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Problem Formulation

Monte Carlo sampling: Given i.i.d. random variables X1, X2, . . . approx-
imate their expected value µ = E[X ] from M samples using the sample
average

XM :=

M∑
i=1

Xi

M
.

Objective: ChooseM sufficiently large for the error probability to satisfy

P
(∣∣XM − µ

∣∣ > TOL
)
≤ δ, (1)

for some fixed small constants TOL > 0 and δ > 0.

Algorithmic Control of the Number of Samples

Without (much) a-priori information on the distribution of Xi not much
is known about theoretical upper bounds of M . Typically the number
of samples needed is determined through a sequential stopping rule,
such as:

(I) Generate a batch of M i.i.d. samples X1, X2, . . . , XM .

(II) Infer distributive properties of XM from the generated batch of sam-
ples through higher order sample moments, e.g. the sample mean
and the sample variance.

(III) Based on the sample moments, estimate the error probability.
When, based on the estimated probability, (1) is violated, increase
the number of samples M and return to step (I).
Else, break and accept M .

Asymptotically Consistent Stopping Rules

The most common stopping rule is based on the Central Limit Theorem
(CLT) and uses sample estimates of E[X ] and Var (X). It assumes only
the existence of the second moment of the Xi.

Algorithm 1 – Sample Variance Based Stopping Rule

Data: Initial number of samples M0, accuracy TOL, confidence δ, and
the cumulative distribution function of the standard normal
distribution Φ(x)

Result: The output sample mean XM

Initialization: Set n = 0, generate Mn samples {Xi}Mn
i=1 and compute

the sample variance as follows

σ2Mn
:=

1

Mn − 1

Mn∑
i=1

(Xi −XMn)
2; (2)

while 2
(

1− Φ(
√
MnTOL/σMn)

)
> δ do

Set n = n + 1 and Mn = 2Mn−1;
Generate a batch of Mn i.i.d. samples {Xi}Mn

i=1 and compute the
sample variance σ2Mn

as described in (2);
end
Set M = Mn, generate samples {Xi}Mi=1 and compute XM ;
return XM

Second moment based stopping rules perform well in the asymptotic
regime when TOL � 0. In fact, under very loose restrictions they are
known to be asymptotically consistent in the sense that for a fixed δ,

lim
TOL→0

P
(∣∣XM − µ

∣∣ > TOL
)

= δ.

See Chow and Robbins [4] and, for more general stochastic processes,
Glynn and Whitt [3].

Non-Asymptotic Failure of a Second Moment Based
Stopping Rule

In the non-asymptotic regime TOL = O (1), second moment based
stopping rules may fail to meet the goal (1). Let us illustrate this by
sampling a sequence of Pareto distributed i.i.d. r.v. Xi with PDF

f (x) =

{
αxαmx

−(α+1), if x ≥ xm,

0, otherwise,
(3)

where α, xm ∈ R+. Assume further that the variance σ2 = Var (X) is
known prior to sampling, so that Algorithm 1 takes the simple form

M =
C2
CLTσ

2

TOL2
, CCLT := Φ−1

(
2− δ

2

)
. (4)

Figure 1 gives a performance study of this stopping rule for three dif-
ferent confidence functions δ(TOL). We observe that the smaller δ is
relative to TOL, the larger is the probability of failure for the stopping
rule.
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Figure 1: The scaled probability of failure pN(TOL, δ)/δ, cf. (5), is plot-
ted with error bars for three different confidence functions δ(TOL) (blue,
black and green lines) in the setting of sampling i.i.d. Pareto r.v. with pa-
rameters α = 3.1 and xm = 1 and using the stopping rule (4). When
pN(TOL, δ)/δ > 1, the stopping rule is unable to meet the goal (1).
In the above figure the probability of failure is estimated by

pN(TOL, δ) = N−1
N∑
i=1

1|XM (ωi)−µ|>TOL, (5)

using N = 107 Monte Carlo outer loop samples of XM(ωi), and the error
bars for the estimate of pN is approximated by 1.96

√
pN(1− pN)/N .

Second Moment Based Algorithm for the
Non-Asymptotic Regime

Hickernell et al. [2] recently proposed an algorithm that is guaranteed
to meet condition (1) provided that an upper bound for the kurtosis

κ =
E
[
|X − µ|4

]
σ4

− 3

is given prior to sampling. In applications the demand for an a priori
bound on κ can however be impractical.

Stopping Rules Based on Higher Moments

While the guaranteed accuracy of the algorithm by Hickernell et al. is
highly desirable, the algorithm can sometimes be overly pessimistic
leading to excessive computational work. The aim of this work [1] is to
construct a sequential stopping rule that uses higher order sample mo-
ments to become more reliable than Algorithm 1, but not at a prohibiting
increase in the computational cost.
We propose an algorithm based on splitting the probability of the error
being greater than TOL conditioned on M

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M) = P

(∣∣XM − µ
∣∣ > TOL

∣∣∣M)P
(
|σ2M − σ2| ≥ σ2/2

∣∣∣M)
+ P

(∣∣XM − µ
∣∣ > TOL

∣∣∣M)P
(
|σ2M − σ2| < σ2/2

∣∣∣M) , (6)

to combine a conservative estimate of P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M) based

on the uniform and non-uniform Berry-Esseen Theorems with a more
optimistic bound based on an Edgeworth expansion up to 3rd moment.
The estimates are combined by weighting them with probability esti-
mates of the error when estimating the variance by the sample vari-
ance, σ2M . Using a Chebycheff inequality for k-statistics and Markov’s
inequality, we bound

P
(
|σ2M − σ2| ≥ σ2/2

∣∣∣M) ≤ Cp(M) :=

min

(
1, 4

(
2

M − 1
+
κ

M

)
,

2p

σ2p
E
[∣∣σ2M − σ2∣∣p ∣∣ M]), (7)

using p = 2 in the numerical examples. One might take the minimum
over several values of p = p1, . . . , pn > 0. This leads us to an approxi-
mate stochastic error bound and to replace the stopping criterion in the
while loop of Algorithm 1 by

2

(
1− Φ

(√
MTOL

σM

))
+ 2CBE

(√
MTOL

σM
, βM

)
1√
M
Cp(M)

+

∣∣∣MTOL2

σ2M
− 1
∣∣∣ |β̂M |

exp
(
MTOL2

2σ2M

)
× 3
√

2πMσ3M

(1− Cp(M)) > δ, (8)

where CBE(·, ·) represents the constants in the Berry-Esseen theorems
and Cp(·) is obtained from (7) by replacing all moments of σ by their
empirical counterparts. This leads to the following algorithm based on
sample moments of orders 2, 3 and possibly 4 (if the 4th moment is
bounded).

Algorithm 2 – Higher Moments Based Stopping Rule

Data: Initial number of samples M0, accuracy TOL, and confidence δ
Result: XM

Initialization: Set n = 0, generate i.i.d. samples {Xi}Mn
i=1 and compute

the sample moments σMn, βMn
, β̂Mn and κMn and all (other) moments

needed for CP ;
while Inequality (8) holds do

Set n = n + 1 and Mn = 2Mn−1;
Generate Mn i.i.d. samples {Xi}Mn

i=1 and compute the sample
moments σMn, βMn

, and κMn and all (other) moments needed for
CP ;

end
Set M = Mn, generate i.i.d. samples {Xi}Mi=1 and compute the sample
mean XM ;
return XM

Numerical Examples

We compare the three presented stopping rules for two heavy tailed
distributed r.v. with standard deviation σ = 1. The first, a Pareto distri-
bution, has a finite 3rd moment, but lacks 4th moment; the second, a
Normal-Inverse Gaussian distribution, has finite kurtosis κ = 123.
The color in the top plots in the examples below show the scaled prob-
ability of failure pN(TOL, δ)/δ for the respective algorithms, cf. (5), and
the bottom plots show the respective algorithms’ complexity in terms
of the average number of r.v. samples required to generate XM at the
given accuracy and confidence pair (TOL, δ). An algorithm is consid-
ered unreliable at points (TOL, δ) where pN(TOL, δ)/δ > 1.

Pareto with α = 3.1 and xm = (α− 1)
√

(α− 2)/α

Algorithm 1
pN(TOL, δ)/δ

Algorithm 2
pN(TOL, δ)/δ

Algorithm 1
Complexity

Algorithm 2
Complexity

Normal-inverse Gaussian Distribution

Normal-inverse Gaussian distributed r.v. with parameters α = 3, β =√
α2 − 1, γ = 1, δ = α−2, and mu = −β/γ. This yields r.v. with standard

deviation σ = 1 and kurtosis κ = 123.

Algorithm 1
pN(TOL, δ)/δ

Algorithm 2
pN(TOL, δ)/δ

Algorithm 3
Hickernell et al.
pN(TOL, δ)/δ

Algorithm 1
Complexity

Algorithm 2
Complexity

Algorithm 3
Hickernell et al.
Complexity

Summary of several distributions

Algorithm performance
Considered r.v. Algorithm N max pN/δ max(pN(1− pN)/N)1/2/δ runtime/N

Pareto Alg 1 5 · 106 3.529600 0.026522 0.124712 s
(σ = 1 and κ =∞) Alg 2 5 · 106 0.686309 0.009506 0.189077 s
Normal-inv. Gaussian Alg 1 5 · 105 12.014000 0.154076 3.019442 s

Alg 2 5 · 105 0.755712 0.028699 3.048026 s
(σ = 1, κ = 123) Hick. et al.’s 5 · 104 0.000419 0.000296 77.322941 s
Exponential λ = 1, Alg 1 5 · 106 0.919659 0.012642 0.033680 s

Alg 2 5 · 106 0.912216 0.012040 0.076942 s
(σ = 1 and κ = 6) Hick. et al.’s 5 · 106 0.206530 0.000676 0.229495 s
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