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Abstract. Several multiscale methods for elliptic problems that provide high resolution velocity
fields at low computational cost have been applied to porous media flow problems. However, to
achieve enhanced accuracy in the flow simulation, the numerical scheme for modeling the transport
must account for the fine scale structures in the velocity field. To solve the transport equation on the
fine scale with conventional finite volume methods will often be prohibitively computational expensive
for routine simulations. In this paper we propose a more efficient adaptive multiscale method for
solving the transport equation. In this method the global flow is computed on a coarse grid scale,
while at the same time honoring the fine scale information in the velocity field. The method is tested
on both two- and three-dimensional test cases with complex heterogeneous structures. The numerical
results demonstrate that the adaptive multiscale method gives nearly the same flow characteristics
as simulations where the transport equation is solved on the scale of an underlying fine grid. Some
analysis is presented to estimate error sources and support our conclusions from the numerical results.
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1. Introduction. Modeling flow in porous media is important in many areas
of science. Unfortunately, the high degree of variability, uncertainties and multiscale
nature of formation properties such as permeability pose significant challenges for
subsurface flow modeling. Geological characterizations that capture these effects are
typically developed at scales that are too fine for direct flow simulation because of
limited computer power and memory. Simulations are therefore usually performed on
coarsened models with a significantly reduced set of parameters.

As an alternative to performing flow simulations on coarsened models, the use of
multiscale methods to do flow simulations directly on geostatistical models have been
proposed. In this paper we explore one such option for modeling two-phase flow in
porous media. The proposed methodology is based on a two-phase flow model consist-
ing of an elliptic (or parabolic) equation for pressure and velocities, and a hyperbolic
(or parabolic) equation that models the phase transport. The main ingredients in
this model is Darcy’s law that expresses flow velocities as functions of the pressure
gradient and the pull down force due to gravity, combined with the continuity, or
mass balance equations for each phase.

Multiscale methods for solving elliptic equations have been proposed by many
authors, e.g., variational multiscale methods [5, 6], multiscale finite element methods
[7, 10, 20, 1], multiscale finite volume method [21], equation-free computation [22],
and methods based on the heterogeneous multiscale method (HMM) framework (e.g.,
[15]). In this paper we will use a variant of the method proposed in [10] that, in
addition to giving mass conservative velocity fields on the discretization grid (the
coarse grid), provides a mass conservative velocity field on an underlying subgrid.
This feature allows users to choose grids for flow transport simulations in a nearly
seamless fashion.
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158908/I30. The research of the second author is partially supported by NSF grants DMS-0327713
and DOE grant DE-FG02-05ER25669.
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By using multiscale methods to produce conservative velocity fields on fine grids,
it is in principle possible to simulate the flow transport on high resolution geological
models. But, to model transport on very large geological models requires more efficient
simulation techniques than commercial simulators can offer today. The simulators
that can handle the largest models, with a capacity of 106−107 grid cells, are based on
using streamline methods to model the flow transport, and a standard method to solve
the pressure equation. Thus, a seemingly appealing alternative, that was explored in
[3, 19], is to use streamline methods for the flow transport together with a multiscale
method for solving the pressure equation. However, the use of streamline methods
is still disputed, partly because they usually neglect effects from capillary forces,
but also because modeling compressibility with streamline methods is complicated,
and requires quite a bit of bookkeeping (see e.g., [27]). Thus, although streamline
techniques have demonstrated their value in many applications, finite volume methods
still dominate in reservoir and groundwater flow simulation. But if finite volume
methods are to be used to compute flow transport on multi-million cell geological
models, then remedies that prevent excessive computational cost must be employed.

The main objective in this paper is to propose an adaptive multiscale method for
solving transport equations that arise in two-phase flow models. The method is based
on a finite volume methodology and resolves both coarse scale and fine scale flow
patterns. In this paper we neglect capillary forces so that the transport equation is
hyperbolic. To develop a multiscale method for hyperbolic equations describing two-
phase flow dynamics, where the velocity field is heterogeneous and varies in time, is
challenging. For nearly time-independent velocity fields, it can be advantageous to do
upscaling and/or develop multiscale methods using a streamline coordinate system
[26, 27]. Indeed, upscaling along the streamline coordinate, i.e., in the direction
of the flow, is almost trivial. However, upscaling across the streamlines is difficult
because non-local terms can appear. Thus, although streamline coordinate systems
have advantages in upscaling of two-phase flows [26], they allow only moderate changes
in the velocity field, and are mostly well suited for convection dominated equations.

In general, there is a strong need for multiscale methods in Cartesian coordinate
systems, such as the one proposed in this paper, which are not limited to convection
dominated equations and can handle various physical processes without significant
modifications. The key idea of the proposed multiscale method is to use information
from a velocity field with subgrid resolution to improve accuracy of flow simulations
on coarse grids. This is accomplished by introducing an operator that, at each time-
step, maps the coarse grid saturation profile onto a plausible saturation solution on
the underlying subgrid. To improve accuracy of the subgrid solution, one can adap-
tively replace the multiscale solution in regions with sharp fronts with a solution of a
localized version of the transport equation.

Finally we remark that the proposed adaptive multiscale method has some sim-
ilarities with the multiscale framework developed for nonlinear equations [18], and
with pseudo type approaches [23, 8, 25]. But important differences between these
methods and our approach do exist, and these will be discussed in the paper.

The paper is organized as follows. In Section 2 we introduce equations for im-
miscible and incompressible two-phase flow. In Section 3 we present the multiscale
mixed finite element method [4] that is used to compute flow velocities. In Section 4
we describe the new multiscale method for solving the transport equation. In Section
5 we discuss the relation between the proposed multiscale method and the more tradi-
tional upscaling approaches for the saturation equation based on using pseudo relative
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permeabilities. The general analysis is presented in Section 6. In Section 7 we present
some numerical results that demonstrate the performance of the proposed adaptive
multiscale method for hyperbolic transport equations in two-phase flow models.

2. Mathematical model. We consider a model problem for immiscible and
incompressible two-phase flow where we neglect effects from gravity and capillary
pressure. The equations are derived from conservation of mass for each phase j:

φ
∂Sj
∂t

+ ∇ · vj = qj , (2.1)

where the phase velocities vj are given by Darcy’s law:

vj = −λj(Sj)K∇pj . (2.2)

Here φ is the porosity, Sj is the j-phase saturation (fraction of the void occupied by
phase j) and qj is a source (or sink) term. In Darcy’s law,K is the permeability tensor,
pj is the phase pressure and λj is the phase mobility given by λj(Sj) = krj(Sj)/µj ,
where krj and µj are the relative permeability and viscosity of phase j respectively.
The relative permeability is function of the saturations only, and models the reduced
conductivity of a phase due to the presence of other phases.

Let the two phases be oil and water (j = o, w). Since we neglect effects from
capillary pressure so that ∇po = ∇pw, we assume po = pw = p. Then the Darcy
equations combined with conservation of mass yields the pressure equation:

v = −(λw + λo)K∇p,

∇ · v = q,
(2.3)

where v = vw + vo and q = qw + qo. If we assume that the two phases occupy
the void space completely, and introduce the water fractional flow fw = λw/λ where
λ(Sw) = λw(Sw)+λo(1−Sw) is the total mobility, then we may write the conservation
equation for water, henceforth called the saturation equation, as follows:

φ
∂Sw
∂t

+ ∇ · (fwv) = qw. (2.4)

In the following we will, for ease of notation, drop the w-subscripts of Sw. As in [1],
the system of equations (2.3)–(2.4) will be solved using a sequential splitting, where
the pressure equation is solved at the current time-step using saturation values from
the previous time-step.

3. A mixed multiscale FEM for elliptic problems. Let Ω ⊂ Rd, and denote
by n the outward pointing unit normal on ∂Ω. In mixed formulations of (2.3) with

no-flow boundary conditions on ∂Ω, one seeks (v, p) ∈ H1,div
0 (Ω) × L2(Ω) such that

∫

Ω

v · (λK)−1u dx−

∫

Ω

p∇ · u dx = 0 for all u ∈ H1,div
0 (Ω), (3.1)

∫

Ω

l∇ · v dx =

∫

Ω

ql dx for all l ∈ L2(Ω). (3.2)

Here H1,div
0 (Ω) =

{

v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω) and v · n = 0 on ∂Ω
}

. Note that to
determine p, one must add an additional constraint such as

∫

Ω
p = 0.
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In a mixed FEM discretization of (3.1)–(3.2), the spaces H1,div
0 (Ω) and L2(Ω) in

which we seek the pressure and velocity solutions are replaced by finite dimensional
subspaces, say U and V , that typically consists of low order piecewise polynomials.
In a MsMFEM one attempts to design the approximation space for velocity in such a
way that it embodies the impact of subgrid variations in K. The MsMFEM outlined
below [4] is a variant of the method introduced by Chen and Hou [10] that, in addition
to giving mass conservative velocity fields on the discretization grid (the coarse grid),
provides a mass conservative velocity field on an underlying subgrid. To formulate the
method in [4], let T = {Ti} be a grid where each grid block is a connected union of
cells in an underlying subgrid K = {Ki}. The grid T will be referred to as the coarse

grid, and the subgrid K will be referred to as the fine grid. Let the approximation
space for pressure be the space of piecewise constant functions on T , i.e.,

U = span{u ∈ L2(Ω) : u|T is constant for all T ∈ T }.

To define the approximation space V for velocity v, denote by Γij = ∂Ti∩∂Tj the non-
degenerate interfaces in the coarse grid. To each interface, we assign a corresponding
basis function ψij . This basis function is supported in Ωij = Ti ∪ Γij ∪ Tj , and is
related to a function φij through Darcy’s law: ψij = −λK∇φij . The function φij is
obtained by solving (numerically) the following local elliptic problem:

ψij · nij = 0 on ∂Ωij , ∇ · ψij =

{

fi(x)/
∫

Ti
fi(x)dx for x ∈ Ti,

−fj(x)/
∫

Tj
fj(x)dx for x ∈ Tj .

(3.3)

Here nij is the outward pointing unit normal to ∂Ωij , and

fi =

{

f if
∫

Ti
f dx 6= 0,

λ trace(K) else.
(3.4)

The MsMFEM approximation space for velocity is now the span of the basis functions
{ψij}. The source terms {fi} are chosen as defined by (3.4) for the following reasons.
First, they produce basis functions that force unit flux across associated coarse grid
interfaces, i.e.,

∫

Γij
ψij · n ds = 1, where n is the unit normal to Γij pointing into Tj .

This implies that the MsMFEM solution {vij} for velocity gives the fluxes across the
respective coarse grid interfaces. Second, if a conservative method is used to compute
basis functions, then the velocity v =

∑

vijψij conserves mass on the subgrid K.
Third, the special source terms in blocks with a source allows the method to model
radial flow around point or line sources, such as wells in oil-reservoirs, on the subgrid
scale. Finally, by letting fi scale according to the permeability as in (3.4), one can
to some extent avoid unnaturally high velocities in low-permeable fine grid cells. We
would like to note that global information can be used to achieve high accuracy in
MsMFEM, as it was demonstrated in [1] (cf. [17]).

The computational complexity of a MsMFEM is not significantly less than the
computational complexity of solving the full problem on the fine grid with a (very)
efficient linear solver. Note, however, that the most expensive task in a MsMFEM, the
computation of the basis functions is a so-called embarrassingly parallel computation
since each basis function ψij can be computed independently. Another advantage for
the purpose of running two-phase flow simulations, for which the pressure equation
(2.3) needs to be solved multiple times due to dynamic changes in the mobility λ, is
that basis functions often need to be recomputed only when flow conditions change
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significantly. This claim is supported by an analysis of the saturation dependence in
the pressure solution [17]. Here it was shown that when flow conditions do not change,
the time varying velocity field is strongly influenced by the initial velocity field. The
computation of basis functions then becomes part of a preprocessing step, and MsM-
FEMs become analogous to single-phase flow upscaling methods, see e.g., [11] and
references therein. The computational complexity of a MsMFEM is also comparable
to the computation cost of single-phase flow upscaling procedures. We should add,
however, that if saturation profiles exhibit sharp fronts, then a slight improvement in
accuracy can be obtained by regenerating basis functions in regions where the satura-
tion has changed substantially since the previous time-step [1]. Similar observations
were made by Jenny et al. [21] for the multiscale finite volume method.

4. A multiscale method for hyperbolic equations. The adaptive multiscale
method that we propose here consists of two parts. An adaptive criteria determines
if a block is in a transient flow region. Here, transient region refers to the regions
with sharp saturation fronts. In these regions we use local fine grid computations to
advance the saturation solution to the next time-step. In regions with slow transients,
we use a multiscale coarse grid solver to advance the saturation solution to the next
time-step. Then, instead of doing a fine-grid calculation, we map the coarse grid
solution onto a fine grid solution using special interpolation operators.

Before we give an outline of the algorithm, we need to introduce some additional
notation. First, denote, as in Section 3, the coarse grid by T = {Ti} and an underlying
fine grid by K = {Ki}. Although we employ the same notation as in Section 3, the
grids used here need not coincide with the coarse and fine grids for MsMFEM and
can be unstructured. As for MsMFEM, the only restriction on the coarse grid is that
each grid block consists of a connected union of grid cells in the fine grid. Moreover,
the only constraint on the fine grid is that each grid cell consists of a collection of grid
cells in the fine grid for MsMFEM. This constraint ensures that MsMFEM provides
fluxes across all fine grid interfaces {γij = ∂Ki ∩ ∂Kj}.

We introduce now the upstream fractional flow function for γij :

Vij(S) = max{vijfw(Si),−vijfw(Sj)}, (4.1)

where vij is the Darcy flux across γij that we get from the MsMFEM solution. Next,
let S̄ni be the coarse grid saturation in Ti at time tn, and denote by T n

tr the family of
grid blocks that are identified to be in a transient flow region. One can use various
criteria based on coarse-scale saturation values or its gradients to identify transient
regions. In this paper, the following criterion is used to identify transient flow regions:

Ti ∈ T n
tr if max{|S̄ni − S̄nj | : |∂Ti ∩ ∂Tj | > 0} ≥ αi.

For each Ti ∈ T n
tr , we define

TEi = Ti ∪ {K ∈ K : |∂K ∩ ∂Ti| > 0}.

Hence, TEi consist of grid cells that are either contained in Ti, or that share a common
interface with a cell in Ti. Finally, we introduce a family of operators {IT : T ∈ T }
that map coarse grid saturations onto fine grid saturation fields inside the respective
blocks. The adaptive multiscale method is now outlined in Algorithm 4.1.

Note that in the adaptive multiscale method outlined in Algorithm 4.1, we update
first fine-grid saturations in transient flow regions, and then coarse grid saturations in
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non-transient regions using (4.3). Finally we map the coarse grid saturations in non-
transient regions onto the fine grid with the coarse-to-fine grid interpolation operators.
There is no constraints on the time-steps 4t, but they should be chosen small enough
to avoid excessive numerical diffusion. However, since (4.3) is an explicit scheme, the
time-steps 4jt are constrained by a CFL-condition. The time-step 4j is given by

4j = min{4t−

j−1
∑

i=0

4it,
δ

2
},

where 40 = 0 and δ is determined by the following condition for stability:

0 ≤ S̄n+1
T +

δ
∫

T φ dx





∫

T

qw(Sn+1) dx−
∑

γij⊂∂T

Vij(S
n+1)



 ≤ 1.

Algorithm 4.1 Adaptive multiscale algorithm for modeling flow in porous media

For each T ∈ T n
tr , do

– For Ki ⊂ TE , compute

S
n+1/2
i = Sni +

4t
∫

Ki
φ dx





∫

Ki

qw(Sn+1/2) −
∑

j 6=i

V ∗
ij



 , (4.2)

where V ∗
ij =

{

Vij(S
n) if γij ⊂ ∂TE and vij < 0.

Vij(S
n+1/2) otherwise.

– Set Sn+1|T = Sn+1/2|T .

For each T 6∈ T n
tr , do

– Set Sn+1|T = Sn|T .
– While

∑

j 4jt ≤ 4t, compute

S̄n+1
T = S̄n+1

T +
4jt

∫

T φ dx





∫

T

qw(Sn+1) dx−
∑

γij⊂∂T

Vij(S
n+1)



 , (4.3)

and set Sn+1|T = IT (S̄n+1
T ).

The fractional function fw is in general a nonlinear function of saturation. We
therefore solve the fine-grid equations (4.2) using a Newton-Raphson method. Here
saturation from the previous time-step is used to determine boundary conditions
along the inflow boundary on ∂TE. This gives rise to a mass balance error since
the inflow on grid block boundaries corresponding to the saturation from previous
time-step will not match exactly the inflow on grid block boundaries corresponding
to the saturation at the current time-step. In our numerical simulations, we observed
that this mass-balance error is usually very small, and generally insignificant. Note
also that if Ttr = ∅, and the coarse-to-fine grid interpolation conserves mass locally,
then (4.3) ensures that mass is conserved, also globally. Thus, under the assumption
that the coarse-to-fine grid interpolation conserves mass locally, the latter part of the
adaptive multiscale algorithm is mass conservative on both coarse and fine grids.
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Next, observe that fluxes across coarse grid interfaces in (4.3) are evaluated on fine
grid interfaces γij ⊂ ∂T . Thus, rather than using a flux function that models the total
flux across coarse grid interfaces as a function of the net saturation in the upstream
block, we evaluate the term fwv in (2.4) on the scale of the fine grid. This requires
that we have fine grid saturation values in all cells adjacent to grid block boundaries.
The coarse-to-fine grid interpolation operators {IT } are therefore not just tools to
get better resolution. In addition to improving the global accuracy of Algorithm
4.1 by providing a better approximation to flow across coarse grid interfaces, they
provide initial fine grid saturation values for (4.2) in the transition when a block is
identified as being part of a transient flow region. Without the interpolation, the
initial saturation field for (4.2) would be constant in T , and the fractional flow across
the coarse grid interfaces would have to be based on the net grid block saturations
only, as pseudofunctions generally do [23, 25, 8].

We remark that the proposed adaptive multiscale method has some similarities to
the multiscale framework developed for nonlinear equations [18] in which multiscale
basis functions are constructed by mapping the coarse dimensional space defined over
the entire region. Furthermore, this map is used in the global coarse-grid formulation
of the fine-scale problem to compute the coarse-scale solution. In our multiscale
approach, the basis functions are constructed as a function of average saturation in
each coarse block, and then used in the global formulation of the problem. In both
approaches, the main task is to determine an accurate and efficient multiscale map
that improves the global coarse-grid formulation of the problem.

4.1. The coarse-to-fine grid interpolation operator. In the following we
attempt to construct operators that map each coarse grid saturation field onto a fine
scale saturation profile that is close to the corresponding profile that one would get by
solving saturation equation on the global fine grid. The basic idea is to approximate
the fine grid saturation in Ti as a linear combination two basis functions Φki and Φk+1

i

with
∫

Ti
Φki φ dx ≤ S̄ni

∫

Ti
φ dx <

∫

Ti
Φk+1
i φ dx:

ITi(S̄
n
i ) = ωΦki + (1 − ω)Φk+1

i . (4.4)

Here ω ∈ [0, 1] is chosen such that the interpolation preserves mass, i.e., such that

∫

Ti

ITi (S̄
n
i )φ dx = S̄ni

∫

Ti

φ dx. (4.5)

This condition states that the fluid contained in Ti is distributed inside Ti in such a
way that the total fluid volume in Ti is conserved. The basis functions Φki = χi(x, τk)
represent snapshots of the solution of the following equation:

φ
∂χi
∂t

+ ∇ · (fw(χi)v) = qw in Ti. (4.6)

For the local problem (4.6) to be well-defined, we need to specify initial conditions
and boundary conditions, and provide a possibly time-varying velocity field in Ti.
Unfortunately, we do not know a priori what the velocity will be during the simulation,
nor what boundary conditions to impose. Assumptions must therefore be made to
approximate how the velocity and saturation evolves. We describe below an approach
which is local in terms of boundary and initial conditions, however, one can naturally
incorporate global information into this approach. The proposed approach assumes
that global boundary conditions for the pressure equation (2.3) are not changed, and
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that the source term q is fixed. We assume also that an upstream method is used to
solve the local equations (4.6). Thus, we need only specify boundary conditions on
the inflow boundaries Γin

T = {γjl ⊂ ∂T : Kl ⊂ T, vjl < 0}.
For fixed flow conditions, the fine scale velocity features will generally not change

significantly during a flow simulation. This is discussed in Section 6. One option
is therefore to solve the pressure equation (2.3) at initial time with MsMFEM, use
v = v(x, t0)|T in (4.6), and the same initial data as for the global problem (2.4). A
local way of generating saturation basis functions based on this approach requires that
sensible boundary conditions for (4.6) can be imposed for each block independently.

In this paper, we impose fw = 1 on the inflow boundary Γin
T . For general coarse

grids, these boundary conditions may seem a bit crude. Indeed, these boundary
conditions are exact only if there is a sharp front in the global solution that, for each
block, hits the whole inflow boundary at approximately the same instant. It should
be emphasized that the purpose of the interpolators is not primarily to get the fine
scale details correct, but rather to introduce a flexible mechanism that allows us to
model the flow on a coarse scale more correctly.

To get accurate solutions, also on fine grids, one must either use an adaptive
component to improve the solution in transient flow regions, or build more information
into the interpolators. For instance, note that the inherent flexibility with respect
to coarse grids allows us to reduce the error associated with this type of boundary
conditions by using flow-based, non-Cartesian grids. In particular, by using coarse
blocks with boundaries aligned with level sets of time-of-flight function (see Section
6 for definition), one can achieve higher accuracy compared to the approaches where
Cartesian coarse blocks (or coarse blocks selected independent of global flow features)
are used. This option is discussed further in Section 6. We note, however, that
our numerical results in Section 7 show that the multiscale approach using Cartesian
coarse blocks still provide a good overall accuracy.

In summary, the interpolation operators IT are computed using a fixed velocity
field, and static boundary conditions on ∂T . One can use a limited global infor-
mation, such as time-of-flight function, in constructing coarse blocks. The use of
Cartesian coarse blocks (or coarse blocks selected independent of global flow features)
also provides a good overall accuracy despite the fact that the history dependence is
neglected by not taking into account travel times from injectors to the inflow bound-
ary. However, since the interpolation mapping is used only in regions with moderate
transient flow, neglecting the history dependence has limited impact on the global
flow behavior, as we observe in our numerical simulations.

5. The relation to pseudo type approaches. An approach that is often used
in practice for upscaling the saturation equation entails the use of so-called pseudo
relative permeabilities (k∗rj)i = (k∗rj)Ti in place of the fine scale krj . Because the fine
scale krj are typically functions only of saturation S, pseudo relative permeabilities,
or pseudofunctions for brevity, are commonly assumed to depend only on the coarse
grid saturation S, though the curves can vary between coarse grid blocks. Note that
we use the overbar to designate coarse grid velocity and saturation (which can be
thought of as volume averaged fine grid quantities, where the volume average is over
the region corresponding to the coarse grid block). With this representation for the
pseudofunctions, the coarse scale saturation equation in the absence of gravity forces
and capillary pressure effects becomes:

∂S

∂t
+ ∇ · F ∗(x, S) = 0, (5.1)
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where F ∗(x, S) = vf∗
w, v is the upscaled velocity field. Here the variation of F ∗

i with
x appears because the pseudofunctions are in general different for each block in the
coarse grid. The upscaled flux function f∗

w = {f∗
w,i} is defined via the usual relation

between the flux function and the relative permeabilities:

f∗
w,i =

(k∗rw)i/µw
(k∗rw)i/µw + (k∗ro)i/µo

. (5.2)

The pseudofunctions are computed from local fine scale problems such that they pro-
vide the same average response as the fine grid model for the prescribed boundary
conditions. Assuming that the pseudofunctions have been computed, the correspond-
ing coarse scale equation takes the following form:

S
n+1

= S
n

+
∆t

∫

T
φdx





∫

T

qw(Sn)dx−
∑

Γij⊂∂T

V ∗
ij(S

n)



 , (5.3)

where V ∗
ij(S) = max{vijf∗

w,i(Si),−vijf
∗
w,j(Sj)}. Note that (5.3) is similar to (4.3).

The main difference is that in (4.3) we employ the original fractional flow function fw
and sum over the fine grid interfaces to evaluate

∫

∂T fwv · n ds.
Apart from the fact that the coarse scale equations are similar, the construction of

the interpolation operator in the proposed multiscale approach has some similarities
with the construction of the pseudofunctions if Cartesian coarse blocks are used and
S = 1 is imposed at the inflow boundaries. Indeed, pseudofunctions are generated by
solving a set of local flow problems that resemble (4.6) for each grid block. Thus, both
approaches have to address the problem of finding appropriate boundary conditions
on the inflow boundaries. Moreover, the computational complexity of computing the
saturation basis functions is comparable to the corresponding complexity of generating
pseudofunctions. There are, however, important differences between pseudofunction
based flow simulation and the proposed multiscale approach, both in terms of how
subgrid effects are modeled on coarse grids, and in the way that the pseudofunctions
and interpolation operators are generated respectively. We elaborate now on the
latter part and discuss how the procedure for generating pseudofunctions differ from
the generation of the interpolation operators through (4.6).

In (4.6) we employ a velocity field obtained by solving the saturation equation
at initial time on the global fine grid. In contrast, a velocity field corresponding to a
local two-phase flow system is used to generate pseudofunctions. This means that in
addition to saturation boundary conditions on inflow boundaries, one has to specify
artificial boundary conditions for a local pressure equation to create a flow through the
grid block. Hence, whereas the multiscale approach neglects the dynamic nature of
the velocity field by using a fixed velocity field, pseudo type approaches ignore effects
of global boundary conditions. In Section 6.2 we justify our approach by showing that
the dynamic two-phase flow velocity is strongly influenced by the initial velocity field
under some assumptions. In particular, we argue that the local saturation solutions
that we get from (4.6) using the initial velocity field match closely the local saturation
solutions that one would get from (4.6) if the dynamic two-phase flow velocity field
is used. For pseudo type approaches, the fact that artificial boundary conditions are
used to force the flow implies that there is no apparent correspondence between the
velocity fields used to generate pseudofunctions, and the two-phase flow velocity fields
on the global fine-grid that correspond to the true boundary conditions.
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In principle one could use the initial global fine scale velocity, also to generate
pseudo functions. However, pseudofunctions are designed to capture the average flow
response on coarse grids given some underlying flow model. To this end one has to
account for different flow scenarios where the moving front approaches the grid block
from different angles. For instance, when generating pseudofunctions for each interface
in the simulation grid, it is customary to define two pseudofunctions for each interface
to account for flow in opposite directions. The proposed multiscale technique avoids
this complexity. The multiscale technique also allows more resolution in the sense
that it handles cases with cross-flow, i.e. flow in opposite directions across interfaces,
in a manner that is more consistent with the fine grid model. In the upscaled model
(5.3) one allows only one flow direction for each coarse grid interface.

Another problem with pseudo type approaches is that they can lead to a lack
of robustness, in part because the upscaled form (5.1) for the coarse scale saturation
equation is incomplete. Specifically, it has been shown previously [14] that the correct
form of the upscaled saturation equation is more general than (5.1) in that it contains
averages of products of subgrid (fluctuating) quantities such as v′S′, where ′ designates
a fluctuating quantity. These extra terms could be represented, for systems of large
correlation length, as length and time dependent dispersivities [16]. In general, these
terms need to be modeled, which requires often restrictive assumptions. In contrast,
the multiscale approach presented in the paper do not require the form of the upscaled
equations and allow to compute quantities such as v′S′ on-the-fly. There are a number
of advantages associated with the computations on-the-fly. First, it allows to perform
down-scaling in the regions of interest which makes the method adaptive. Second, it
would allow us to model the coarse-scale quantities, as a function of v′S′, and avoid
the closure assumptions involved in modeling this type of terms.

6. Analysis. In this section we discuss the quality of saturation equation solu-
tions obtained using the adaptive multiscale algorithm. The analysis holds away from
the sharp fronts. Recall that near sharp fronts, where the analysis breaks down, the
transport equation is solved on the fine grid. Moreover, the coarse grid is unstruc-
tured, in general, and can be chosen using some limited global information. We would
like to note that the analysis presented below is formal, though can be justified with
mathematical rigor.

6.1. Direct estimates and error sources. First, we attempt to understand
the error sources and provide some direct estimates. To this end, let

S
n

=
1

|T |

∫

T

Sndx,

where Sn = S(x, tn) is the fine scale saturation field at time t = tn, and denote by Snh
the corresponding saturation field obtained using the proposed multiscale technique.

We assume henceforth that the velocity field used in (4.6) is exact, i.e. that
v = v(x, S(x, t0)) at all times t > 0, and neglect the source terms. In general, there
are errors in the velocity field due to the fact that the single-phase flow velocity is used
in the computation of the interpolation operators. However, as we will show in Section
6.2, the velocity used in the local problems is accurate under some assumptions in
the sense that it provides approximately the same saturation field as if the actual
two-phase flow velocity is used in the local problems.

Since we now disregard source terms and errors in the velocity, it makes sense to
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define auxiliary functions that controls the mass balance. Thus, let

Gf (S) = −
1

∫

T
φ dx

∫

∂T

fw(S)(v · n) ds,

Gc(S) = −
1

∫

T φ dx

∫

∂T

fw(I(S))(v · n) ds.

Here n is the outward unit normal on ∂T and I = IT is the interpolation operator
defined in Section 4.1. Note that since v is fixed, the saturation field S(x, t) is a
monotonically increasing function of time. In other words, if S(·, t1) = S(·, t2) then
t1 = t2. Thus, if S2 ≥ S1 for some x ∈ T , then S2 ≥ S1 for all x ∈ T . Similarly the
interpolation I(S) produces saturation fields that increase monotonically with S. As
a direct consequence, we have that Gf and Gc increase monotonically in the sense
that if S2 > S1 for some x ∈ T , then Gf (S2) ≥ Gf (S1) and Gc(S2) ≥ Gc(S1).

Observe now that with the notations above, we have

S
n+1

− S
n

= Gf (S
n+1)∆t+ o(∆t), (6.1)

S
n+1

h − S
n

h = Gc(S
n+1

h )∆t. (6.2)

For simplicity, the remainder is denoted by o(∆t). Note that this error is due to tem-
poral discretization (backward Euler). If the average saturation is a smooth function
with respect to time then the remainder is O((∆t)2).

We are primarily interested in how much Snh deviates from Sn. Hence, let

δn = S
n
− S

n

h .

Subtracting the equations (6.1) and (6.2) now gives

δn+1 − δn = Gf (S
n+1)∆t−Gc(S

n+1

h )∆t+ o(∆t)

=
[

Gf (S
n+1) −Gc(S

n+1
)
]

∆t+
[

Gc(S
n+1

) −Gc(S
n+1

h )
]

∆t+ o(∆t). (6.3)

We note that the error consists of two parts. The first term represents the error due to
artificial boundary conditions in (4.6) (fw = 1 on Γin

T ) and the second term represents
the error due to the incorrect value of the averaged saturation. Next, we analyze the
error due to artificial boundary conditions.

First, to estimate Gc(S
n+1

)−Gc(S
n+1

h ), note that both I(S
n+1

h ) and I(S
n+1

) are
solutions of equation (4.6) at certain time instants τn+1 and τn+1

h . Indeed, letting

T = Ti, we have I(S
n+1

h ) = χi(x, τ
n+1
h ) and I(S

n+1
) = χi(x, τ

n+1), where τn+1

and τn+1
h are determined, in absence of interpolation errors, by the constraint (4.5).

Assuming that Gc is a continuously differentiable function, we derive that

Gc(S
n+1

) −Gc(S
n+1

h ) = G′
c(S

n+1

∗ )(S
n+1

− S
n+1

h ),

for some S
n+1

∗ between S
n+1

and S
n+1

h . Thus, Gc(S
n+1

)−Gc(S
n+1

h ) is bounded if G′
c

is bounded uniformly in (0, 1). This is a reasonable assumption if there are no sharp
fronts in S. This is the case in regions where the interpolation operator is employed.
For our analysis, it is sufficient to assume that

|Gc(S
n+1

) −Gc(S
n+1

h )| ≤ An+1
T (S

n+1
− S

n+1

h ),
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where An+1
T is uniformly bounded independent of S

n+1
and S

n+1

h . This holds if Gc is a
Lipschitz function. In particular, An+1

T is bounded in regions where the interpolation
operator is employed. Consequently, (6.3) becomes

δn+1 − δn =
[

Gf (S
n+1) −Gc(S

n+1
)
]

∆t+An+1
T ∆tδn+1 + o(∆t).

Equivalently we have

(I −An+1
T ∆t)δn+1 = δn +

[

Gf (S
n+1) −Gc(S

n+1
)
]

∆t+ o(∆t). (6.4)

Using (6.4), one can now show that the error contribution from Gc(S
n+1

)−Gc(S
n+1

h )
is small provided that 1/(1 − An+1

T ∆t) ≤ 1 + C∆t, C > 0, where C is uniformly
bounded constant. Indeed, since the initial conditions for (4.6) are the same as for
the global equation, we have that δ0 = 0. Hence,

|δn| ≤ o(∆t) + ∆t
n−1
∑

k=0

(1 + C∆t)k|Gf (S
n−k) −Gc(S

n−k
)|

≤ o(∆t) +

[

eC(n∆t) − 1

C

] [

max
1≤i≤n

|Gf (S
i) −Gc(S

i
)|

]

. (6.5)

Since n∆t = t, we conclude that the error contribution from Gc(S
n+1

)−Gc(S
n+1

h ) is
bounded at finite time.

Next, we analyze the error contribution from Gf (S)−Gc(S). As have been men-
tioned already, the error Gf (S)−Gc(S) is controlled via proper boundary conditions.
To understand how this error behaves, we observe that in typical macroscale models
based on homogenization, the function Gf is approximated independent of boundary
conditions as a product of coarse scale functions,

Gf (S) = v · ∇f(S) ≈ v∗ · ∇f∗ =
1

|T |

∫

∂T

f∗(S)(v∗ · n) ds, (6.6)

where v∗ and f∗ denote coarse scale quantities. Here f ∗ depends on S, but can also
depend on other coarse scale quantities, e.g., ∇S, and etc.

This type of macro-scale modeling is valid when the characteristic length scale
of the transport is much smaller than the coarse mesh size, when the saturation field
is smooth, and when macroscopic effects at scales comparable to, and larger than
the coarse mesh size can be modeled using functions involving coarse scale quantities
only. The latter is the main assumption of the approaches that use pseudo relative
permeabilities. If the characteristic length scale of the transport is much smaller than
the coarse mesh size, then Gf (S) ≈ Gc(S), and the error made in the approximation of
(6.6) depends on the ratio between the characteristic length scale and the coarse block
size. Indeed, in this case, it can be shown that S converges to S as the characteristic
length scale approaches zero. From here, one can easily obtain that Gf (S) =

∫

v ·
∇f(S)φdx →

∫

v∗ ·∇f(S)φdx, for any smooth test function φ, where v∗ is the average
velocity defined as harmonic averages along streamlines. Consequently, Gf (S) ≈
Gc(S). If the saturation field is smooth, then the error is of order of coarse mesh
size. Thus, in all of the mentioned situations, the proposed algorithm should allow
Gf to be adequately modeled with Gc. One can also show that Gf (S) ≈ Gc(S) for
transport with small diffusion (when Peclet number is of order 1 at the small scale,
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cf. [24]) using homogenization theory as well as for purely hyperbolic transport if
correlation length is small using perturbation analysis.

Next, we discuss the approximation Gf (S) ≈ Gc(S) without assuming a scale
separation. However, we assume that the evolution of two-phase flow velocity is
strongly influenced by the single-phase velocity and is given by vtp ≈ A∗(x, t)vsp,
where A∗ is a scalar coarse-scale function, vtp and vsp denote two-phase and single-
phase flow velocities, respectively. This assumption holds if streamlines do not change
dramatically. Denote by τ time-of-flight for single-phase flow velocity, vsp · ∇τ = 1.
For simplicity, we restrict ourselves to 2-D and consider a coordinate system (τ, ψ),
where ψ is the streamline function defined by curl(ψ) = vsp. Then, the two-phase
flow saturation equation has the form

φ
∂S

∂t
+A∗(τ, ψ, t)f(S)τ = 0, (6.7)

where A∗(τ, ψ, t) denotes A∗(x, t) in (τ, ψ) coordinate system. Assuming A∗ is a
bounded smooth function, the equation (6.7) suggests that S is a smooth function
along the lines τ = const. Writing Gf (S) ≈ Gc(S) in (τ, ψ) coordinate system, we
have

∫

Tτ,ψ

fw(S)τdV ≈

∫

Tτ,ψ

fw(I(S))τdV,

where Tτ,ψ is an image of T in (τ, ψ) coordinate system. Note that S and I(S) satisfy

φ∂S∂t +A∗(τ, ψ, t)f(S)τ = 0 and φ∂I(S)
∂t + f(I(S))τ = 0, respectively.

Following pseudo type approaches, a simple choice for the boundary conditions is
to impose S = 1 at the inlet of coarse blocks in Cartesian coordinate system. This type
of boundary conditions overestimates the flow at the inlet of coarse blocks, especially in
regions where τ varies significantly along the inlet boundary. Although our numerical
simulations show that despite this error, the overall accuracy of the approach tends to
be good, also for simple Cartesian grids, one can achieve higher accuracy in subgrid
capturing by using curvilinear flow-based coarse blocks with boundaries given by τ =
const and ψ = const. Alternatively, one can use extended domains with boundaries
given by τ = const and ψ = const for computation of basis functions in Cartesian
coarse blocks. In both of these cases, the inlet boundary condition on the coarse blocks
will reflect the evolution of the saturation in the global problem, and one can show
that the saturation approximation is more accurate. Thus, the use of limited global
information (such as τ) can improve the accuracy of proposed multiscale methods,
in particular, they reduce the error associated with saturation distribution across
the streamlines in the coarse block. However, there is still an error due to the fact
that the saturation values at the inlet are not static in general. As a result, the
fine-scale saturation distribution can be less steep along streamlines compared to the
saturation profile obtained from the interpolation. We note that this error is not
due to heterogeneities and associated with one dimensional transport. Moreover, this
error is first order (in the regions away from sharp fronts) and therefore less important
(see (6.5)). The reduction of this error will require nonlinear interpolation procedures
(cf. (4.4) that depend on global dynamics and is a subject of future research.

We would like to mention here that in [2], we consider a more general ap-
proach that combines domain decomposition approaches with the proposed multi-
scale methodology. In this approach, flow conditions imposed by source terms, global
boundary conditions and fine-scale features of the velocity field are allowed to change
during simulations.
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6.2. Velocity approximation. In the previous section, we ignored the dynamic
nature of the velocity by assuming that v = v0 = v(x, S(x, t0)) at all times t > 0. In
this section, our goal is to show that the resulting error is insignificant in the sense
that it is dominated by the error caused by imposing incorrect boundary conditions
on the inflow boundaries Γin

T . To this end, we show that the local saturation fields
I(Si) are approximately the same as the corresponding local saturation fields one
obtains by replacing v0 in (4.6) with the “true” velocity v = v(x, S(x, t)). To be more
precise, we will show under some assumptions that v, which will be referred to as
the two-phase flow velocity, can be approximated by a static part v0, that does not
depend on saturation, times a time dependent function in each coarse block.

We use homogenization theory for the analysis and ignore source terms. For
brevity, we write the pressure equation (2.3) in the following compact form:

∇ · (λ(S)K∇p) = 0. (6.8)

We assume thatK(x) = K(x, x/ε) is a periodic function with respect to x/ε, where ε is
the scale of periodicity. The analysis below can be extended to random homogeneous
fields, i.e. equations of the form (6.8) where K is sampled from a homogeneous
statistical distribution.

We start by partitioning the saturation field, S = S∗ + Sns, where S∗ is the
smooth part of S and Sns is a localized non-smooth part of the saturation front. In
particular, Sns is zero in every coarse block, except the coarse blocks where the sharp
front is. Then, the homogenization of (6.8) gives

p = p+N · ∇p+ θ, (6.9)

where N is a periodic solution of the auxiliary problem (see e.g., [9])

∇ · [λ(S)K(∇N + e)] = 0. (6.10)

Here e is the unit vector. The equation (6.10) can be understood as being formulated
in a representative elementary volume. In our numerical setting, N is assumed to
be a periodic solution of (6.9) in a coarse block of our coarse scale partition. The
latter provides a classical numerical upscaling procedure [13] and allows to relate p
to the coarse scale pressure obtained using numerical upscaling methods on a coarse
scale partition (see [28]). Observe that away from sharp fronts, where Sns = 0, the
equation (6.10) reduces to

∇ · [λ(S∗)K(∇N + e)] = 0.

Because S∗ is smooth within the coarse block, it can be easily proved that N can be
approximated by a static function Ñ , where Ñ is a periodic solution of

∇ ·
[

K(∇Ñ + e)
]

= 0.

Again, this local problem can be formulated in a coarse block. Furthermore, the
solution of the pressure equation at initial time,

∇ ·
[

λ(S0)K∇p0
]

= 0,

allows the following multiscale expansion:

p0 = p0 + N̂ · ∇p0 + θ0, (6.11)
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where N̂ can be approximated by Ñ , assuming S0 is smooth within the coarse block.
Moreover, from (6.9) and (6.11) we deduce now that the dynamic two-phase flow
velocity v and the initial velocity v0 can be approximated by

v ≈ vε = λ(S)K(I + ∇Ñ)∇p,

v0 ≈ v0
ε = λ(S0)K(I + ∇Ñ)∇p0.

We need only to show that vε can be approximated locally (inside each Ti) by a
constant multiple of v0

ε . Indeed, the interpolation operators are invariant under a
(positive) scaling of the velocity. In particular, all interpolation operators that stem
from a velocity field v0

ε of the form v0
ε = αvε where α is a positive time-dependent

function are identical. This can be shown by rescaling the time variable in (4.6).
To argue that v0

ε ≈ αvε for some positive function α, we note first that ∇p and
∇p0 can be approximated in each coarse block by constants vectors (first order ap-
proximation assuming smooth homogenized pressure profile). Moreover, λ(S) = λ(S∗)
away from sharp fronts. Thus, if ∇p and ∇p0 have approximately the same directions,
then v ≈ αv0 for some positive and possibly time-dependent function α. The latter
assumption holds if the coarse scale streamlines (flow paths tangential to the veloc-
ity at every point) on the coarse grid do not change significantly in the simulations.
Though this may not be the case in general, it is common to have little variation in
the streamline paths for two-phase flow problems with a so-called moderate mobility
ratio. The mobility ratio is the ratio of the extremal values for the total mobility
λ(S). In fact, some simulation schemes assume implicitly that the streamlines vary
on a slow time scale. For instance, streamline methods, which are widely used for
porous media flow applications, are based on a sequential operator splitting of the
coupled system (2.3)–(2.4), commonly referred to as an IMPES (Implicit Pressure
Explicit Saturation) procedure. In this procedure, one solves first the pressure equa-
tion using saturation values from the previous time-step. The velocity field is then
held constant when the saturation profile is advanced to the next time-step. However,
a prerequisite for achieving accelerated speed with streamline simulations is that we
can use large time-steps for the pressure equation. In other words, one has to keep
the streamlines fixed for a certain period of time. This simplification of the two-phase
flow model has been justified for problems with moderate mobility ratios, and this is
a key to the success of streamline methods.

7. Numerical examples. We now use the proposed methodology to model
incompressible and immiscible two-phase flow on test cases with permeability and
porosity from model 2 of the 10th SPE comparative solution project, an SPE Bench-
mark used to compare and validate upscaling techniques [12]. The model, which is
available for download at www.spe.org/csp, consists of a Tarbert formation on top
of a fluvial Upper Ness formation. Although both formations are very heterogeneous,
the Upper Ness formation gives rise to more complex flow. This is due to the fact
that the Upper Ness formation consists of a bundle of intertwined high permeable
flow channels that carry majority of the fluid flow, whereas the porous structures in
the Tarbert formation are relatively smooth in comparison. We employ here mostly
data modeling parts of the fluvial Upper Ness formation. Since fluvial formations are
particularly hard to upscale, the Upper Ness formation should serve as an appropriate
model for testing and validation of the proposed multiscale method. The Upper Ness
model is Cartesian and consists of 60 × 220× 50 = 6.6 · 105 grid cells.

We assume that the reservoir is initially fully oil-saturated, and inject water at a
constant rate in grid cells penetrated by a vertical well at the center of the domain.
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We then produce whatever reaches the producers which are vertical wells located at
each of the four corners. The water and oil mobilities are defined by

λw(S) =
S2

µw
and λo(S) =

(1 − S)2

µo
, (7.1)

where the water and oil viscosities are assumed to be equal: µw = µo = 0.003 cp.
To measure the overall accuracy of a saturation solution we compute the error in

the fine- and coarse-grid saturation profiles relative to a reference solution,

e(S, Sref , t) =
‖φSref(·, t) − φS(·, t)‖L2

‖φSref(·, t) − φSref(·, 0)‖L2

.

Here time is measured in pore-volumes injected (PVI), i.e., time measures the fraction
of the total accessible pore-volume in Ω that has been injected into Ω.

For all test cases, we use Cartesian coarse grids, and assume that the fine grid
cells coincide with grid cells in original Cartesian grid. The reference solution Sref is
computed using an implicit upstream method on the fine grid, and a corresponding
coarse grid solution SC will be computed using the same method on a coarse grid.
Moreover, note that although we use a fixed set of basis functions for MsMFEM, we
solve the pressure equation repeatedly to account for mobility variations. Thus, the
velocity fields in the simulations will differ from the velocity field used to generate
the saturation basis functions. However, to assess the accuracy of solutions obtained
using the adaptive multiscale algorithm (AMsA), we compute, at each pressure time-
step, the velocity field corresponding to the reference solution for saturation, and use
this velocity field in AMsA, and to compute the coarse grid solution. This allows us
to monitor the error that stems from AMsA only.

7.1. Results for a two-dimensional test case. We consider first a test-case
representing the bottom layer of the SPE-model. The coarse grid is defined so that
each grid block contains 10 × 10 grid cells. The saturation plots in Figure 7.1 show
that the solutions obtained using AMsA with α = 0, α = 0.1, and α = 0.2 (the same
threshold is used in all grid blocks) are very similar to the reference solution. The
solution obtained using α = 1, however, looks quite different. The sharp edges that
we see in this plot are due to the fact that the boundary conditions used to generate
the saturation basis functions overestimate the inflow. We therefore get too much
saturation along the inflow part (with respect to the initial velocity field) of each grid
block boundary. This indicates that without the adaptive component, AMsA is not
able to provide plausible fine-grid saturation profiles. To achieve this, one has to build
more information about the global flow problem into the saturation basis functions
by specifying appropriate coarse grid blocks using global information or appropriate
dynamic boundary conditions for (4.6), see [2].

Figure 7.2 shows that the accuracy of AMsA decays with increasing α. However,
for all α, AMsA gives a significantly more accurate solution on the coarse grid than the
standard upstream method on the coarse grid gives. Thus, AMsA may give enhanced
accuracy on coarse grids, also without the adaptive component.

7.1.1. Computational efficiency. Except for α = 1, for which local problems
are not solved during the course of a flow simulation, the computational cost of AMsA
is dominated by the cost of solving the local equations (4.2). In particular, for small
α the computational cost C(α) of solving (2.4) using AMsA scales roughly as

C(α) ∼ Fu(α)NtC(0),
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Fig. 7.1. Saturation profiles at ∼ 0.7 PVI for simulations on the bottom layer.
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Fig. 7.2. Saturation errors for saturation solutions obtained from simulations on the bottom
layer of the Upper Ness formation. The fine grid curves measure the error with e(S,Sref , t) on the
fine grid relative to the reference solution, and the coarse grid curves measure the error on a coarse
grid with e(S̄, S̄ref , t) relative to the projection of the reference solution onto the coarse grid.

where Nt is the total number of time-steps and Fu(α) is the average fraction of blocks
that belong to a transient flow region.

Clearly, Fu is a decreasing function of α. Hence, there is a trade-off between high
accuracy and low computational cost. Note also that, in addition to α, Fu depends
implicitly on various factors, e.g., the coarse grid, the criteria used to identify transient
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flow regions, the fluid parameters, the heterogeneous structures, etc. In particular,
AMsA is in general more efficient (and accurate) for spatially correlated variogram
based permeability models than for models with fluvial heterogeneity, as is illustrated
in Figure 7.3. Whereas, on average, 73 and 55 percent of the blocks in the Upper
Ness model are identified to belong to transient flow regions for α = 0.1 and α = 0.2
respectively, the corresponding numbers for the Tarbert model is 46 and 27. The
potential efficiency of AMsA is therefore highly dependent on the type of model it
is applied to. Relative to AMsA with α = 0, we may expect good accuracy on
both coarse and fine grids, with a speed-up factor about two for models with fluvial
heterogeneity, and a speed-up factor 3 or 4 for models with smoother heterogeneity.

The speed-up strongly depends on the adaptivity criteria which can be adjusted
for a particular problem. In our simulations, the criteria based on gradients of the
coarse-scale saturation is used. We have observed increase in speed-up when the
criteria based on saturation values is used. Without the adaptive component, i.e., for
α = 0, the computational complexity of AMsA is comparable to the complexity of
coarse grid simulations using pseudofunctions. As we mentioned earlier, the accuracy
of AMsA can be improved by choosing adaptive coarse gridding. This procedure will
also enhance the efficiency of AMsA, because it localizes sharp fronts. Finally, we
would like to note that the purpose of the interpolators is not primarily to get the
fine scale details correct, but rather to introduce a flexible mechanism that allows us
to capture the subgrid transport effects on a coarse scale.
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Fig. 7.3. Fraction of blocks that are identified to belong to transient flow regions during the
course of two-phase flow simulations on the top layer of the Tarbert formation (left) and the bottom
layer of the Upper Ness formation (right).

7.2. Three dimensional test-cases. In this section we want to examine the
accuracy of AMsA when applied to two-phase flow simulations on three dimensional
models from the Upper Ness formation. Here we consider only AMsA using α = 0,
α = 0.1 and α = 1 in all blocks. The case α = 0 will be referred to as the domain
decomposition (DD) algorithm, the case α = 0.1 will be referred to as the adaptive
algorithm, and the case α = 1 will be called the multiscale algorithm.

In order for AMsA to provide a valuable tool in reservoir simulation, it should,
in addition to being significantly more accurate than the coarse grid solution, cap-
ture fine-scale characteristics of the reference solution at well locations. This will
be demonstrated by comparing water-cut curves (fraction of water in the produced
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fluid) for AMsA with water-cut curves for the reference solution. To get accurate pro-
duction characteristics, it is essential that high flow channels are resolved adequately
since high flow channels often carry majority of the flow that reach the producers.
Thus, if AMsA can be used to model these regions properly, then they should provide
a more robust alternative to reservoir simulation on upscaled models.

Consider first the 10 bottom layers of the Upper Ness formation, and define the
coarse grid so that each grid block in the coarse grid consists of 10 × 10 × 5 grid
cells. Figure 7.4 and Figure 7.5 demonstrate that all AMsAs give significantly more
accurate results than the solution obtained by solving the saturation equation on
the coarse grid with the implicit upstream method. We notice, in particular, that
the water-cut curves for the multiscale algorithm are much more accurate than the
corresponding water-cut curves for the coarse grid solution. This indicates that AMsA
is more capable of resolving high flow regions adequately, also without the local fine
grid computations.
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Fig. 7.4. Saturation errors for simulations on the bottom 10 layers of the Upper Ness formation.
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Fig. 7.5. Water-cut curves for simulations on the bottom 10 layers of the Upper Ness formation.

We turn now to the full three dimensional model of the Upper Ness formation.
Since the previous examples showed that the DD algorithm seems to produce solutions
that match very closely the reference solution, and it is computationally very expensive
to compute a solution on the full Upper Ness model using the implicit upstream
method on the fine grid, we use here the solution obtained using the DD algorithm
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as the reference solution. Again we let the coarse grid be defined so that each grid
block in the grid consists of 10 × 10× 5 grid cells.

Figure 7.6 demonstrates that the errors are approximately the same as in the
previous example. We observe also that the saturation error on the coarse grid for
the multiscale algorithm is less than half of the corresponding error for the coarse grid
solution. Furthermore, the water-cut curves for the multiscale algorithm depicted in
Figure 7.7 match closely the water-cut curves for the adaptive algorithm and the DD
algorithm, except possibly for producer 4 where we observe a mismatch. In contrast,
the coarse grid solution continues to overestimate the breakthrough times, and thus
overpredicts the oil-production. This shows that the multiscale method may be used
as an alternative to pseudofunctions for enhancing accuracy of coarse grid simulations.
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Fig. 7.6. Saturation errors for simulations on the full Upper Ness formation.
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Fig. 7.7. Water-cut curves for simulations on the full model of the Upper Ness formation.

8. Concluding remarks. The main purpose of this paper has been to introduce
a new (adaptive) multiscale method for solving the transport equation that arise in
immiscible two-phase flow in porous media. The basic idea is to compute the global
flow on a coarse grid, and map the averaged grid block saturations onto plausible
saturation profiles on a finer subgrid. To enhance the accuracy of the coarse grid
saturation profile, while at the same time avoid an upscaling phase involving e.g.,
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the construction of pseudo relative permeability functions, we introduce a numerical
scheme for solving transport equation on a coarse grid that honors fine scale structures
in the velocity field in a mathematically consistent manner. Moreover, to capture
rapid transitions in saturation values near propagating saturation fronts accurately,
we propose to include an adaptive component in the algorithm. In the adaptive
algorithm, we solve the saturation locally on a fine grid in transient flow regions.

The proposed (adaptive) multiscale method has been analyzed and tested on
models with complex heterogeneous structures. It is assumed that flow velocities are
given on a fine-grid scale using, e.g., a multiscale method for the elliptic part of the
two-phase flow equations. In this paper a multiscale mixed finite element method has
been used. This method offers high-resolution velocity fields at a low cost. However,
for the enhanced resolution of velocities to give improved accuracy of flow simulations,
it is necessary to account for fine scale structures in the velocity field when solving the
saturation equation. The numerical results demonstrate that the multiscale method
for the saturation equation is capable of providing nearly the same flow characteristics
as simulations where the transport equation is solved on the scale of the underlying
fine grid. The method provides therefore an efficient alternative to computing the
transport on the fine grid. The analysis presented in the paper reveals and estimates
the error sources and support the conclusions that we draw from the numerical results.
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