

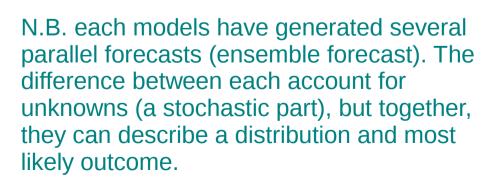
Exercises

1. Verify the value the random number generator.

Use the fact that $A=\pi r^2$ Random number generator Area fraction compared to a 2x2 square.

Rasmus E. Benestad Winter School in eScience Geilo January 20-25, 2013

'Model verification'


2. Model skill.

Hypothetical prediction:

Model 'A', 'B', 'C' and a given 'truth'.

Use data provided (forecast.rda).

- Estimate their skill (correlation, RMSE).
- Which one is best?

Statistics

3. Trend test.

Use data provided (trend.rda)

- Is the trend statistically significant at the 5%-level?
- Is the marginal distribution of the last 1/3 of the series different to that of the first 1/3?
- Is the data normally distributed?

Physics

4. Validate the forced oscillator

(http://en.wikipedia.org/wiki/Harmonic_oscillator)

Use the function FOscillator from replicationDemos (link)

Range of different inputs with different frequencies. Diagnose the amplitude of the response - resonance.

$$x(t) = \frac{F_0}{mZ_m\omega}\sin(\omega t + \phi) \qquad Z_m = \sqrt{(2\omega_0\zeta)^2 + \frac{1}{\omega^2}(\omega_0^2 - \omega^2)^2} \qquad \phi = \arctan\left(\frac{2\omega\omega_0\zeta}{\omega^2 - \omega_0^2}\right)$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\zeta\omega_0 \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = \frac{1}{m} F_0 \sin(\omega t),$$

Computer coding

5. Write a small R-package

With functions, data, and documentation. Make a contingency table and compute hit-rate for a rare event (Finley's (1884) tornado forecast), taking both 'observation' and forecast to be random numbers + a sinusoid. Compare with forecasts of constant non-occurrence.

e.g.

```
> x ← rnorm(N) + sin(omega*t)
> event ← (x > 1.95) # try different thresholds
```

Exercises

- 1. Verify the value of π
- 2. Estimate model skill
- 3. Verify trend in data.
- 4. Validate the forced oscillator
- 5. Write a simple R-package to examine Finley's (1884) tornado forecast.

Next lecture