions:

x = x0 + 1 · (x− x0) + 0 · (x− x0)2 + · · ·+ 0 · (x− x0)k + . . . ,

c = c+ 0 · (x− x0) + 0 · (x− x0)2 + · · ·+ 0 · (x− x0)k +

We now represent a function as a, possibly infinite, string of its
Taylor coefficients:

f(x0) ∼ (f0, f1, . . . , fk, . . .) fk = f (k)(x0)/k.

Exercise

Write down the formal expression for f × f using the rule for
multiplication. Using the appearing symmetry, find a more efficient
formula for computing the square f2 of a function f .

Taylor series AD - definitions

Constants and the independent variable x are treated as expected:
seen as functions, these have particularly simple Taylor expansions:

x = x0 + 1 · (x− x0) + 0 · (x− x0)2 + · · ·+ 0 · (x− x0)k + . . . ,

c = c+ 0 · (x− x0) + 0 · (x− x0)2 + · · ·+ 0 · (x− x0)k +

We now represent a function as a, possibly infinite, string of its
Taylor coefficients:

f(x0) ∼ (f0, f1, . . . , fk, . . .) fk = f (k)(x0)/k.

Exercise

Write down the formal expression for f × f using the rule for
multiplication. Using the appearing symmetry, find a more efficient
formula for computing the square f2 of a function f .

Taylor series AD - definitions

Constants and the independent variable x are treated as expected:
seen as functions, these have particularly simple Taylor expansions:

x = x0 + 1 · (x− x0) + 0 · (x− x0)2 + · · ·+ 0 · (x− x0)k + . . . ,

c = c+ 0 · (x− x0) + 0 · (x− x0)2 + · · ·+ 0 · (x− x0)k +

We now represent a function as a, possibly infinite, string of its
Taylor coefficients:

f(x0) ∼ (f0, f1, . . . , fk, . . .) fk = f (k)(x0)/k.

Exercise

Write down the formal expression for f × f using the rule for
multiplication. Using the appearing symmetry, find a more efficient
formula for computing the square f2 of a function f .

Taylor series AD - definitions

Taylor series AD for standard functions

Given a function g whose Taylor series is known, how do we
compute the Taylor series for, say, eg?

Let us formally write

g(x) =
∞∑
k=0

gk(x− x0)k and eg(x) =
∞∑
k=0

(eg)k(x− x0)k,

and use the fact that

d

dx
eg(x) = g′(x)eg(x). (1)

Plugging the formal expressions for g′(x) and eg(x) into (1)
produces
∞∑
k=1

k(eg)k(x− x0)k−1 =
∞∑
k=1

kgk(x− x0)k−1
∞∑
k=0

(eg)k(x− x0)k,

which, after multiplying both sides with (x− x0), becomes

Taylor series AD - definitions

Taylor series AD for standard functions

Given a function g whose Taylor series is known, how do we
compute the Taylor series for, say, eg?

Let us formally write

g(x) =
∞∑
k=0

gk(x− x0)k and eg(x) =
∞∑
k=0

(eg)k(x− x0)k,

and use the fact that

d

dx
eg(x) = g′(x)eg(x). (1)

Plugging the formal expressions for g′(x) and eg(x) into (1)
produces
∞∑
k=1

k(eg)k(x− x0)k−1 =
∞∑
k=1

kgk(x− x0)k−1
∞∑
k=0

(eg)k(x− x0)k,

which, after multiplying both sides with (x− x0), becomes

Taylor series AD - definitions

Taylor series AD for standard functions

Given a function g whose Taylor series is known, how do we
compute the Taylor series for, say, eg?

Let us formally write

g(x) =
∞∑
k=0

gk(x− x0)k and eg(x) =
∞∑
k=0

(eg)k(x− x0)k,

and use the fact that

d

dx
eg(x) = g′(x)eg(x). (1)

Plugging the formal expressions for g′(x) and eg(x) into (1)
produces
∞∑
k=1

k(eg)k(x− x0)k−1 =
∞∑
k=1

kgk(x− x0)k−1
∞∑
k=0

(eg)k(x− x0)k,

which, after multiplying both sides with (x− x0), becomes

Taylor series AD - definitions

∞∑
k=1

k(eg)k(x− x0)k =
∞∑
k=1

kgk(x− x0)k
∞∑
k=0

(eg)k(x− x0)k.

Using the rule for multiplication then yields

k(eg)k =
k∑
i=1

igi(eg)k−i (k > 0).

Since we know that the constant term is given by (eg)0 = eg0 , we
arrive at:

(eg)k =

{
eg0 if k = 0,
1
k

∑k
i=1 igi(e

g)k−i if k > 0.

Taylor series AD - definitions

∞∑
k=1

k(eg)k(x− x0)k =
∞∑
k=1

kgk(x− x0)k
∞∑
k=0

(eg)k(x− x0)k.

Using the rule for multiplication then yields

k(eg)k =
k∑
i=1

igi(eg)k−i (k > 0).

Since we know that the constant term is given by (eg)0 = eg0 , we
arrive at:

(eg)k =

{
eg0 if k = 0,
1
k

∑k
i=1 igi(e

g)k−i if k > 0.

Taylor series AD - definitions

∞∑
k=1

k(eg)k(x− x0)k =
∞∑
k=1

kgk(x− x0)k
∞∑
k=0

(eg)k(x− x0)k.

Using the rule for multiplication then yields

k(eg)k =
k∑
i=1

igi(eg)k−i (k > 0).

Since we know that the constant term is given by (eg)0 = eg0 , we
arrive at:

(eg)k =

{
eg0 if k = 0,
1
k

∑k
i=1 igi(e

g)k−i if k > 0.

Taylor series AD - definitions

More standard functions (k > 0)

(ln g)k =
1
g0

(
gk −

1
k

k−1∑
i=1

i(ln g)igk−i

)

(ga)k =
1
g0

k∑
i=1

((a+ 1)i
k

− 1
)
gi(ga)k−i

(sin g)k =
1
k

k∑
i=1

igi(cos g)k−i

(cos g)k = −1
k

k∑
i=1

igi(sin g)k−i.

Remember that we always have (f ◦ g)0 = f(g(x0)).

Taylor series AD - definitions

More standard functions (k > 0)

(ln g)k =
1
g0

(
gk −

1
k

k−1∑
i=1

i(ln g)igk−i

)

(ga)k =
1
g0

k∑
i=1

((a+ 1)i
k

− 1
)
gi(ga)k−i

(sin g)k =
1
k

k∑
i=1

igi(cos g)k−i

(cos g)k = −1
k

k∑
i=1

igi(sin g)k−i.

Remember that we always have (f ◦ g)0 = f(g(x0)).

Taylor series AD - implementations

We begin by implementing a taylor class constructor in MATLAB.

01 function ts = taylor(a, N, str)

02 % A naive taylor constructor.

03 if nargin == 1

04 if isa(a,’taylor’)

05 ts = a;

06 else

07 ts.coeff = a;

08 end

09 elseif nargin == 3

10 ts.coeff = zeros(1,N);

11 if strcmp(str,’variable’)

12 ts.coeff(1) = a; ts.coeff(2) = 1;

13 elseif strcmp(str,’constant’);

14 ts.coeff(1) = a; ts.coeff(2) = 0;

15 end

16 end

17 ts = class(ts, ’taylor’);

Taylor series AD - implementations

Next, we implement the way to display the class objects:

01 function display(ts)

02 % A simple output formatter for the taylor class.

03 disp([inputname(1), ’ = ’]);

04 fprintf(’[’)

05 for i=1:length(ts.coeff)-1

06 fprintf(’%17.17f, ’, ts.coeff(i));

07 end

08 fprintf(’%17.17f]\n’, ts.coeff(end));

We can now input/output taylor objects within the MATLAB
environment:

>> x = taylor(1.5, 3, ’variable’), c = taylor(pi, 2, ’constant’)

x =

[1.50000000000000000, 1.00000000000000000, 0.00000000000000000]

c =

[3.14159265358979312, 0.00000000000000000]

Taylor series AD - implementations

Next, we implement the way to display the class objects:

01 function display(ts)

02 % A simple output formatter for the taylor class.

03 disp([inputname(1), ’ = ’]);

04 fprintf(’[’)

05 for i=1:length(ts.coeff)-1

06 fprintf(’%17.17f, ’, ts.coeff(i));

07 end

08 fprintf(’%17.17f]\n’, ts.coeff(end));

We can now input/output taylor objects within the MATLAB
environment:

>> x = taylor(1.5, 3, ’variable’), c = taylor(pi, 2, ’constant’)

x =

[1.50000000000000000, 1.00000000000000000, 0.00000000000000000]

c =

[3.14159265358979312, 0.00000000000000000]

Taylor series AD - implementations

Here is an implementation for division

01 function result = mrdivide(a, b)

02 % Overloading the ’/’ operator.

03 [a, b] = cast(a, b);

04 if ((b.coeff(1) == 0.0))

05 error(’Denominator is zero.’);

06 else

07 N = length(a.coeff);

08 coeff = zeros(1,N);

09 coeff(1) = a.coeff(1)/b.coeff(1);

10 for k=1:N-1

11 sum = a.coeff(k+1);

12 for i=0:k-1

13 sum = sum - coeff(i+1)*b.coeff(k-i+1);

14 end

15 coeff(k+1) = sum/b.coeff(1);

16 end

17 result = taylor(coeff);

18 end

Taylor series AD - implementations

A very clean implementation for arbitrary order differentiation:

01 function dx = computeDerivative(fcnName, x0, order)

02 f = inline(fcnName);

03 x = taylor(x0, order+1, ’variable’);

04 dx = getDer(f(x), order);

Here, getDer converts a Taylor coefficient into a derivative by
multiplying it by the proper factorial.

>> df100 = computeDerivative(’exp(sin(exp(cos(x) + 2*x^5)))’, -2, 100)

df100 =

1.3783e+177

Taylor series AD - implementations

A very clean implementation for arbitrary order differentiation:

01 function dx = computeDerivative(fcnName, x0, order)

02 f = inline(fcnName);

03 x = taylor(x0, order+1, ’variable’);

04 dx = getDer(f(x), order);

Here, getDer converts a Taylor coefficient into a derivative by
multiplying it by the proper factorial.

>> df100 = computeDerivative(’exp(sin(exp(cos(x) + 2*x^5)))’, -2, 100)

df100 =

1.3783e+177

Taylor series AD - implementations

A very clean implementation for arbitrary order differentiation:

01 function dx = computeDerivative(fcnName, x0, order)

02 f = inline(fcnName);

03 x = taylor(x0, order+1, ’variable’);

04 dx = getDer(f(x), order);

Here, getDer converts a Taylor coefficient into a derivative by
multiplying it by the proper factorial.

>> df100 = computeDerivative(’exp(sin(exp(cos(x) + 2*x^5)))’, -2, 100)

df100 =

1.3783e+177

Taylor series AD - special implementations

01 function result = mrdivide(a, b)

02 % Overloading the ’/’ operator for l’Hopital’s rule.

03 [a, b] = cast(a, b);

04 a ind = find(a.coeff,1,’first’); b ind = find(b.coeff,1,’first’);

05 if (a ind < b ind)

06 error(’Denominator is zero.’);

07 else

08 a = taylor(a.coeff(b ind:end)); b = taylor(b.coeff(b ind:end));

09 N = length(a.coeff);

10 coeff = zeros(1,N);

11 coeff(1) = a.coeff(1)/b.coeff(1);

12 for k=1:N-1

13 sum = a.coeff(k+1);

14 for i=0:k-1

15 sum = sum - coeff(i+1)*b.coeff(k-i+1);

16 end

17 coeff(k+1) = sum/b.coeff(1);

18 end

19 result = taylor(coeff);

20 end

Taylor series AD - special implementations

We can now handle removable singularities too:

>> x = taylor(0, 4, ’variable’)

x =

[0.0000000, 1.0000000, 0.0000000, 0.0000000]

>> y = sin(x)

y =

[0.0000000, 1.0000000, 0.0000000,-0.1666666]

>> z = sin(x)/x

z =

[1.0000000, 0.0000000,-0.1666666]

w = (exp(x)-1)/x

w =

[1.0000000, 0.5000000, 0.1666666]

Note that the resulting Taylor series are shortened accordingly.

Taylor series AD - special implementations

We can now handle removable singularities too:

>> x = taylor(0, 4, ’variable’)

x =

[0.0000000, 1.0000000, 0.0000000, 0.0000000]

>> y = sin(x)

y =

[0.0000000, 1.0000000, 0.0000000,-0.1666666]

>> z = sin(x)/x

z =

[1.0000000, 0.0000000,-0.1666666]

w = (exp(x)-1)/x

w =

[1.0000000, 0.5000000, 0.1666666]

Note that the resulting Taylor series are shortened accordingly.

Taylor series AD - special implementations

We can now handle removable singularities too:

>> x = taylor(0, 4, ’variable’)

x =

[0.0000000, 1.0000000, 0.0000000, 0.0000000]

>> y = sin(x)

y =

[0.0000000, 1.0000000, 0.0000000,-0.1666666]

>> z = sin(x)/x

z =

[1.0000000, 0.0000000,-0.1666666]

w = (exp(x)-1)/x

w =

[1.0000000, 0.5000000, 0.1666666]

Note that the resulting Taylor series are shortened accordingly.

