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Abstract

We present a new approach to reservoir simulation that gives accurate resolution
of both large-scale and fine-scale flow patterns. The method uses a mixed multi-
scale finite-element method (MMsFEM) to solve the pressure equation on a coarse
grid and a streamline-based technique to solve the fluid transport on a fine-scale
subgrid. The MMsFEM is based on the construction of special approximation ve-
locity spaces that are adaptive to the local properties of the differential operator.
As such, MMsFEM produces a detailed subgrid velocity field that reflects the im-
pact of the fine-scale heterogeneous structures. By combining MMsFEM with rapid
streamline simulation of the fluid transport, we aim towards a numerical scheme
that facilitates routine reservoir simulation of large heterogeneous geomodels with-
out upscaling. The new method is applied to two different test cases. The first test
case consists of two (strongly) heterogeneous quarter five-spot problems in 2D. The
second test case is a 3D upscaling benchmark taken from the 10th SPE Compara-
tive Solution Project, a project whose purpose is to compare and validate upscaling
techniques. The test cases demonstrate that the combination of multiscale methods
and streamlines is a robust and viable alternative to traditional upscaling-based
reservoir simulation.
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1 Introduction

The flow of displaced fluids in petroleum reservoirs is governed by processes
and parameters occurring on multiple scales. A major challenge in reservoir
simulation is therefore to represent and resolve all pertinent scales in both pa-
rameters and solution. In fact, the accuracy of reservoir simulation is largely
controlled by the underlying geological grid models that give the geometry
of the reservoir and specify rock parameters like porosity and permeability.
Currently, the typical size of geomodels used for reservoir description exceeds
by several orders of magnitude the capabilities of conventional reservoir simu-
lators. State-of-the-art reservoir characterisation based on stochastic methods
now allow geologists to generate a large number of plausible high-resolution
grid models, each consisting of several million grid cells. Similarly, represent-
ing large-scale structures like channels and faults or complex trajectories of
deviated, multi-branch wells requires complex gridding schemes like Voronoi
(PEBI) grids, corner-point-grids, locally refined grids, flow-based grids, etc.
Conventional simulator models are limited in size due to limitations in com-
putational power, in particular, when multiple simulations are required as
part of history matching, uncertainty assessment, and process optimisation.
All three require fast and accurate flow simulations on a large number of plau-
sible geological models on a routine basis, meaning that a single simulation
should ideally run within seconds or minutes and not within hours or days.

The traditional approach to overcome the problem of scales is to use upscaling
techniques to reduce the level of detail in the model parameters by carefully
constructing coarser geomodels, where the number of geophysical parameters
is reduced to a suitable size so that simulations can run within an acceptable
time-frame. In other words, one uses some kind of averaging procedure to
change the scale of the data. Alternatively, one can try to use the fine-scale
description directly and incorporate it in the coarser simulation model through
some kind of numerical subgrid technique.

In this paper we will follow the second approach and develop a new numerical
scheme for incompressible, immiscible two-phase flow. The key idea is to use a
mixed multiscale finite-element method [1] to discretise pressure and velocities
and streamlines to discretise fluid transport. We believe that this combination
can bring the art of reservoir simulation a big step towards routine simulation
of high-resolution geomodels, possibly even on desktop computers. Indeed, this
particular method allows the pressure equation to be solved on a coarse grid,
and preserves important fine-scale features. Moreover, it produces velocity
fields that are mass conservative on a subgrid scale so that we can use rapid
streamline methods to compute the phase transport on a finer scale. Similar,
but simpler and less rigorous ideas were presented earlier by Gautier et al. [2],
who proposed an approximate multiscale method called nested gridding for
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the pressure equation and a streamline method for the fluid transport on the
fine scale.

Streamline methods are gaining in popularity and already provide desktop
simulation of medium-sized reservoir models. Traditionally, streamline sim-
ulators have been based upon simplified physics, but recent advances have
demonstrated the potential for more complex physics like compressible three-
phase or component models [3,4]. A major obstacle in applying streamline
methods to large geomodels is the need for accurate and efficient solution
of the pressure equation. In particular, the pressure solver must be locally
(and globally) mass-conservative and should handle strongly heterogeneous
and anisotropic formations as well as irregular grids that conform to geolog-
ical structures and complex well trajectories. Mixed finite-element methods
(MFEM) and multi-point flux-approximation finite-volume methods (MPFA)
[5–7] are examples of methods that handle these properties, and cover the
most widely used methods for elliptic problems where mass preservation is an
issue.

The first method that was labelled MsFEM was introduced by Hou and Wu
[8]. This method is based on the construction of special finite-element base
functions that are adaptive to the local property of the differential operator,
and was introduced as a tool to solve elliptic partial differential equations
with multiple-scale solutions. Although, MsFEM generates solutions that re-
flect the important fine-scale characteristics of the elliptic coefficients, these
solutions are not locally mass conserving. By introducing a mixed MsFEM
(MMsFEM), Chen and Hou [9] developed a multiscale method that is locally
mass conserving on the coarse grid. Aarnes [1] extended the method further
and developed a modified variant of MMsFEM that generates locally mass
conservative velocity fields also on the subgrid scale. Local mass conservation
is essential for a streamline method, and in the following we will therefore
use Aarnes’ modified method. Distinctly different, but related approaches in-
clude the multiscale finite-volume method by Jenny, Lee and Tchelepi [10], the
nested-gridding method by Gautier, Blunt and Christie, and various numer-
ical subgrid methods (see e.g., the overview by Arbogast [11] and references
therein).

Although the current motivation for using MMsFEMs is increased computa-
tional speed, the improved flexibility may prove to be even more important
for real fields with complex flow physics and irregular grids. MMsFEMs can
easily handle grid blocks of arbitrary shape and are not confined to polyg-
onal elements as is the case for ordinary finite-element methods. Moreover,
the multiscale framework provides an ideal foundation for adaptive numerical
schemes for phase-transport equations. This is because small-scale details in
the velocity field only have a strong impact on the evolution of the satura-
tion profile in the vicinity of the propagating saturation front. Thus, since the
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subgrid velocity field provided by MMsFEM can be recovered from indepen-
dent base functions, the subgrid information can easily be brought into action
whenever it is needed in the simulation.

The main objective of the paper is to indicate that the combination of multi-
scale pressure solvers and streamline methods has a potential for direct simula-
tion of high-resolution geomodels. We shall focus on computational accuracy,
and will demonstrate that this multiscale-streamline approach is a robust and
viable alternative to traditional upscaling-based reservoir simulation schemes.
We show numerical results obtained on two heterogeneous quarter five-spot
problems in 2D and on a medium-sized 3D model consisting of around 1,2 mil-
lion grid cells from the 10th SPE Comparative Solution Project [12], a project
whose purpose was to compare and validate upscaling techniques. The het-
erogeneity model is sampled from a Brent sequence from the North Sea and
contains two formations: a shallow-marine Tarbert formation and a fluvial
Upper Ness formation.

The paper is organised as follows. In Section 2 we present the differential equa-
tions that govern immiscible and incompressible two-phase flow. The concept
behind streamline methods is outlined in Section 3 and MMsFEM is described
in Section 4. Section 5 discusses construction of efficient solvers for linear sys-
tems that arise from the mixed formulation of the pressure equation. Numeri-
cal results are presented in Section 6, and we conclude with some final remarks
in Section 7.

2 Mathematical model of two-phase flow

The differential equations modelling immiscible and incompressible two-phase
flow can be derived from the continuity equation of each phase

φ
∂Si

∂t
+∇ · vi = qi (1)

and Darcy’s law that relates the phase velocities vi to the gradient of the phase
pressures pi

vi = −Kλi(∇pi − ρiG). (2)

Here φ denotes porosity; Si is the saturation of phase i; qi is a source term
representing wells;K is the rock permeability tensor, assumed to be symmetric
and uniformly positive definite; and λi = kri/µi is the mobility of phase i. The
relative permeability kri models the reduced permeability experienced by one
phase due to the presence of the other, and µi is the phase viscosity. Finally, ρi

is the phase density, and G is the gravity acceleration vector. We shall assume
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that the phases are oil (o) and water (w) and that the two phases together fill
the void space completely so that So+Sw = 1. The phase pressures are related
in terms of the capillary pressure pcow = po − pw, which we assume, according
to common practice, is a known function of water saturation, pcow(Sw).

In this paper we will work with the fractional flow formulation of the two-phase
flow model consisting of an equation for a global pressure and a transport
equation for the water saturation. By summing the Darcy equations (2) for
oil and water, we derive

v = −Kλt(∇po − fw∇pcow) +K(λoρo + λwρw)G.

Here fw is the fractional flow function of water given by fw = λw/λt, where
λt = λw + λo denotes the total fluid mobility. Assume now that there exists
an auxiliary function pc = pc(Sw) such that ∇pc = fw∇pcow and define the
global pressure p = po − pc. By summing the continuity equations (1) and
using that Sw + So = 1, we derive equations for the global pressure p and the
total velocity v = vw + vo,

v = −K
[
λt∇p− (λoρo + λwρw)G

]
, ∇ · v = q. (3)

Finally, we use (1) to derive a mass-transport equation for the water phase. To
this end, we need an expression for the water velocity. By a straightforward
manipulation of λovw − λwvo using (2) we obtain

vw = fw

[
v +Kλo(ρw − ρo)G+Kλo

∂pcow

∂Sw

∇Sw

]
.

The main focus of the paper is to show that multiscale methods can be com-
bined with streamline-based simulation to give rapid reservoir performance
predictions. We therefore neglect effects from capillary forces so that the final
form of the saturation equation becomes

φ
∂Sw

∂t
+∇ · fw

[
v +Kλo(ρw − ρo)G

]
= qw. (4)

In streamline simulation a simple sequential splitting is used to decouple and
solve the coupled system (3)–(4) (sometimes called IMPES or sequential split-
ting). First, the initial saturation distribution is used to compute the mobilities
in (3) and the equation is solved for global pressure and total velocity. Then,
the total velocity is held constant as a parameter in (4), while the saturation
is advanced in time. This completes one step of the method. Next, the new
saturation values are used to update the mobilities in (3), the pressure equa-
tion is solved again, and so on. Numerical methods for solving (3) and (4)
will be presented in the next two sections. For brevity we hereafter drop the
subscript w and let S denote water saturation.
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3 A streamline method for two-phase flow simulation

The saturation equation (4) is solved using a streamline method. For simplic-
ity, we assume incompressible flow and neglect gravity and source terms. Then
the saturation equation (4) reads

φ∂tS + v · ∇f(S) = 0.

Streamlines are flow-paths traced out by a neutral particle being passively
advected by a flow field so that the velocity v is tangential to the stream-
line at every point. For incompressible flow, for which the velocity field v is
divergence-free and irrotational, all streamlines start in an injector and end
in a producer. Moreover, individual streamlines do not cross and there is no
mass transfer between individual streamlines. Each streamline can therefore
be viewed as an isolated flow system and we may transform (4) into a family
of one-dimensional equations along streamlines. To this end, we introduce the
so-called time-of-flight coordinate τ = τ(x), which measures the time it takes
a passive particle released in one of the injectors at time zero to travel along
the streamlines with speed |v|/φ and reach a point x in physical space. Thus,
along any streamline the associated time-of-flight coordinate must satisfy the
differential equation

v · ∇τ = φ or equivalently ∂τ = φ/|v| ds. (5)

Integrating the latter equation along a streamline Ψ from x0 = Ψ(s0) to
x = Ψ(s) gives

τ(s)− τ(s0) =
∫ s

s0

(φ ◦Ψ)(ξ)

|(v ◦Ψ)(ξ)|
dξ. (6)

By invoking the operator identity ∂/∂τ = v · ∇, the multidimensional satu-
ration equation now reduces to a family of one-dimensional equations along
each streamline Ψ,

∂tS + ∂τfw = 0. (7)

In streamline methods one often neglects the effects of gravity (as we will do
in this paper). If gravity is important, it can be incorporated through operator
splitting [13]; that is, by first solving (7) along all streamlines, and then solving

φ∂tS +∇ ·
[
fwKλo(ρw − ρo)G

]
= 0 (8)

along gravity lines initiated in the top layer of cells in the reservoir. This
operator splitting is also the industry standard and is implemented in the
commercial streamline simulators FrontSim and 3DSL.
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To trace the flow paths we use an algorithm introduced by Pollock [14] for
regular quadrilateral or hexahedral grids. (See [15] for an extension to irregu-
lar grids). The method builds each streamline in a cell-by-cell manner: Given
the entry point and a piecewise linear velocity in each direction, Pollock’s
algorithm computes analytically the exit point and the grid-block time-of-
flight ∆τi, i.e., the time it takes for the streamline to traverse the grid block.
Within each cell, the saturation value is constant, and by picking up these
values, one obtains a piecewise initial value function for (7) given on an ir-
regular grid {∆τi} for each streamline. This initial-value problem can then
be solved by one’s favourite one-dimensional solver; here we will use a front-
tracking method. After the initial saturation profile has been advected along
the streamlines, the updated saturation values are projected back onto the
original grid by weighting the contributions from the individual streamlines
according to the associated traversal time ∆τi through the grid cell.

Note that the streamline method does not require that one represents the
streamline geometry explicitly. Indeed, all one needs is the time-of-flight value
through each cell and the corresponding saturation value. Since this cell-by-
cell parametrisation often results in a highly irregular grid in τ with small
cells close to the boundaries (where the wells are located), simulators that
use finite-volume methods along each streamline tend to use a uniform and
possibly coarsened grid to speed up the computation.

To solve the one-dimensional transport equations (7) and (8) along streamlines
and gravity lines we will use a front-tracking method, which is sometimes called
wave-front-tracking or Dafermos’ method. See Holden and Risebro [16] for a
complete list of references and a thorough introduction to the method. In the
front-tracking method the solution of the tranport equation is represented as
a set of moving discontinuities. The solution is evolved in time by tracking
the discontinuities along space-time rays and resolving a Riemann problem
each time two or more rays collide. To ensure that the solution is always
piecewise constant, the self-similar Riemann problems are approximated by
step functions in which shocks are kept and rarefactions are discretised by a
series of small steps.

The reason for using this particular method is that it is independent of a grid,
very fast, unconditionally stable, and has first order convergence with respect
to the approximation of the Riemann solutions (and the initial data). In par-
ticular, this means that the method is perfect for handling the highly irregular
grids arising from the streamline parametrisations. Moreover, the method re-
solves water fronts sharply with no numerical diffusion. Hence, the numerical
diffusion inherent in the corresponding streamline method for two-phase flow
comes from the projection of the saturation profiles along the streamlines (and
gravity lines) onto the original grid, see e.g., [13].
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4 A mixed multiscale FEM

We now introduce a mixed FEM that will be used to solve the elliptic pressure
equation (3). The method, which was introduced in [1], is a modified version
of the mixed multiscale FEM (MMsFEM) proposed by Chen and Hou [9]. Our
method differs from the one of Chen and Hou in two important ways. First,
it gives a mass conservative velocity field at the subgrid scale. This means
that the MMsFEM solution for the velocity variable can be used to simulate
phase transport at the subgrid scale. Second, as it is very important to have
proper boundary conditions for the base functions to achieve high accuracy, we
propose to use boundary conditions that reflect local heterogeneous structures
and account for a radial flow-pattern in near-well regions.

Another issue that will be treated here, that was not addressed in [1], is
how to treat the wells within the multiscale framework if the well-rates are
not known a priori. This is an issue of high practical importance since the
production well-rates are seldom known a priori, but are instead specified by
the bottom-hole pressure in each well. We therefore propose a new well-model
for the MMsFEM that naturally exploits available subgrid information. It is
well known that to obtain an accurate flow scenario it is important to capture
the fine-scale flow behaviour in the vicinity of the wells. We therefore believe
that the modified MMsFEM with the proposed well-model, provides a step
towards more robust and rigorous treatment of wells in reservoir simulation.
We start by introducing the mixed formulation of (3) with no-flow boundary
conditions.

Let Ω denote the reservoir domain and n be the outward pointing unit normal
on ∂Ω. Moreover, define the function space

H1,div
0 (Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω) and v · n = 0 on ∂Ω}.

Then the mixed formulation of (3) with no-flow boundary conditions v ·n = 0
on ∂Ω reads: find (p, v) ∈ L2(Ω)×H1,div

0 (Ω) such that

∫
Ω
(Kλt)

−1v · u dx−
∫
Ω
p ∇ · u dx =

∫
Ω
(fwρw + foρo)G · u dx,∫

Ω
l ∇ · v dx =

∫
Ω
ql dx,

(9)

for all u ∈ H1,div
0 (Ω) and l ∈ L2(Ω).
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4.1 The MMsFEM base functions

Equation (9) is discretised by dividing Ω into polyhedral (coarse grid) ele-
ments T = {T}. In mixed FEMs, the approximation space for the velocity
v is spanned by a set of base functions {ψ} in H1,div

0 (Ω). In the proposed
MMsFEM, each base function is associated with an interface Γij = ∂Ti ∩ ∂Tj

between two coarse grid blocks Ti and Tj. To be specific, for each interface
Γij we define an interface flux ψij = −Kλt∇φij, where φij is determined by
solving the following “pressure equations” numerically on a fine-scale subgrid
within the coarse blocks Ti and Tj

(∇ · ψij)|Ti
=

1/|Ti|, if
∫
Ti
q dx = 0,

q/
∫
Ti
q dx, otherwise,

(10)

(∇ · ψij)|Tj
=

−1/|Tj|, if
∫
Tj
q dx = 0,

−q/
∫
Tj
q dx, otherwise

(11)

with some compatible boundary conditions

ψij · n = 0 on ∂Ti ∪ ∂Tj\Γij and ψij · nij = νij on Γij. (12)

Here n is the outward unit normal on ∂(Ti∪Γij∪Tj) and nij is the unit normal
to Γij pointing from Ti to Tj. The corresponding approximation space for the
total Darcy velocity v is now spanned by the base functions V ms = span{ψij :
meas(Γij) > 0}. The boundary condition νij that we impose on Γij in (12) will
be specified in Section 4.3.

The local pressure solutions φij do not appear explicitly in the mixed formu-
lation, and are hence only used to generate the base functions ψij. Since it is
important that all base functions are mass conserving, the subgrid problems
(10)–(11) must be solved using a mass conservative method, e.g., a suitable
mixed FEM or a finite-volume method. The particular choice of method de-
pends in part on the local grid structure. For instance, if we want to dis-
cretise the subgrid problems with a finite-volume method, then a two-point
flux approximation can be used if K is a diagonal tensor and the grid is or-
thogonal, whereas a multi-point flux approximation scheme should be used on
non-orthogonal grids.

Also note that the base functions ψij will generally be time dependent since
they depend on λt, which is time dependent through Sw(x, t). This indicates
that one has to regenerate the base functions for each time step. However, it
is usually sufficient to regenerate a small portion of the base functions at each
time step since the total mobility λt only varies significantly in the vicinity of
the propagating saturation front; similar observations have been made for the
multiscale finite-volume method developed by Jenny et al. [10]. In [1], Aarnes

9



suggested that one should regenerate a base function ψij only if∫
Ti

λt dx or
∫

Tj

λt dx (13)

have changed more than some threshold since the previous update. This cri-
teria is a bit crude, but performs well, as is demonstrated in [1], as long as
one is able to specify a sensible threshold value.

4.2 The approximation space for the pressure

In the original version of the MMsFEM, Chen and Hou used a piecewise
constant approximation for the pressure, p ∈ U := P0(T ). This was a natural
choice since the approximation spaces for the Darcy velocity v and pressure p
satisfied U = div(V ms), a relation that guarantees that the method is stable.
However, by altering the base functions to produce mass conservative velocity
fields, this relation no longer holds true, and Aarnes [1] argued that one also
needs to modify the approximation space for the pressure p. The argument
goes as follows.

Assume that (p, v) solves the (not discretised) mixed formulation (9) on the
fine-scale grid and let the boundary conditions for the MMsFEM base func-
tions be defined by νij = v|Γij

so that v ∈ V ms. Furthermore, write p = p̄+ p̂,
where p̄ ∈ U is a constant on the coarse grid and p̂ is the subgrid variation in
pressure that has zero average over all coarse grid blocks T ∈ T . If we now
assume that p̂ is known a priori and move it over to the right hand side, then,
since V ms ⊂ H1,div

0 (Ω) and U ⊂ L2(Ω), we find that (p̄, v) ∈ U × V ms satisfies∫
Ω
(Kλt)

−1v · u dx−
∫
Ω
p̄ ∇ · u dx =

∫
Ω
p̂ ∇ · u dx+

∫
Ω
(fwρw + foρo)G · u dx,∫

Ω
l ∇ · v dx =

∫
Ω
ql dx,

(14)

for all u ∈ V ms and l ∈ U . This shows that in the presence of exact boundary
conditions νij for the base functions, and under the assumption that p̂ is known
a priori, we can find the solution (p, v) of the mixed formulation (9) by solving
the modified equation (14) for (p̄, v) in the finite-dimensional space U × V ms

and setting p = p̄+ p̂.

Assuming p = p̄ ∈ U means that the sub-scale variation in pressure is dis-
regarded. In other words, we neglect the integral

∫
p̂∇ · udx and thus make

an error in the computation of p̄. Numerical experience shows that the block-
average pressures p̄ are quite sensitive to p̂ so that p̄ will be inaccurate if we
neglect the (significant) contribution from p̂. This observation suggests that
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it is necessary to modify the approximation space for pressure in the formu-
lation of MMsFEM, and that an appropriate approximation space should be
close to the affine space Û = p̂+ U . Unfortunately, p̂ is never known a priori.
If it were, then we would not have to solve the pressure equation at all since
for incompressible flows one is only interested in the velocity field. However,∫
T p̂ ∇ · u dx vanishes everywhere except where

∫
T q dx 6= 0. Thus, p̂ only con-

tributes to
∫
T p ∇·u dx in the well-blocks. This indicates that if we can find a

function p̃ that approximates p̂ in the well blocks and vanishes elsewhere, we
should get good accuracy by replacing p̂ in (14) with p̃.

To compute p̃, let T be a well-block and define p̃ in T according to∫
T
p̃ = 0, ṽ = −K [λt∇p̃− (λoρo + λwρw)G] ,

∇ · ṽ = q in T, ṽ · n = νT on ∂T.
(15)

The boundary condition νT will, along with the boundary conditions for the
base functions, be specified in Section 4.3. The modified MMsFEM in [1] now
seeks p ∈ p̃ + U and v ∈ V ms such that (9) holds for all l ∈ U and u ∈ V ms.
Henceforth we will, for brevity, refer to this method simply as MMsFEM.

4.3 Selection of boundary conditions

The boundary condition νij that we impose on Γij in the definition of the
base functions (10)–(12) plays a special and very important role in the MMs-
FEM. Indeed, since we seek the Darcy velocity v in V ms it is clear that
v|Γij

∈ span νij. The local flow behaviour across each interface is therefore
completely determined, up to a constant multiple, by the selection of the
boundary conditions for the base functions. It is therefore essential that these
boundary conditions reflect some of the dominating features that have an
impact on the local flow behaviour, including heterogeneous structures that
penetrate the interfaces and radial flow patterns in the proximity of wells. The
same can be said about the boundary conditions νT that we use to compute p̃.

In this section we describe two alternative strategies that can be used to pre-
scribe boundary conditions for p̃ and the base functions. The first approach is
a local approach where we assume no a priori knowledge about the actual flow
pattern. In the second approach, which is more robust but also computation-
ally more expensive, we assume that the pressure equation (3) can be solved
once on a fine grid. This is a reasonable assumption. Indeed, since multigrid
preconditioning techniques give linear complexity, and all base functions must
be computed at least once, the cost of solving the pressure equation (3) on the
subgrid is comparable to cost of the initial construction of the base functions.
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4.3.1 Local boundary conditions

We want the local boundary conditions to reflect heterogeneous structures
that penetrate the interfaces and account for a radial flow pattern in the near-
well regions. In addition, we need to ensure compatibility. These requirements
are fulfilled in the following definition

νT (x) =
qTν

0
T (x)∫

∂T ν
0
T (s) ds

, x ∈ ∂T, (16)

νij(x) =
ν0

ij(x)∫
Γij
ν0

ij(s) ds
, x ∈ Γij, (17)

where qT =
∫
T q(ξ) dξ and

ν0
T =nT · (wKλt) · nT , (18)

ν0
ij =nij · (wKλt) · nij. (19)

Here the purpose of w is to account for a radial flow pattern near wells. Hence,
on the boundary of a well-block, we define w according to

w(x) =
∫

T

|q(ξ)|
|x− ξ|1−d

dξ.

If Γij is not a well block interface, then we do not want a contribution from w,
and we set w ≡ 1 in (19). The exponent 1− d is motivated by the observation
that if we have uniform radial flow around a point source at z ∈ T , then the
flow velocity across ∂T must scale proportional to dist(x, z)1−d to preserve
mass.

Figures 1 and 2 display corresponding base functions for a two-dimensional
model with homogeneous and random coefficients, respectively. The base func-
tions depicted in the top rows of each figure correspond to an interface away
from the near-well region and the base functions depicted in the bottom rows
correspond to a well-block interface. We see that the top row base function in
Figure 1 is identical to the associated base function for the Raviart–Thomas
mixed FEM of lowest order. In contrast, we observe that the base function
corresponding to random coefficients fluctuates rapidly and clearly reflects
the fine-scale details in the heterogeneous formation. We also note that the
interface is hardly visible in the base function depicted in the bottom row
of Figure 1. This demonstrates that the radial-distance weighting used in the
near-well region accounts for the radial flow pattern in a proper way. The loca-
tion of the well itself is reflected in the delta-like peaks seen in the x-component
of the base functions.
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Fig. 1. The x-component (left) and y-component (right) of two MMsFEM base
functions for a two-dimensional model with homogeneous coefficients using the local
boundary conditions defined by (17) and (19). The top base function corresponds
to an interface away from the near-well region while the bottom base function
corresponds to a well-block interface.
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4.3.2 Global boundary conditions

We now assume that the initial velocity field v0 is available on the fine grid.
The so-called global boundary conditions are now determined by defining ν0

ij

and ν0
T in (16)–(17) for t > t0 according to

ν0
T (x, t) =

λt(x, t)

λt(x, t0)
(v0 · nT ), x ∈ ∂T, t > t0. (20)

ν0
ij(x, t) =

λt(x, t)

λt(x, t0)
(v0 · nij), x ∈ Γij, t > t0, (21)

These boundary conditions reflect, not only features that have a local impact
on the flow, but also global effects from, e.g., fractures, faults, well configura-
tions, and external boundary conditions.

Remark 1 In (16) we assumed that the well-rates are specified. If the well-
rates instead are determined by the bottom-hole pressure, the well-rates qT in
(16) on the coarse grid are approximated from the well-rates induced by the
MMsFEM solution on the coarse grid in the previous time step. To be precise,
if qw are the previous subgrid well-rates for a well w, then well-rates at the
next time step tm+1 are defined by

qw(x, tm+1) = (q0
w/Q

0
w)qT , (22)

where q0
w = qw(x, tm)λt(x, tm+1)/λt(x, tm), qT is the total grid-block well-rate

from the previous time step, and Q0
w is the total of the subgrid well-rates q0

w.
The coarse grid well rates that appear in (16) at time tm+1 are now defined as
the sum of the subgrid well-rates qw(x, tm+1). If local boundary conditions are
used, the initial well-rates can be determined from e.g., an auxiliary upscaled
model.

4.4 Well-model

In a Peaceman-type well-model the well-rate in a cell i is linearly related to
the difference between the cell pressure pi and the bottom-hole pressure pbhp

qi = −Tw,i(pi − pbhp). (23)

The so-called well transmissibility Tw,i is defined by some semi-analytical re-
lation [17]. Since, for pressure constrained wells, the well-block source terms
in (10)–(11) are not known a priori, the subgrid well-rates are determined by
a rate constrained Peaceman model. That is, we assume that the total well-
rate for each well-block is equal to one. Similarly, when solving (15) we use a
rate-constrained well-model and assume that the total well-rate Qw is equal
to the associated well-rate q0

T from the previous time step.
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To define a corresponding well-model for the MMsFEM, we need to define a
similar relation between the total well-rate qT in a coarse grid block and the
average pressure p̄T in the well-block. To this end, recall first that pT = p̄T +p̃T

approximates the subgrid pressure in T . This relation suggests that we can
define a multiscale well-model based on the accumulated well-rates induced
by pT and the (Peaceman type) well-model that is used to compute p̃T

qT = −
∑
i∈T

Tw,i(p̄T + p̃T,i − pbhp). (24)

Here the well transmissibility Tw,T =
∑

i∈T Tw,i on the coarse grid will enter
in the linear system as a diagonal component in the lower right hand block
of the MMsFEM coefficient matrix and q̃ = −∑

i∈T Tw,i(p̃T,i − pbhp) will enter
into the right hand side.

It is important to note that the well-rates qT on the coarse grid induced by
(24) will in general not coincide with the corresponding well-rates that appear
in (16), which are defined by (22). Indeed, in (22) it is implicitly assumed that
the total grid-block well-rates at time tm+1 are equal to the corresponding
MMsFEM induced well-rates at time tm. The MMsFEM well-model (24), on
the other hand, allows the grid-block well-rates to vary in time.

4.5 Computational considerations

As noted in the introduction, the possibility of accelerated simulations is one
of the main motivation factors for using a multiscale method for reservoir
simulation. In the simulation results that we will present here, the MMsFEM
base functions have been regenerated for each time step. This implies that
the method will, with efficient implementation, have linear complexity. Hence
the computational cost will be comparable to the cost of solving the full fine-
scale pressure equation using an efficient multigrid technique. This is also in
accordance with our observations. For the MMsFEM, however, several steps
can be taken that can accelerate the computation time considerably.

First, as we have already pointed out, the MMsFEM base functions should
be updated only in regions where the total mobility has changed significantly
since the previous update. Aarnes [1] observed that the accuracy obtained
when updating a small fraction of the base functions (mostly near saturation
fronts) in each time step is almost the same as when updating all base func-
tions (see also [10]). Since the calculation of the base functions dominates the
computation time in the MMsFEM, adaptive calculation of the base func-
tions can accelerate solution procedure for the pressure equation one order of
magnitude.
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Another way of accelerating MMsFEM based simulations is by parallel com-
puting. Computation of base functions can be done on a block-by-block basis
and has an obvious parallelism. Similarly, the numerical integration over base
functions used to assemble the linear system that arises from the mixed formu-
lation (9) on the coarse grid is also inherently parallel. These computations
can therefore be assigned to individual processors, and are well suited for
both distributed memory and shared memory platforms. However, to fully
take advantage of parallel computing, we should also parallelise the solution
procedure for mixed linear system. Since such systems are indefinite, standard
parallelisable domain decomposition techniques and multigrid techniques can-
not be used directly. Instead, parallel preconditioners must be applied inside
an iterative procedure such as preconditioned GMRES algorithm (see, e.g.,
[18]) or a preconditioned (inexact) Uzawa algorithm (see, e.g., [19]). Below
we describe in detail two possible strategies for solving the indefinite linear
system that can take advantage of parallel preconditioners for positive definite
systems (e.g., multigrid and domain decomposition techniques).

5 Numerical linear algebra

The MMsFEM methodology offers subgrid resolution, and should give high
accuracy with upscaling factors of more than one order of magnitude in each
coordinate direction. Nevertheless, since geological reservoir characterisations
today may involve grids with 107–109 grid blocks, MMsFEM does not remove
the need for efficient numerical linear algebra. We therefore present a strategy
that can be used to design efficient iterative methods for linear systems that
arise from the MMsFEM formulation of (3). For presentational simplicity we
assume that all well-rates are specified, i.e., that no well-model is used.

5.1 Preconditioning

The linear system arising from the MMsFEM formulation of (3) isB CT

C 0


v

p

 =

 g

−q

 , (25)

where

B = [
∫
Ω
(Kλt)

−1ψij · ψkl dx], C =[−
∫

Tm

div(ψij) dx],

g = [
∫
Ω
p̃ div(ψkl) + (fwρw + foρo)G · ψij dx, ], q =[

∫
Tm

q dx].
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Since pure Neumann boundary conditions are imposed on ∂Ω, the linear sys-
tems (25) is singular, but it is made non-singular by specifying the pressure
level, e.g., by specifying the pressure in one grid block T . If v = [vij]Γij 6=∅ and
p = [pm]Tm∈T solves (25), then v =

∑
ij vijψij and p = p̃ +

∑
m pmχTm is the

desired MMsFEM solution.

Now, since (25) stems from (9), it is an indefinite linear system and this limits
the number of suitable iterative methods. However, we may exploit the block
structure in the MMsFEM coefficient matrix to reduce (25) to three symmetric
and positive definite systems

Bu=g, (26)

Sp=q + Cu, (27)

Bv =g −CTp. (28)

where S = CB−1CT. Clearly, we can in general not afford to compute S di-
rectly since this requires that we compute the B−1 explicitly. Fortunately, one
of the most powerful iterative methods methods for positive definite linear
systems, the preconditioned conjugate gradient (PCG) method, only requires
that we compute the action of S.

A simple and efficient preconditioner for S is the sparse matrix M = CD−1CT,
where D is the diagonal part of B. In fact, M is the matrix that arises
from a standard finite-volume scheme using a two-point flux approximation
if the transmissibility for Γij is the associated component of D−1, dij,ij =
(
∫
Ω(Kλt)

−1ψij ·ψij dx)
−1. The PCG algorithm for (27) with M as the precon-

ditioner should now converge in a small number of iterations. Algorithm 5.1
now outlines how one should compute the solution of the linear system (27).

Algorithm 1 The preconditioned conjugate gradient method

Solve Bu = g and compute w = q + Cu.
Pick an initial guess p0 for p.
Set r0 = w − Sp0, z0 = M−1r0 and s0 = z0.
For j = 0, 1, . . . , until convergence, do

yj = Spj

α = (rj, zj)/(sj,yj)
pj+1 = pj + αsj

rj+1 = rj − αyj

zj+1 = M−1rj+1

β = (rj+1, zj+1)/(rj, zj)
sj+1 = zj+1 + βsj.

Note that each iteration of Algorithm 4.1 involves the action of S, and hence
of B−1, as well as the action of M−1. This implies that we need to solve
two sparse, symmetric and positive definite systems in each iteration. These
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systems can be solved efficiently with the PCG method using a multigrid
or domain decomposition preconditioner. When we solve the systems with
matrix B, we need to choose the same, or a stronger, convergence criteria as
the convergence criteria for the outer iteration. If we do not, the accuracy will
deteriorate. On the other hand, since M is only a preconditioner, we do not
have to have the same convergence criteria for the systems with matrix M,
but a weak convergence criteria will cause the number of outer iterations to
increase.

5.2 Compressible Flow

At this point it is appropriate to make some comments related to the pre-
conditioning of linear systems that arise from the mixed formulation of the
pressure equation in compressible flow problems. This is because the (slightly)
parabolic nature of the compressible two-phase flow pressure equation intro-
duces a diagonal matrix in the lower right hand block of the MMsFEM coef-
ficient matrix. Indeed, for compressible flow problems one replaces (3) with a
pressure equation that is qualitatively on the form

v = −K
[
λt∇p− (λoρo + λwρw)G

]
, ∇ · v + c

∂p

∂t
= q, (29)

where c = c(x, t) is a positive scalar function. This implies that the second
equation in (9) transforms to∫
Ω
l ∇ · v dx+

∫
Ω
lc
∂p

∂t
=

∫
Ω
ql dx. (30)

In the MMsFEM discretisation, the second integral on the left hand side will
now give rise to a positive diagonal matrix U so that the corresponding coef-
ficient matrix for compressible flow problems becomes:B CT

C −U

 . (31)

Since U is non-singular, the Schur complement matrix with respect to U is

S = B + CTU−1C. (32)

This Schur complement matrix can be computed explicitly at a low cost and
is, unlike the Schur complement matrix with respect to B, sparse and has the
same sparsity structure as B. Moreover, if the time step is small, then the con-
dition number of S is close to that of B and the PCG method with an effective
preconditioner — for instance a sweep of a multigrid or domain decomposi-
tion algorithm — should converge quickly, and does not involve the solution
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of additional linear systems in the iterative loop. Hence, for compressible flow
problems, the preconditioning of the linear system that arises from the mixed
formulation (9) is less of a challenge. However, if the time step is very large, or
if compressibility effects are negligible, the ill-conditioning of the divergence
matrix CTC can influence the condition number of S and we might want to
use the alternative Schur decomposition in (27).

6 Numerical examples

In this section we will demonstrate that the MMsFEM-streamline is a robust
and viable alternative to upscaling-based reservoir simulation schemes. We
apply the current methodology to two test-cases with data taken from the
second model in the tenth SPE comparative solution project (SPE 10) [12].
The model was designed to benchmark different upscaling techniques and is
therefore a good test case for our methodology.

The reservoir model consists of a Tarbert formation in the top 35 layers and
an Upper Ness sequence in the bottom 50 layers, see Figure 3. The permeabil-
ity tensor is a diagonal tensor with equal permeability in the two horizontal
coordinate directions: Kx = Ky. Both formations are characterised by large
permeability variations, 8–12 orders of magnitude, but are qualitatively dif-
ferent, as can be seen from Figure 4. While the Tarbert formation has rela-
tively smooth permeability variations, the Upper Ness formation is fluvial and
contains channels that make the formation particularly hard to upscale. The
porosity field is strongly correlated to the permeability, and about 2.5% of the
blocks have zero porosity and are therefore considered to be inactive.

The physical parameters are as given in [12], except that we neglect compress-
ibility and gravity for simplicity in our simulations. The relative permeability
curves are given as

krw = (S∗)2, kro = (1− S∗)2, S∗ =
S − Swc

1− Swc − Sor

, (33)

with Swc = Sor = 0.2. The initial saturation is S0 ≡ Swc. Oil and water
viscosities are µo = 3.0 cP and µw = 0.3 cP, respectively, and the water
injection rate is 5000 bbl. per day. Each of the four producers are specified to
produce at 4000 psi bottom-hole pressure.

We compare solutions obtained with MMsFEM, using both the local bound-
ary conditions determined by (16)–(19) and the global conditions determined
by (16)–(17) and (20)–(21). To validate the performance of MMsFEM, these
solutions are compared with a reference solution obtained by solving the pres-
sure equation (3) directly at the subgrid scale using a finite-volume scheme
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Fig. 3. Well configuration for reservoir model used in the tenth SPE comparative
solution project. The model dimensions are 1200× 2200× 170 ft, and the fine and
coarse meshes consist of 60× 220× 85 and 5× 11× 17 grid cells, respectively.
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Fig. 4. Logarithm of horizontal permeability for layers in the Tarbert (left) and
Upper Ness formations (right).

with a standard two-point flux-approximation. We also compare the MMs-
FEM solutions with coarse-grid solutions obtained by a standard upscaling
method [20] and with fine-grid solutions obtained with the upscaling-based,
nested-gridding method introduced by Gautier, Blunt, and Christie [2].

In the upscaling technique, an upscaled diagonal permeability tensor is gen-
erated on the coarse grid by a flow simulation with a constant pressure drop
in one of the coordinate directions and no-flow boundary conditions in the
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other coordinate directions. The pressure equation (3) is then solved on the
coarse grid using a finite-volume scheme with two-point flux-approximation
and permeabilities given by the upscaled grid-block permeability tensors. This
upscaling is also applied as part of the nested-gridding method, but, in the
nested-gridding method the permeability-mobility product (Kλt) is upscaled.
The induced coarse-grid fluxes are then used to determine boundary condi-
tions for local subgrid problems in order to obtain a mass conservative velocity
field on the subgrid scale.

Since the nested-gridding method uses a coarse grid pressure solver to solve
(3) and streamline simulation to solve for fluid transport, it may be viewed
as an upscaling-based analogue to the proposed methodology and is hence a
natural method to compare with. However, to make the comparison between
our approach and the nested-gridding method as fair as possible, we use the
same inter-grid transfer operator to map the coarse grid fluxes onto a fine
grid velocity field for the nested-gridding method as we do for MMsFEM with
local boundary conditions. Hence, instead of using constant velocity boundary
conditions to recover the subgrid velocity field for the nested-gridding method,
as in [2], we use boundary conditions that are obtained by multiplying νij in
(17) with ν0

ij defined by (19) with the corresponding constant flux that we
obtain from the upscaled coarse grid solution.

6.1 Two quarter-five spots in two space dimensions

Before attacking the full three-dimensional SPE 10 reservoir model, we first
consider two quarter-five spot problems in two spatial dimensions. The poros-
ity and permeability data sets are extracted on a 60×60 grid from the top and
bottom layers, respectively, of the SPE 10 model. This means that Dataset 1 is
from the smooth Tarbert formation, whereas Dataset 2 is from the channelised
Upper Ness formation.

To assess the overall resolution of the flow pattern, we measure L1 errors in
saturation values given by

e(S) = ‖S − Sref‖1/‖Sref‖1. (34)

Table 1 reports errors measured with (34) for all four methods using varying
upscaling factors on both data sets. We see that the general trend for both
datasets is that MMsFEM with global boundary conditions is the most accu-
rate method, followed by MMsFEM with local boundary conditions and then
nested gridding and upscaling, in that order. We also observe that errors for
all methods are larger for the second dataset. The reason is that the second
dataset has much stronger heterogeneous structures and contains channelling
systems that are difficult to model with upscaling-based reservoir simulation
regimes.
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Table 1
Saturation field errors, e(S), for Dataset 1 (top) and Dataset 2 (bottom).

Upsc. factor Global BC Local BC Nested gridding Upscaled

2× 2 1.013e-02 1.094e-02 3.094e-02 6.801e-02

3× 3 1.219e-02 1.732e-02 3.814e-02 1.005e-01

5× 5 1.421e-02 2.889e-02 5.033e-02 1.497e-01

10× 10 2.523e-02 5.377e-02 7.643e-02 2.415e-01

2× 2 3.644e-02 4.132e-02 1.672e-01 2.383e-01

3× 3 4.360e-02 6.705e-02 1.868e-01 2.864e-01

5× 5 4.881e-02 9.659e-02 2.373e-01 3.812e-01

10× 10 8.477e-02 1.981e-01 4.848e-01 7.217e-01

Figure 5 shows saturation profiles for Dataset 2 after an injection of water
corresponding to 40% of the total pore volume in the reservoir. The grids are
upscaled by a factor ten in each coordinate direction so that the coarse grid
consists of only 6 × 6 blocks. The figure illustrates the improved resolution
obtained by using subgrid information when solving the fluid transport. In
particular, MMsFEM with global boundary conditions gives good resolution
of both the global flow pattern and the local fingering due to high-permeable
channels. MMsFEM with local boundary conditions resolves the global flow
pattern accurately, but misses some of the finer details along the x-axis. Nested
gridding is able to predict two of the major fingers, but over-predicts the flow
close to the x-axis. The upscaled simulation, on the other hand, has lost all
fine-scale information and only gives a crude approximation to the global flow
pattern.

Not surprisingly, the results in this section shows that there is a clear benefit,
as far as computational accuracy goes, in incorporating as much information
as possible into the boundary conditions for the base functions. Moreover,
even though nested gridding and MMsFEM with local boundary conditions
use the same inter-grid transfer operator to map the coarse grid fluxes onto
the subgrid velocity field, we see that MMsFEM performs consistently better
than nested gridding. This is to be expected since MMsFEM is defined so
that the coarse grid fluxes are coupled with the inter-grid transfer operator
in a mathematically rigorous way, whereas the two operators are completely
decoupled in the nested-gridding method.

22



50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

x (m)

y 
(m

)

−4

−2

0

2

4

6

8

(a) Horizontal permeability (log-
arithm)

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

x (m)

y 
(m

)

0

0.2

0.4

0.6

0.8

1

(b) Reference solution

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

x (m)

y 
(m

)

0

0.2

0.4

0.6

0.8

1

(c) Global BC

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

x (m)

y 
(m

)

0

0.2

0.4

0.6

0.8

1

(d) Local BC

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

x (m)

y 
(m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) Nested gridding
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Fig. 5. Permeabilities and water saturations near breakthrough time (0.4 PVI) for
Dataset 2. The upscaling factor is 10× 10 for all methods.

23



0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
at

er
cu

t

Producer A

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
at

er
cu

t

Producer B

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
at

er
cu

t

Producer C

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
at

er
cu

t

Producer D

Fine
Global BC
Local BC
Nested Gridding

Fine
Global BC
Local BC
Nested Gridding

Fine
Global BC
Local BC
Nested Gridding

Fine
Global BC
Local BC
Nested Gridding

Fig. 6. Watercut curves for the full three dimensional SPE 10 model.

6.2 Tenth SPE comparative solution project: Model 2

We now demonstrate the performance of MMsFEM on the full SPE benchmark
model. Figure 6 shows the water-cut curves wwc(t) for 2000 days of production
simulated by nested gridding and by MMsFEM with local and global boundary
conditions. In all simulations we used the time steps reported by StreamSim
in [12]; that is, 25 days up to day 250, 50 days up to day 500, 100 days up to
day 1000, and then 200 days.

The performance of MMsFEM with global boundary conditions is remarkably
good; for all four producers the water-cut curves almost match the reference
solution. This observation is confirmed by Table 2, which shows the relative
L1 errors of the water-cut curves defined as

e(wwc) =
∫
|wwc(t)− wref

wc(t)| dt/
∫
|wref

wc(t)| dt. (35)

Here wref
wc are the respective water-cut curves induced by the reference solu-

tion. We see that the measured discrepancy between wref
wc and the water-cut

curves produced by MMsFEM with global boundary conditions is only a few
percent for each producer. Such an accuracy can hardly be achieved on this
difficult dataset with any traditional upscaling method, particularly not with
an upscaling factor as large as 10×22×5. We also want to emphasise that the
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Table 2
Relative errors of the water-cut curves for the SPE case.

Global BC Local BC Nested gridding

Producer A 4.358e-02 1.390e-01 3.917e-01

Producer B 1.147e-02 1.025e-01 9.895e-02

Producer C 6.635e-02 2.611e-01 5.302e-02

Producer D 1.437e-02 9.350e-02 1.354e-01

Average 3.395e-02 1.491e-01 1.698e-01

results involved no tuning of parameters, except for choosing the time steps
and the coarse grid. In fact, our only criteria was to have the fine-grid as a
natural subgrid of the coarse grid, and to have a sufficiently small coarse grid
to reduce the time spent on linear algebra.

The results in Table 2 also show that, on average, MMsFEM with local bound-
ary conditions gives better results than the nested-gridding method, even
though the nested-gridding method gives the most accurate water-cut curve
of all three methods on Producer C.

7 Concluding Remarks

We have presented a novel method for accurate resolution of both global and
local flow patterns in large heterogeneous geomodels. The approach is based on
a combination of a multiscale discretisation method for the pressure equation
and a standard streamline method for the fluid transport equation. In the mul-
tiscale method, the pressure is computed on a coarsened grid using numerically
constructed approximation spaces that incorporate the local heterogeneities
of the elliptic operator on the underlying fine grid. Given the high efficiency of
the streamline method, the fluid transport equation is solved directly on the
fine grid using Darcy velocities obtained by utilising the subgrid structures
in the mixed FEM base functions that span the approximation space for the
Darcy velocity. Although gravity was not explicitly treated in the numerical
examples, it is well within the capabilities of the current methodology.

The key to obtain accurate subgrid velocity fields lies in the specification
of proper boundary conditions for the base functions. We have considered a
local approach, in which the boundary conditions reflect the local heteroge-
neous structures and accounts for a radial flow pattern in the proximity of
wells, and a global approach where the boundary conditions are determined
from the initial velocity field on the fine grid. The multiscale approaches have
been compared with both coarse grid simulations using a standard upscal-
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ing technique and a nested-gridding method that solves the pressure equation
on a coarse grid and the saturation equation on the fine grid using stream-
lines. The latter method serves as a natural upscaling-based counterpart of
our multiscale method with local boundary conditions.

The results show that the multiscale simulation method with global boundary
conditions is the most accurate and robust method. The results also show that
the corresponding multiscale method with local boundary conditions performs,
on average, better than the nested-gridding method. This trend has also been
verified on another three dimensional test case in [1], and in other simula-
tions conducted by the authors. The results therefore supports our claim that
multiscale methods combined with streamlines can give improved accuracy,
and may become a robust and efficient alternative to traditional upscaling ap-
proaches. In fact, we believe that this multiscale approach can lay the ground
for direct simulation of large, high-resolution geomodels obtained from reser-
voir characterisation.

In this paper we have only briefly touched upon the great flexibility of multi-
scale finite-element methods, which is their second, and maybe most important
advantage. Since the base functions are constructed numerically, they are not
restricted to polygonal elements as is the case for ordinary finite elements and
conventional finite-volume methods. Indeed, multiscale base functions can, at
least in principle, be constructed on coarse blocks of arbitrary shape. This gives
an enormous flexibility in handling complex grids as specified by geologists to
model natural rock phenomena like faults, eroded cells, etc. However, how well
the multiscale approach performs on unstructured and largely irregular grids
is still unsettled and is an interesting topic for further research. Preliminary
results show that the methodology performs well on irregular corner-point
grids without faults or throws.

We also believe that it is possible to extend the methodology to mildly com-
pressible flows and to multicomponent or three-phase flows. For three-phase
flow, the interesting question is how the tighter coupling between the pressure
and the fluid transport equations affects the dynamical behaviour of the local
basis functions. In particular, the strong coupling between the pressure equa-
tion and the phase transport equations may imply that one needs to update
the base functions more often. Hence, an issue that should be given further
attention is the use of adaptive strategies to speed up multi-phase flow sim-
ulations. This includes regenerating base functions only in regions where the
total mobility has changed significantly, and exploiting the information in the
multiscale base functions to construct efficient adaptive numerical schemes for
the phase transport equation.

Finally, we have not discussed the numerical linear algebra in great detail, a
topic which is of great importance if we want to apply the proposed method-
ology to large real-field geomodels. This topic is part of ongoing research.
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