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Primer on Bayesian model selection - I

Let x denote a generic data set.

We consider a finite set {p(·|θδ, δ ∈ ∆} of probability models.
Here δ is taken as the structural layer of a probability model, such the
set of covariates in regression, set of edges in a graphical model, etc.

The parameter θδ ∈ Θδ represents the quantitative layer, taking
values on a space dependent on the specific structure δ.
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Primer on Bayesian model selection - II

The Bayesian approach specifies formally the predictive, or marginal
data distribution as the mixture

p(x) = ∑
δ∈∆

p(δ)p(x|δ) = ∑
δ∈∆

p(δ)
∫

Θδ

p(x|θδ)dµ(θδ),

where µ(θδ) is a prior probability measure,

and p(x|θδ) is the conditional data distribution, or the likelihood,
given θδ.

The value of p(δ) can be interpreted as the prior predictive weight, or
the prior probability of the structural layer δ, such that
∑δ∈∆ p(δ) = 1.

We assume that the integral
∫

Θδ
p(x|θδ)dµ(θδ) can be calculated

analytically, either exactly or approximately.
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Primer on Bayesian model selection - III

In structural model learning one is typically interested in the posterior
probabilities of δ ∈ ∆, as measures of the model plausibility to explain
the information carried by the data.

Note that the prior typically acts like Occham’s razor, i.e. regularizes
the model dimension through

∫
Θδ
p(x|θδ)dµ(θδ) (more about that on

next slide).
The posterior over models is defined as

p(δ|x) = p(δ)p(x|δ)
∑δ∈∆ p(δ)p(x|δ)

Calculation of the posterior probabilities is in general intractable due
to the size of ∆, but they can be approximated with MCMC, or one
can e.g. try to estimate the mode

argmax
δ∈∆

p(δ|x)
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Model regularization - a primer by David MacKay, part I

Bayesian models specify a predictive distribution in the data space!
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Model regularization - a primer by David MacKay, part II
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Approximating model posterior with MCMC

One of the most commonly used MCMC algorithms is the
Metropolis-Hastings (MH) algorithm.

It is defined through the following transition kernel, governing the
probability of transition from the current state δt to a proposal state
δ∗ as:

min
(
1,
p(δ∗)p(x|δ∗)
p(δt )p(x|δt )

q(δt |δ∗)
q(δ∗|δt )

)
,

where q(δ∗|δt ) is the probability of choosing state δ∗ as the
candidate for the next state at δt ,

and q(δt |δ∗) is the probability of restoration of the current state.
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Approximating model posterior with MCMC

When the MH proposal mechanism is deliberately chosen, the
algorithm can be used to generate an aperiodic, irreducible, and
reversible Markov chain, whose time homogeneous distribution equals
the posterior distribution.

From a realization {δt , t = 0, 1, ...} of such a chain, the posterior
probabilities can be consistently estimated as

pT (δ|x) = T−1
n

∑
t=1
I (δt = δ),

such that pT (δ|x)→ p(δ|x), as T → ∞.
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Potential issues in MCMC

Construction of effi cient proposals q(δ∗|δt ) to avoid low acceptance
rate.

Slow convergence to the relevant areas of the posterior.

High variance of estimates of functions of p(δ|x).
Missing posterior mode completely in practice.

Solutions?
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What doesn’t kill you will only make you stronger
(Stronger - Kanye West)!
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Motivating example - clustering with stochastic partitions

Consider a set N of n data items that should be clustered.

For i ∈ N we have available finite feature vectors xi , such that each
element xij in xi belongs to a discrete alphabet, xij ∈ Xj = {1, ..., rj},
rj ≥ 2, j = 1, ..., d .
For any non-empty subset s ⊆ N of the items, let x(s) denote jointly
their feature vectors.

Let S = (s1, ..., sk ), 1 ≤ k ≤ n, be a partition (=clustering) of N.
In general we don’t know in advance what k should be representative
for our data.

(University of Helsinki) Geilo, Jan 2014 11 / 44



Motivating example - clustering with stochastic partitions

Consider a set N of n data items that should be clustered.

For i ∈ N we have available finite feature vectors xi , such that each
element xij in xi belongs to a discrete alphabet, xij ∈ Xj = {1, ..., rj},
rj ≥ 2, j = 1, ..., d .

For any non-empty subset s ⊆ N of the items, let x(s) denote jointly
their feature vectors.

Let S = (s1, ..., sk ), 1 ≤ k ≤ n, be a partition (=clustering) of N.
In general we don’t know in advance what k should be representative
for our data.

(University of Helsinki) Geilo, Jan 2014 11 / 44



Motivating example - clustering with stochastic partitions

Consider a set N of n data items that should be clustered.

For i ∈ N we have available finite feature vectors xi , such that each
element xij in xi belongs to a discrete alphabet, xij ∈ Xj = {1, ..., rj},
rj ≥ 2, j = 1, ..., d .
For any non-empty subset s ⊆ N of the items, let x(s) denote jointly
their feature vectors.

Let S = (s1, ..., sk ), 1 ≤ k ≤ n, be a partition (=clustering) of N.
In general we don’t know in advance what k should be representative
for our data.

(University of Helsinki) Geilo, Jan 2014 11 / 44



Motivating example - clustering with stochastic partitions

Consider a set N of n data items that should be clustered.

For i ∈ N we have available finite feature vectors xi , such that each
element xij in xi belongs to a discrete alphabet, xij ∈ Xj = {1, ..., rj},
rj ≥ 2, j = 1, ..., d .
For any non-empty subset s ⊆ N of the items, let x(s) denote jointly
their feature vectors.

Let S = (s1, ..., sk ), 1 ≤ k ≤ n, be a partition (=clustering) of N.

In general we don’t know in advance what k should be representative
for our data.

(University of Helsinki) Geilo, Jan 2014 11 / 44



Motivating example - clustering with stochastic partitions

Consider a set N of n data items that should be clustered.

For i ∈ N we have available finite feature vectors xi , such that each
element xij in xi belongs to a discrete alphabet, xij ∈ Xj = {1, ..., rj},
rj ≥ 2, j = 1, ..., d .
For any non-empty subset s ⊆ N of the items, let x(s) denote jointly
their feature vectors.

Let S = (s1, ..., sk ), 1 ≤ k ≤ n, be a partition (=clustering) of N.
In general we don’t know in advance what k should be representative
for our data.

(University of Helsinki) Geilo, Jan 2014 11 / 44



Clustering with stochastic partitions

Assume we have a stochastic candidate partition S of N.

Allocation of a particular subset of the items into the same cluster sc
implies the use of a common predictive model p(x(sc )) for their
observed features x(sc ), i.e.

p(x(sc )) =
∫

Θsc

p(x(sc )|θsc )dµ(θsc )

Under certain form of exchangeability (more later) this leads to the

predictive model p(x(N )|S) =
k

∏
c=1

p(x(sc )) for all data, conditional on

the partition S .
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Bayesian predictive learning in clustering

The basis of predictive learning is quantified by the probability
measure

p(x(N )) = ∑
S∈S

p(x(N )|S)p(S), (1)

where p(S) describes the a priori uncertainty about S , and p(x(N )|S)
is the (prior) predictive distribution of the feature data given the
clustering S .

The conditional (posterior) distribution of S given the data is
determined by Bayes’rule:

p(S |x(N )) = p(x(N )|S)p(S)
∑S∈S p(x(N )|S)p(S)

.
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Predictive model under generalized exchangeability

To obtain a more concrete form for the predictive distribution, various
assumptions may be utilized.

In the most basic model, we assume that the observed sequences of
features x(s) are unrestrictedly infinitely exchangeable (Bernardo and
Smith, 1994).
Then, we obtain a unique probabilistic characterization of the cluster
data as

p(x(s)) =
∫

Θsc

d

∏
j=1

rj

∏
l=1

p
njl
jl p(θsc ),

where pjl is understood as the limit of the relative frequency obtained
through the suffi cient statistics njl

pjl = lim
|s |→∞

njl
|s | .

The symbol θsc refers jointly to all parameters pjl over different values
and features.
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Predictive model under generalized exchangeability

By extending the unrestricted exchangeability assumption to hold over
the clusters s1, ..., sk , we obtain the joint probabilistic characterization
for x(N ) as

p(x(N )|S) =
∫

Θ

k

∏
c=1

d

∏
j=1

rj

∏
l=1

p
ncjl
cjl p(θ|S), (2)

where ncjl represents now the number of copies of value l for feature j
observed among the items in sc , and pcjl , θ, and p(θ|S), are defined
analogously to the previous slide.

This model was formally derived in a molecular biological context in
Corander et al. (2007, Bull Math Biol).

It is a representation of the statistical uncertainty arising about
genetic population structure under the assumptions of unlinked
markers and random mating populations (k is unknown).
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Predictive model under generalized exchangeability

To finally obtain an explicit form of the predictive density, we specify
the prior beliefs p(θ|S), according to the product Dirichlet distribution

Q(θ|S) ∝
k

∏
c=1

d

∏
j=1

rj

∏
l=1

p
λcjl−1
cjl ,

with a suitably determined hyperparameter λcjl > 0, for all index
values.

Then, the explicit predictive probability for the feature data equals

p(x(N )|S) =
k

∏
c=1

d

∏
j=1

Γ(∑
rj
l=1 λcjl )

Γ(∑
rj
l=1 λcjl + ncjl )

rj

∏
l=1

Γ(λcjk + ncjl )
Γ(λcjl )

.
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d

∏
j=1

rj

∏
l=1

p
λcjl−1
cjl ,

with a suitably determined hyperparameter λcjl > 0, for all index
values.

Then, the explicit predictive probability for the feature data equals

p(x(N )|S) =
k

∏
c=1

d

∏
j=1

Γ(∑
rj
l=1 λcjl )

Γ(∑
rj
l=1 λcjl + ncjl )

rj

∏
l=1

Γ(λcjk + ncjl )
Γ(λcjl )

.
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Predictive learning in practice

The practical applicability of the Bayesian learning approach is
dependent on our ability to identify classifications associated with
high posterior probabilities.

In general, complete enumeration of S is not feasible, and therefore,
an algorithm-based method is necessary to obtain estimates such as
the posterior mode

Ŝ = argmax
S∈S

p(S |x(N )).

A solution to such an estimation problem was suggested by Corander
et al. (2004), where a MH algorithm for searching the space of
partitions was introduced.

One can use also more advanced estimators that average the evidence
of merging items to the same cluster, but these are often
computationally very demanding.
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Ŝ = argmax
S∈S

p(S |x(N )).

A solution to such an estimation problem was suggested by Corander
et al. (2004), where a MH algorithm for searching the space of
partitions was introduced.

One can use also more advanced estimators that average the evidence
of merging items to the same cluster, but these are often
computationally very demanding.

(University of Helsinki) Geilo, Jan 2014 17 / 44



Predictive learning in practice

The practical applicability of the Bayesian learning approach is
dependent on our ability to identify classifications associated with
high posterior probabilities.

In general, complete enumeration of S is not feasible, and therefore,
an algorithm-based method is necessary to obtain estimates such as
the posterior mode
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Ordinary Metropolis-Hastings learning

A Metropolis-Hastings algorithm for learning classifications can be
defined by the transition kernel of a Markov chain, which determines
the probability of a transition from a current classification S to a new
proposal classification S∗, as

min

(
1,
p(x(N )|S∗)
p(x(N )|S)

q(S |S∗)
q(S∗|S)

)
, (3)

where q(S∗|S) is the probability of choosing classification S∗ as the
new candidate when in S , and q(S |S∗) is the probability of
restoration of the current classification S .
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Ordinary Metropolis-Hastings learning

The proposal mechanism to derive S∗ from S considered by Corander
et al. (2004) was constructed from the following four different
possibilities, that are similar to those commonly used in reversible
jump -samplers:

With probability 1/2, merge two randomly chosen classes sc , sc∗.

With probability 1/2 split a randomly chosen class sc into two new
classes, whose cardinalities are uniformly distributed between 1 and
|sc | − 1, and whose elements are randomly chosen from sc .

Move an arbitrary item from a randomly chosen class sc , |sc | > 1,
into another randomly chosen class sc ∗ .

Choose one item randomly from each of two randomly chosen classes
sc and sc ∗ , and exchange them between the classes.

These kinds of proposals are very commonly used in Bayesian MCMC
for variable-dimensional models.
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Estimating the posterior

For a realization of the Markov chain {St , t = 0, 1, ...}, the standard
convergence result holds as

lim
T→∞

pT (S |x(N )) = p(S |x(N )), (4)

where

pT (S |x(N )) = T−1
T

∑
t=1
I (St = S) (5)

is the relative frequency of occurrence of state S .

Also, we know that the true posterior optimum Ŝ will be identified
when T → ∞.
BUT, the above standard estimates can have enormous variance and
be strongly biased in practice, when the state space is large (cf.
phylogenetics and estimation of topologies).
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What happened when the algorithm was applied to the
data shown earlier?

loge p(x|S) (vertical axis) for the Enterobacteriaceae data, over 250
iterations of 50 processes all started at the same initial configuration.

Sampler went downhill for a long time because of the skewness of q(S |S
∗)

q(S ∗|S ) !
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Explicit illustration of the skweness of

log q(S |S
∗)

q(S ∗|S )
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How to solve the problem?

Introduce a non-reversible MCMC algorithm for parallel learning.

Consider a positive recurrent non-reversible Markov chain
{St , t = 0, 1, ...} with transition kernel

min

(
1,
p(x(N )|S∗)
p(x(N )|S)

)
,

combined with fixed proposal distributions that satisfy certain
constraints.

In the simplest case, such a sampler can use the same proposal
distributions as the previous one.

But we can do even better by allowing multiple processes to learn
from each other!
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Nonreversible parallel sampler

Let {Stj , t = 0, 1, ...; j = 1, ...,m} and {Zt , t = 0, 1, ...} be m+ 1
stochastic processes defined as follows:

Define a sequence of strictly decreasing probabilities
{αt , t = 1, 2, ...}, such that αt > αt+1, and αt → 0 as t → ∞.
Define the stochastic process {Zt , t = 0, 1, ...} as Z0 = 0, and
P(Zt = 1) = αt ,P(Zt = 0) = 1− αt , independently for t = 1, 2, ... .

Let S0j , j = 1, ...,m, be arbitrary initial states of
{Stj , t = 0, 1, ...; j = 1, ...,m}.
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Nonreversible parallel sampler

Given a realization {Zt , t = 0, 1, ...}, the transition mechanism of the
processes {Stj , t > 0; j = 1, ...,m} depends on values of Zt according
to the following.

For each t, such that Zt = 0, transition from Stj to the next state
S(t+1)j is determined according to the nonreversible MH kernel, for
j = 1, ...,m.

For each t, such that Zt = 1, transition from Stj to the next state
S(t+1)j is determined according to the following distribution over the
space St = {Stj , j = 1, ...,m} of candidate states:

Pt (S(t+1)j = Stj ) =
p(Stj )p(x|Stj )

∑m
j=1 p(Stj )p(x|Stj )

,

independently for j = 1, ...,m.
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Consistent estimates of p(S |x(N )) can be obtained using this sampler
and it allows for smart search operators!

The following estimate is consistent and it can have much smaller
variance than the relative frequency based estimate:

p̂(S |x(N )) = p(x(N )|S)p(S)
∑S∈St p(x

(N )|S)p(S)
,

where Sn is the space of distinct states visited by time n by the
non-reversible process.
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An illustration of the behavior of parallel processes

loge p(x|S) (vertical axis) of 100 dependent processes for a molecular
human data set.(University of Helsinki) Geilo, Jan 2014 27 / 44



Comparison between the reversible and nonreversible
processes
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Predictive abilities (loge p(x|S), vertical axis) of the Bayesian classification
model for the Enterobacteriaceae data, over 250 iterations of 50 processes
all started at the same initial configuration, produced with the reversible
(left) and non-reversible (right) MH algorithms.
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Optimization of dynamical graphical models stochastic
nonreversible search vs hill-climbing

Marttinen and Corander (Machine Learning, 2009)
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Bayesian profiling of cancer tissues using comparative
genomic hybridization (CGH) data.

Control
tissue

Cancer
tissue

From Nakao et al. Carcinogenesis 2004.

Control
tissue

Cancer
tissue

From Nakao et al. Carcinogenesis 2004.
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Analyzing multiple CGH profiles

Assume we have a database of binarized DNA alteration profiles for
various cancer samples.

How do we:

Identify samples with similar profiles?

Identify chromosomic areas that are signatures for certain cancer
subtypes?

Is it really that diffi cult?
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Let’s try it out

Can you see clearly what’s in the picture below?

Oops, wrong picture.
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5000 cancer samples (rows) and amplifications (black) on
sub-band resolution (columns). Easy to see the patterns,
right?
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But hey, use data mining tools!

Various approaches to exploring such data exist.

k-means algorithm, dendrograms, SOM...

Easy to use and fast, but diffi cult to draw firm conclusions from the
results.

Model-based methods, e.g. mixture models fitted with EM algorithm
or Gibbs sampler.

More challenging to use and slower, but may provide DIRECT focus
on the biologically relevant questions.
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Let’s try k-means with, say, 291 clusters.
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Oops, I forgot k-means cannot estimate k. Let’s instead
use a Bayesian mixture model which can learn k.
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What’s wrong?

A standard mixture model assumes that all observed features
contribute to the grouping of the samples.

If not true, results may be strongly biased.

Need to focus on the biological questions.

How many subgroups of cancer samples do exist in my database, such
that they are similar w.r.t. DNA alterations?

Which DNA alterations are relevant for which subgroups?

Which genomic regions are simply uninformative (noise) for the
clustering purposes?
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Which genomic regions are simply uninformative (noise) for the
clustering purposes?
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I have an idea, let’s build a Bayesian model that
incorporates our biological knowledge!

1 Data from noise regions should follow roughly the same distribution for
all samples.

2 The DNA alterations that characterize the biological behavior of a
certain cancer subtype should be present with high probability if a
sample belongs to this subtype.

3 Other, less characteristic DNA alterations may also be present among
samples with varying probabilities.
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How does such a model work?

Define a partition (clustering) of the cancer samples as a model
parameter.

The number of groups and their contents are a priori unknown.

Define a division of the amplification variables into noise and
informative ones.

Separate from the informative amplifications those believed to be
group—specific.

The status of each amplification variable is an unknown parameter.

The frequencies of amplifications conditional on the status are
unknown parameters.

Specify prior distributions for all model parameters.
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How to do learning with the model in practice?

The model poses an enormous computational challenge due to the
complex parameter space.

Use non-reversible stochastic optimization to fit the model.

The stochastic search algorithm alternates between grouping and
samples and updating statuses of the amplification variables.

The algorithm has been implemented in software BASTA, which is
freely available from www.helsinki.fi/bsg

Details of the method are presented in Marttinen et al. (2009, BMC
Bioinformatics).

Our experiments showed a very solid performance for the method.
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BASTA results for the data (parts I-III).
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Moral of the story?

It may be quite dangerous to use data mining methods when not aware if
the assumptions hidden in them meet the characteristics of the biological
observations...
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Comparison between a hill-climbing version of the
nonreversible process and Gibbs sampler

Left panel: the time complexity of Gibbs sampler as a function of time
required to identify as good solution as that found by a smart stochastic
search. Right panel: Bayes factor values for the best clustering solutions
found by the smart search against those found by Gibbs sampler. In both
cases x-axis corresponds to the number of clusters in the generating model.
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Extensions...

We have developed a number of variants of the stochastic
nonreversible optimization for different clustering, classification and
semi-supervised classification models, papers and sw available from
www.helsinki.fi/bsg.

Ongoing work to develop hybrid algorithms combining IS with
nonreversibility.
This story ends now, but the work still goes on...
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