



# Advanced proton-transport materials for application in membranes and fuel cells



# Ion-Conducting Materials? Ion-Transport Membranes?

- Ion Conducting Oxides are (crystalline) mixed oxides than can transport oxide-ions or protons through their lattice
- Ion conduction is typically activated in 400-1000°C
- Ideally, we can distinguish between:

Oxygen Ion Conductors: Pure Ionic / Mixed Ionic-Electronic (OTM)

Proton Conductors: Pure Protonic/ Mixed Protonic-Electronic (HTM)

H⁺ <sup>↑</sup> †e⁻ H⁺ <sup>↑</sup> †e⁻ H⁺ <sup>↑</sup> †e⁻

#### **Oxide-Ion Conduction**

**Oxygen Diffusion** in Fluorite Sturcture through oxygen Vacancies

#### State-of-the-Art Oxygen-Ion Electrolytes

0

0



Vacancy

0

**Y** 3+

Oxygen

Zr <sup>4+</sup>

Fluorite  $MO_{2-\delta}$ 





#### **Proton Conductors: Incorporation in the structure**



W. Munch, G. Seifert, K. D. Kreuer, J. Maier, Solid State Ionics, 86, 647 (1996)

#### **Oxide Proton Conductors**

**Cubic Perovskites** 

 $Ln_6WO_{12}$ 

→  $BaZrO_3$  doped →  $BaCeO_3$ - $SrCeO_3$  doped Rare Earth Oxides  $Re_2O_3$   $LaPO_4$  $LnNbO_4$ 

Proton conductivity of various oxides as calculated from data on proton concentrations and mobilities Norby and Larring, 1999



#### Ion Conduction H<sup>+</sup> vs O<sup>2-</sup>

### **Overview of Different Solid Electrolytes**





#### Fuel Cells - Electrode Reactions H<sup>+</sup> vs O<sup>2-</sup>





At air electrode:  $O_2 + 4e \longrightarrow 2O^2$ At fuel electrode:  $H_2 + O^2 \longrightarrow H_2O + 2e$  At air electrode:  $4H^{+} + O_2 + 4e^{-} \rightarrow 2H_2O$ At fuel electrode:  $H_2 \rightarrow 2H^{+} + 2e^{-}$ 



### **Applications - Electrolysis**













### New Proton Conductors - PCFC

 $BaZr_{0.1}Ce_{0.7}Y_{0.2-x}Yb_{x}O_{3-\delta}$ 



M. Liu et al, Science 326 (2009) p. 126

### **New Proton Conductors**

#### $PrBa_{0.5}Sr_{0.5}Co_{1.5}Fe_{0.5}O_{5+\delta}$ (PBSCF)



S. M. Haile et al, Nature Energy (2018)



### **New Proton Conductors**



S. M. Haile et al, Nature Energy (2018)



## Proton Conductors – Thin-Films



- Advantages for SOFC. Decrease of electrode thickness :
  - Enhancement of protonic conductivity
  - Decrease of blocking effects due to resistive grain boundaries
- A. Magrasó, et. al., Solid State Ionics 314 (2018) 9

# Proton Conductors – Thin-Films



#### D. Pergolesi, E. Traversa et. al., Nature Materials 9 (2010), 846-852



# Process Intensification Protonic Membrane Reactors



#### **Process Intensification**

#### **Catalytic Membrane Reactors**

- Smaller Equipment & Plant
- Safer Processes
- High Selectivity & Product Purity
- Heat Management
- Major Cost Saving (Capex and Opex)





Engineering future ion-transport membranes for gas separations in energy and chemistry applications

# Direct Conversion of Methane to Aromatics in a co-ionic CMR



COORSTEK **Gas-to-Liquids:** Non-Oxidative Methane Dehydro-Aromatization (MDA) MEMBRANE SCIENCES Hydrogen Transport Membrane **Porous substrate** Catalyst In-situ H, removal using ceramic membranes - Equilibrium shift - Surface Kinetic Improvement Feed:6CH<sub>4</sub> (PAH) **18H** Bifunctional Catalyst for CH<sub>4</sub> conversion: - CH<sub>4</sub> coupling to produce C2 - Aromatization to produce Benzene - Prevent coking Product 700 °C



#### Gas-to-Liquids: Non-Oxidative Methane Dehydro-Aromatization (MDA)

Hydrogen Removal (700 °C): H2 Pumping

#### **MANUFACTURE:**

- Slip-cast/extrude BZCY-NiO composite
- Spray/dip on BZCY electrolyte precursor
- Co-sinterinng
- Sufficient porosity upon NiO reduction
- Size: 10 mmØ, 1 mm wall, 20 μm BZCY, 30 cm
- Development of CH<sub>4</sub>-side electrodes





### **SPUTTERING**

#### • Sputtering:

-0.14 -

-0.12-

-0.10-

-0.08-

-0.06 -

-0.04 -

-0.02 -

0.0



300 Hz

 $\Diamond$ 

0.2

 $\diamond$   $\diamond$ 

, 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 10

 $\Diamond$ 

0.1

٥<sub>0</sub>

\_\_\_\_3000 Hz

3000 Hz

3000 Hz

 $\diamond \diamond$  $\Diamond$ 





0

 $\diamond$ 



#### Gas-to-Liquids: Non-Oxidative Methane Dehydro-Aromatization (MDA)

#### Hydrogen Removal (700 °C): H2 Pumping





#### Gas-to-Liquids: Non-Oxidative Methane Dehydro-Aromatization (MDA)







**Co-ionic Membrane Electrode Assembly** 













Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss







CCORSTEK MEMBRANE SCIENCES







**H. Malerød-Fjeld et al.,** *Nature Energy,* **2**, p. 923–931 (2017)

CCORSTEK MEMBRANE SCIENCES



**MEMBRANE SCIENCES** 

#### Proton Membrane Reformer (PMR) – Stability



**H. Malerød-Fjeld et al.,** *Nature Energy,* **2**, p. 923–931 (2017)

#### Proton Membrane Reformer (PMR) – Energy Balance



#### Proton Membrane Reformer (PMR) – Techno-economics





#### **Thermoneutral regime**



#### Ethane dehydrogenation at low temperatues



0.420

0.415

0.410 ∧ oltage, -√ 0.402 0.405 ∧ oltage, -√

0.400

0.395

0.390

# **Optimized Compositions**

### Doped La<sub>5.5</sub>WO<sub>12-0</sub>

0.9mm-thick membranes





Escolástico, Seeger, Serra et al. ChemSusChem 6 (2013) 1523 J.M. Serra et al. Patent Appl. (2010) WO2012/010386A1

# **Composite Approach**

LWO/LSC









La<sub>5.5</sub>WO<sub>11.25-δ</sub>



J. M. Serra et al, International (PCT) Patent Application No. PCT/EP2014/060708 S. Escolastico, C. Kjølseth, J. M. Serra et al, EES 7 (2014) 3736

# LSC-LW Composite Approach



S. Escolastico, J.M. Serra et al. EES 7 (2014) 3736

PROTON Conducting Membranes offer excellent opportunities in chemical production and energy sector: cleaner, safer & more efficient

Functions: H2 extraction/injection | O2 Injection/extraction | H2O extraction

Proton Ceramics are matured for the game!

Hot /Emerging topics (playing with protons)

- Enable the Use of Renewable <u>Electricity</u> in Chemical Industry
- Selective Dehydrogenation / Oxidation (Equilibrium Shift)
- <u>Reversible</u> operation (FC, EC, PMR)

# ACKNOWLEDGEMENTS





Spanish Ministry





# Thank You for your Attention





### Thank you for your atention.







