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Abstract

Accurate geological modelling of features such as faults, fractures or
erosion requires grids that are flexible with respect to geometry. Such grids
generally contain polyhedral cells and complex grid cell connectivities.
The grid representation for polyhedral grids in turn affects the efficient
implementation of numerical methods for subsurface flow simulations.

Methods based on two-point flux approximations are known not to
converge on grids that are not K orthogonal. In recent years, there has
been significant research into mixed, multipoint, and mimetic discretisa-
tion methods that are all consistent and convergent. Furthermore, so-
called multiscale methods have lately received a lot of attention.

In this paper we consider a Matlab® implementation of consistent
and convergent methods on unstructured, polyhedral grids. The main
emphasis is put on flexibility and efficiency with respect to different grid
formats, and in particular hierarchical grids used in multiscale methods.
Moreover, we discuss how generic implementations of various popular
methods for pressure and transport ease the study and development of
advanced techniques such as multiscale methods and applications such as
optimal control or well placement.

1 Introduction

Reliable computer modelling of subsurface flow is much needed to overcome
important challenges such as sustainable use and management of the earth’s
groundwater systems, geological storage of CO2 to mitigate the anthropological
increases in the carbon content of the atmosphere, and optimal utilisation of
hydrocarbon reservoirs. Indeed, the need for tools that help us understand
flow processes in the subsurface is probably greater than ever, and increasing.
More than fifty years of prior research in this area has led to some degree of
agreement in terms of how subsurface flow processes can be modelled adequately
with numerical simulation technology.

To describe the subsurface flow processes mathematically, two types of mod-
els are needed. First, one needs a mathematical model that describes how fluids
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flow in a porous medium. These models are typically given as a set of partial
differential equations describing the mass-conservation of fluid phases, accom-
panied by a suitable set of constitutive relations. Second, one needs a geological
model that describes the given porous rock formation (the reservoir). The geo-
logical model is realised as a grid populated with petrophysical or hydrological
properties that are used as input to the flow model, and together they make
up the reservoir simulation model. The geological model must also describe the
geometry of the reservoir rock and in particular model geological horizons and
major faults. This requires grids that are flexible with respect to geometry (and
topology). Stratigraphic grids have been popular for many years and are the
current industry standard. These grids are formed by extruding areal grids de-
fined along geological surfaces to form volumetric descriptions. However, more
complex methods based on unstructured grids are gaining in popularity as a
means to modelling complex fault systems, horizontal and multilateral wells,
etc. In either case, grids representing realistic reservoirs generally contain poly-
hedral cells and complex grid cell connectivities. The grid representation for
polyhedral grids in turn affects the efficient implementation of numerical meth-
ods for subsurface flow simulations.

The industry-standard for discretising flow equations is the two-point flux-
approximation method, which for a 2D Cartesian grid corresponds to a standard
five-point scheme for the elliptic Poisson equation. Although widely used, this
method is known not to converge on grids that are not K-orthogonal. In recent
years, there has been significant research into mixed [7], multipoint [4], and
mimetic [8] discretisation methods that are all consistent and convergent on
rougher grids. Herein, we will focus on low-order, cell-centred methods that do
not require specific reference elements and thus can be applied to grids with
general polygonal and polyhedral cells.

Another major research challenge is the gap between simulation capabilities
and the level of detail available in current geological models. Despite an as-
tonishing increase in computer power, and intensive research on computation
techniques, commercial reservoir simulators can seldom run simulations directly
on highly resolved geological grid models that may contain from one to a hun-
dred million cells. Instead, coarse-grid models with grid-blocks that are typically
ten to a thousand times larger are built using some kind of upscaling of the geo-
physical parameters [15, 12]. How one should perform this upscaling is not
trivial. In fact, upscaling has been, and probably still is, one of the most active
research areas in the oil industry. Lately, however, so-called multiscale methods
[16, 14, 17] have received a lot of attention. In these methods, coarsening and
upscaling needed to reduce the number of degrees of freedom to a level that
is sufficient to resolve flow physics and satisfy requirements on computational
costs is done implicitly by the simulation method.

A major goal of the activities in our research group is to develop efficient
simulation methodologies based on accurate and robust discretisation methods;
in particular, we have focused on developing multiscale methods. To this end,
we need a toolbox for rapid prototyping of new ideas that enables us to eas-
ily test the new implementations on a wide range of models, from small and
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highly idealised grid models to large models with industry-standard complexity.
When developing new computational methodologies, flexibility and low devel-
opment time is more important than high code efficiency, which will typically
only be fully achieved after the experimental programming is completed and
ideas have been thoroughly tested. For a number of years, we have therefore
divided our code development in two parts: For prototyping and testing of new
ideas, we have used Matlab, whereas solvers aimed at high computational per-
formance have been developed in a compiled language (i.e., using FORTRAN,
C, or generic programming in C++).

This has resulted in a comprehensive set of routines and data structures for
reading, representing, processing, and visualising unstructured grids, with par-
ticular emphasis on the corner-point format used within the petroleum industry
and hierarchical grids used in multiscale methods. To enable other researchers
to benefit from our efforts, these routines have been gathered in the Matlab
Reservoir Simulation Toolbox (MRST), which is released under the GNU Gen-
eral Public License (GPL). The first releases are geared towards single- and
two-phase flow and contain a set of mimetic and multiscale flow solvers and a
few simple transport solvers capable of handling general unstructured, polyhe-
dral grids.

The main purpose of this paper is to present MRST and demonstrate its
flexibility and efficiency with respect to different grid formats, and in particular
hierarchical grids used in multiscale methods. Secondly, we present a class of
mimetic methods that incorporates several well-known discretisation methods
as special cases on simple grid while at the same time providing consistent
discretistions on grids that are not K-orthogonal. Finally, we discuss how generic
implementations of various popular methods for pressure and transport ease
the study and development of advanced techniques such as multiscale methods,
flow-based gridding, and applications such as optimal control or well placement.

2 The Matlab Reservoir Simulation Toolbox

The toolbox has the following functionality for rapid prototyping of solvers for
flow and transport:

� grid structure, grid factory routines, input/processing of industry-standard
formats, real-life and synthetic example grids

� petrophysical parameters and incompressible fluid models (our in-house
development version also has support for compressible black-oil fluids),
very simplified geostatistical routines

� routines for setting and manipulating boundary conditions, sources/sinks,
and well models

� structure for reservoir state (pressure, fluxes, saturations, compositions,
. . . )
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� visualisation routines for scalar cell and face data

Additionally, the toolbox contains several flow and transport solvers which may
be readily combined using an operator splitting framework. In particular, we
provide an implementation of the multiscale mixed finite-element method [3],
working on unstructured, polyhedral grids.

The toolbox assumes that all physical quantities are given in a consistent
system of units, preferably the strict SI system. However, to assist the user,
MRST provides conversion to/from common units in reservoir description.

We will now go into more details about some of the components outlined
above. The interested reader should also review the tutorials included in the
current release.

2.1 Grids

A key requirement for MRST is that it should support a large variety of grid
types. To avoid having a large number of different and potentially incompatible
grid representations, all grids in MRST are assumed to consist of a set of non-
overlapping polyhedral cells, where each cell can have a varying number of planar
faces that match the faces of the cell’s neighbours. Grids with non-matching
faces, e.g., corner-point and other extruded grids, are therefore converted into
matching grids by splitting non-matching faces into a set of matching (sub)faces.
All grids are stored in a general format in which we explicitly represent cells,
faces, and vertexes and the connections between cells and faces. Hence, we have
sacrificed some of the efficiency attainable by exploiting special structures in a
particular grid type for the sake of generality and flexibility.

The grid structure in MRST contains three fields—cells, faces, and nodes—
that specify individual properties for each individual cell/face/vertex in the grid.
The nodes structure is simple, it contains the number of nodes Nn and an Nn×d
array of physical nodal coordinates in Rd. The cells structure contains the
number of cells Nc, an array cells.faces giving the global faces connected to
a given cell, and an indirection map into cells.faces that gives the number of
faces per cell. The cells.faces array has nf × 2 elements defined so that if
cells.faces(i,1)==j, then global face cells.faces(i,2) is connected to global
cell number j. To conserve memory, only the last column is stored, whereas
the first column can be derived from a run-length encoding of the indirection
map. The cells structure may optionally contain an array that maps internal
cell indexes to external cell indexes, which is useful e.g., if the model contains
inactive cells. Likewise, the faces structure contains the number of global faces,
an array faces.nodes of vertexes connected to each face, an indirection map, and
an array neighbors giving neighbouring information (face i is shared by global
cells neighbors(i,1) and neighbors(i,2)). In addition, the grid may contain a
label type which records the grid construction history. Finally, grids supporting
an underlying logical Cartesian structure also include the field cartDims. The
grid structure is illustrated in Figure 1 for a triangular grid with eight cells.

MRST contains several grid-factory routines for creating structured grids,
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Figure 1: Illustration of the cell and faces fields of the grid structure: cell
numbers are marked by circles, node numbers by squares, and face numbers
have no marker.

including regular Cartesian, rectilinear, and curvilinear grids, as well as unstruc-
tured grids, including Delaunay triangulations and Voronoi grids, and 3D grids
created by extrusion of 2D shapes. Most important, however, is the support
for the industry-standard corner-point grids given by the Eclipse input deck. In
Figure 2 we show four examples of grids and the commands necessary to create
and display them.

As we will see below, specific discretisation schemes may require other prop-
erties not supported by our basic grid class: cell volumes, cell centroids, face
areas, face normals, and face centroids. Although these properties can be com-
puted from the geometry (and topology) on the fly, it is often useful to pre-
compute and include them explicitly in the grid structure G. This is done by
calling the generic routine G=computeGeometry(G).

2.2 Petrophysical Parameters

All flow and transport solvers in MRST assume that the rock parameters are
represented as fields in a structure. Our naming convention is that this structure
is called rock, but this is not a requirement. The fields for porosity and perme-
ability, however, must be called poro and perm, respectively. The porosity field
rock.poro is a vector with one value for each active cell in the corresponding
grid model. The permeability field rock.perm can either contain a single column
for an isotropic permeability, two or three columns for a diagonal permeabil-
ity (in two and three spatial dimensions, respectively), or three or six columns
for a symmetric, full tensor permeability (in two and three spatial dimensions,
respectively). In the latter case, cell number i has the permeability tensor

Ki =
[
K1(i) K2(i)
K2(i) K3(i)

]
, Ki =

K1(i) K2(i) K3(i)
K2(i) K4(i) K5(i)
K3(i) K5(i) K6(i)

 ,
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dx = 1−0.5*cos((−1:0.1:1)*pi);
x = −1.15+0.1*cumsum(dx);
G = tensorGrid (x , sqrt (0:0 .05 :1));
plotGrid (G );

load seamount % Matlab standard dataset
g = pebi( tri2grid ( delaunay (x ,y ),[ x (:) y (:)]))
G = makeLayeredGrid (g , 5);
plotGrid (G ), view(−40, 60),

G = processGRDECL ( ...
simpleGrdecl ([20, 10, 5], 0.12 ));

plotGrid (G , 'FaceAlpha',0.8);
plotFaces (G , find ( G.faces.tag >0), ...

'FaceColor','red' );
view (40,40), axis off

grdecl = readGRDECL ( 'GSmodel.grdecl');
G = processGRDECL ( grdecl );
G=G(1); % pick 1st of two disconnected parts
plotGrid (G , 'EdgeAlpha',0.1);
view (0,70), axis tight off

Figure 2: Examples of grids and the MRST statements necessary to create them.
The upper-left plot shows a standard tensor-product Cartesian grid. In the upper-
right plot we start from an unstructured point set (the data file seamount.mat that is
distributed with Matlab), from which we create a 2D Voronoi grid that is extruded to
a 3D model consisting of five layers. The lower-left plot shows an example of a corner-
point grid with a single sloping fault and wavy top- and bottom surfaces. The lower-
right plot shows a real reservoir from offshore Norway; the data file GSmodel.grdecl

is unfortunately not yet available for public download.
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Figure 3: Two examples of MRST’s simplified geostatistics. The left plot shows a
50 × 20 porosity field generated as a Gaussian field with a larger filter size in the x-
direction than in the y-direction. The right plot shows a stratigraphic grid with a single
fault and four geological layers, each with a log-normal permeability distribution.

where Kj(i) is the entry in column j and row i of rock.perm. Full-tensor, non-
symmetric permeabilities are currently not supported in MRST. In addition to
porosity and permeability, MRST supports a field called ntg that represents the
net-to-gross ratio and consists of either a scalar or a single column with one
value per active cell.

Given the difficulty of measuring rock properties, it is common to use geo-
statistical methods to make realisations of porosity and permeability. MRST
contains two very simplified methods for generating geostatistical realisations.
As a simple approximation to a Gaussian field, we generate a field of indepen-
dent, normally distributed variables and convolve it with a Gaussian kernel.
This method is used in two different routines, gaussianField and logNormLayers

that are illustrated in the following examples.

Example 1 (Random Petrophysical Variables) First, we generate the poros-
ity φ as a Gaussian field taking values in the interval [0.2, 0.4]. To get a crude
approximation to the permeability-porosity relationship, we assume that our
medium is made up of uniform spherical grains of diameter dp = 10µm, for
which the specific surface area is Av = 6/dp. Using the Carman–Kozeny rela-
tion, we can then calculate the isotropic permeability K from

K =
1

72τ
φ3d2

p

(1− φ)2
,

where we further assume that τ = 0.81. Then, petrophysical parameters can
be generated as follows (the resulting porosity field is shown in the left plot of
Figure 3):

G = cartGrid([50 20]);
p = gaussianField(G.cartDims, [0.2 0.4], [11 3], 2.5); p = p(:);
rock.poro = p;
rock.perm = p.ˆ3.*(1e−5)ˆ2./(0.81*72*(1−p).ˆ2);

Next, we will use the same Gaussian field methodology to generate layered
realisations, for which the permeability in each geological layer is independent of
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the other layers and log-normally distributed. Each layer can be represented by
several grid cells in the vertical direction. Here, we generate a stratigraphic grid
with wavy geological faces and a single fault and specify four geological layers
with mean values of 100 mD, 400 mD, 50 mD, and 350 mD from top to bottom
(stratigraphic grids are numbered from the top and downward)

G = processGRDECL(simpleGrdecl([50 30 10], 0.12));
K = logNormLayers(G.cartDims, [100 400 50 350], 'indices', [1 2 5 7 11]);

The layers are represented with one, three, two, and four grid cells, respec-
tively, in the vertical direction. The resulting permeability is shown in the right
plot of Figure 3.

Using smoothed Gaussian fields to generate random petrophysical variables
is, of course, a gross simplification of geostatistics. For more realistic dis-
tributions of petrophysical parameters, the reader should consider using e.g.,
GSLIB [11] or commercial software for geological modelling.

2.3 Discretisation of Flow Equations

To keep technical details at a minimum, we will in the following consider a
simplified set of single-phase flow equations,

∇ · ~v = q, ~v = −K∇p, in Ω ⊂ Rd. (1)

Here, ~v denotes the Darcy velocity, p pressure, and K permeability. All exter-
nal boundaries ∂Ω are equipped with either prescribed pressure (Dirichlet) or
prescribed flux (Neumann) boundary conditions. Let ui be the vector of out-
ward fluxes of the faces of Ωi and let pi denote the pressure at the cell centre
and πi the face pressures. Discretisation methods used for reservoir simulation
are constructed to be locally conservative and exact for linear solutions. Such
schemes can be written in a form that relates these three quantities through a
matrix T i of one-sided transmissibilities,

ui = T i(eipi − πi), ei = (1, . . . , 1)T
. (2)

Examples include the two-point flux-approximation method [6], the lowest-order
mixed finite-element methods [7], multipoint flux approximation schemes [5, 13,
4], and recently developed mimetic finite-difference methods [8]. Two-point
discretisations give diagonal transmissibility matrices and are not convergent
for general grids. Mixed, multipoint, and mimetic methods are consistent and
convergent on non-orthogonal grids, but lead to full matrices T i. Such schemes
will be discussed in more detail in Section 3; for now we only assume that
there exists a consistent scheme on the form (2) that is convergent for fully
unstructured, polyhedral grids.

In the following, we only consider schemes that may be written in hybridised
mixed form, although MRST also supports mixed forms. Note that this re-
striction, which excludes some multipoint schemes, is only imposed to ease the
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presentation and give a uniform formulation of a large class of schemes. The
underlying principles may be applied to any reasonable scheme. By augmenting
(2) with flux and pressure continuity across cell faces, we obtain the following
linear system  B C D

CT 0 0
DT 0 0

 u
−p
π

 =

0
q
0

 . (3)

Here, the first row in the block-matrix equation corresponds to Darcy’s law in
the form (2) for all grid cells, the second row corresponds to mass conservation
for all cells, whereas the third row expresses continuity of fluxes for all cell faces.
Thus, u denotes the outward face fluxes ordered cell-wise (fluxes over interior
faces and faults appear twice with opposite signs), p denotes the cell pressures,
and π the face pressures. The matrices B and C are block diagonal with each
block corresponding to a cell. For the two matrices, the i’th blocks are given as
T−1
i and ei, respectively. Similarly, each column of D corresponds to a unique

face and has one (for boundary faces) or two (for interior faces) unit entries
corresponding to the index(s) of the face in the cell-wise ordering.

The hybrid system (3) can be solved using a Schur-complement method and
Matlab’s standard linear solvers or third-party linear system solver software
such as AGMG [28]. A block-wise Gaussian elimination for (3) yields a positive-
definite system (the Schur complement) for the face pressures,(

DTB−1D − F TL−1F
)
π = F TL−1q, (4)

where F = CTB−1D and L = CTB−1C. Given the face pressures, the cell
pressures and fluxes can be reconstructed by back-substition, i.e., solving

Lp = q + F Tπ, Bv = Cp−Dπ.

Here, the matrix L is by construction diagonal and computing fluxes is therefore
an inexpensive operation. It is also worth noting that we only need B−1 in the
solution procedure above. Many schemes—including the mimetic method, the
MPFA-O method, and the standard two-point scheme—yield algebraic approx-
imations for the B−1 matrix. Thus, (3) encompasses a family of discretisation
schemes whose properties are determined by the choice of B, which we will
discuss in more detail in Section 3.1.

2.4 Putting it all Together

In this section, we will go through a very simple example to give an overview of
how to set up and use a discretisation as introduced in the previous section to
solve the single-phase pressure equation

∇ · ~v = q, ~v = −K

µ

[
∇p+ ρg∇z

]
. (5)

First, we construct a Cartesian grid of size nx × ny × nz cells, where each cell
has dimension 1 × 1 × 1 m and set an isotropic and homogeneous permeability
of 100 mD, a fluid viscosity of 1 cP, and a fluid density of 1014 kg/m3:
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nx = 20; ny = 20; nz = 10;
G = computeGeometry(cartGrid([nx, ny, nz]));
rock.perm = repmat(100 * milli*darcy, [G.cells.num, 1]);
fluid = initSingleFluid('mu', 1*centi*poise, 'rho', 1014*kilogram/meterˆ3);
gravity reset on

The simplest way to model inflow or outflow from the reservoir is to use a fluid
source/sink. Here, we specify a source with flux rate of 1 m3/day in each grid
cell.

c = (nx/2*ny+nx/2 : nx*ny : nx*ny*nz) .';
src = addSource([], c, ones(size(c)) ./ day());

Flow solvers in MRST automatically assume no-flow conditions on all outer
(and inner) boundaries; other types of boundary conditions need to be specified
explicitly. To draw fluid out of the domain, we impose a Dirichlet boundary
condition of p = 10 bar at the global left-hand side of the model.

bc = pside([], G, 'LEFT', 10*barsa());

Here, the first argument has been left empty because this is the first bound-
ary condition we prescribe. The left plot in Figure 4 shows the placement of
boundary conditions and sources in the computational domain. Next, we con-
struct the system components for the hybrid mimetic system (3), with a mimetic
discretisation, based on input grid and rock properties.

S = computeMimeticIP(G, rock, 'Verbose', true);

Rather than storing B, we store its inverse B−1. Similarly, the C and D blocks
are not represented in the S structure; they can easily be formed explicitly
whenever needed, or their action can easily be computed.

Finally, we compute the solution to the flow equation. To this end, we must
first create a state object that will be used to hold the solution and then pass
this objects and the parameters to the incompressible flow solver.

rSol = initResSol(G, 0);
rSol = solveIncompFlow(rSol, G, S, fluid,'src', src, 'bc' , bc);
p = convertTo(rSol.pressure(1:G.cells.num), barsa() );

Having computed the solution, we convert the result back to the unit bars. The
right plot in Figure 4 shows the corresponding pressure distribution, where we
clearly can see the effects of the boundary conditions, the source term, and
gravity.

The same basic steps can be repeated on (almost) any type of grid; the only
difference is placing the source terms and how to set the boundary conditions,
which will typically be more complicated on a fully unstructured grid. We will
come back with more examples later in the paper, but then we will not explic-
itly state all details of the corresponding MRST scripts. Before giving more
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Figure 4: Example of a simple flow driven by a column of source cells and a Dirichlet
boundary condition. The left plot shows the model setup and the right plot the
corresponding pressure solution.

examples, however, we will introduce the multiscale flow solver implemented in
MRST.

2.5 Multiscale Flow Simulation

Multiscale flow solvers [16, 14] can be seen as numerical methods that take a
fine-scale model as input, but solve for a reduced set of unknowns defined on
a coarse grid to produce a solution that has both coarse-scale and fine-scale
resolution. A key characteristic with multiscale methods is that they incorpo-
rate fine-scale information into a set of coarse-scale equations in a way that is
consistent with the local property of the differential operator. In an abstract
formulation, a multiscale method uses two operators: a compression (or restric-
tion) operator that takes information from the fine scale to the coarse scale,
and a reconstruction (or prolongation) operator that takes information from
the coarse scale to the fine scale. The compression operator is used to reduce
the system of discretised flow equations on a fine grid to a system with signif-
icantly fewer unknowns defined on a coarse grid. Similarly, the reconstruction
operator is used to construct an approximate fine-scale solution from the solu-
tion computed on the coarse scale. The reconstruction operators are typically
computed numerically by solving a localised flow problem as in an upscaling
method.

Different multiscale flow solvers are distinguished by how they define their
degrees of freedom and the compression and reconstruction operators. In the
multiscale finite-volume (MsFV) method [17, 31], the coarse-scale degrees-of-
freedom are associated with pressure values at the vertexes of the coarse grid.
The reconstruction operator is associated with pressure values and is defined by
solving flow problems on a dual coarse grid. (In addition, the method needs to
solve a local flow problem on the primal coarse grid to recover conservative fine-
scale fluxes). In the multiscale mixed finite-element (MsMFE) method [9, 3],
the coarse-scale degrees-of-freedom are associated with faces in the coarse grid
(coarse-grid fluxes) and the reconstruction operator is associated with the fluxes
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and is defined by solving flow problems on a primal coarse grid. In the following,
we will present the MsMFE method in more detail. To this end, we will use a
finite-element formulation, but the resulting discrete method will have all the
characteristics of a (mass-conservative) finite-volume method.

The multiscale method implemented in MRST is based on a hierarchical
two-level grid in which the blocks Ωi in the coarse simulation grid consist of a
connected set of cells from the underlying fine grid, on which the full heterogene-
ity is represented. In its simplest form, the approximation space consists of a
constant approximation of the pressure inside each coarse block and a set of ve-
locity basis functions associated with each interface between two coarse blocks.
Consider two neighbouring blocks Ωi and Ωj , and let Ωij be a neighbourhood
containing Ωi and Ωj . The basis functions ~ψij are constructed by solving

~ψij = −K∇pij , ∇ · ~ψij =


wi(x), if x ∈ Ωi,
−wj(x), if x ∈ Ωj ,

0, otherwise,
(6)

in Ωij with ~ψij ·~n = 0 on ∂Ωij . If Ωij 6= Ωi∪Ωj , we say that the basis function is
computed using overlap or oversampling. The purpose of the weighting function
wi(x) is to distribute the divergence of the velocity, ∇ · ~v, over the block and
produce a flow with unit flux over the interface ∂Ωi ∩ ∂Ωj , and the function
is therefore normalised such that its integral over Ωi equals one. Alternatively,
the method can be formulated on a single grid block Ωi by specifying a flux
distribution (with unit average) on one face and no-flow condition on the other
faces, see [1] for more details. In either case, the multiscale basis functions—
represented as vectors Ψij of fluxes—are then collected as columns in a matrix
Ψ, which will be our reconstruction operator for fine-scale fluxes. To define
the compression operator, we introduce two prolongation operators I and J
from blocks to cells and from coarse interfaces to fine faces, respectively. The
operator I is defined such that element ij equals one if block number j contains
cell number i and zero otherwise; J is defined analogously. The transposed of
these operators will thus correspond to the sum over all fine cells of a coarse block
and all fine-cell faces that are part of the faces of the coarse blocks. Applying
these compression operators and ΨT to the fine-scale system, we obtain the
following global coarse-scale system ΨTBΨ ΨTCI ΨTDJ

ITCTΨ 0 0
J TDTΨ 0 0

 uc

−pc
πc

 =

 0
ITq

0

 . (7)

Once (7) is solved, the fine-scale fluxes can be obtained immediately as v = Ψuc.
The basic steps of the multiscale algorithm are summarised in Figure 5. More
details about how to include wells in a appropriate way is given in [30].

Having introduced the multiscale method, we should explain how to use it.
To this end, we consider a simple example.
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Figure 5: Key steps of the multiscale method: (1) blocks in the coarse grid are defined
as connected collections of cells from the fine grid; (2) a local flow problem is defined
for all pairs of blocks sharing a common face; (3) the local flow problems are solved
and the solutions are collected as basis functions (reconstruction operators); and (4)
the global coarse-system (7) is assembled and solved, then a fine-scale solution can be
reconstructed.

Example 2 (Log-Normal Layered Permeability) In this example, we will
revisit the setup from the previous section. However, we neglect gravity and
instead of assuming a homogeneous permeability, we increase the number of
cells in the vertical direction to 20, impose a log-normal, layered permeability
as shown in Figure 3, and use the layering from the permeability to determine
the extent of the coarse blocks; a large number of numerical experiments have
shown that the MsMFE method gives best resolution when the coarse blocks
follow geological layers [3]. In MRST, this amounts to:

[K, L] = logNormLayers([nx, ny, nz], [200 45 350 25 150 300], 'sigma', 1);
:
p = processPartition(G, partitionLayers(G, [Nx, Ny], L) );
:
plotCellData(G,mod(p,2));
outlineCoarseGrid(G,p,'LineWidth',3);

The permeability and the coarse grid are shown in Figure 6. Having parti-
tioned the grid, the next step is to build the grid structure for the coarse grid
and generate and solve the coarse-grid system.

CG = generateCoarseGrid(G, p);
CS = generateCoarseSystem(G, rock, S, CG, ...

ones([G.cells.num, 1]),'bc' , bc, ' src ' , src);
xMs = solveIncompFlowMS(initResSol(G, 0.0), G, CG, ...

p, S, CS, fluid,'src ' , src, 'bc' , bc);

The multiscale pressure solution is compared to the corresponding fine-scale
solution in Figure 6. The solutions appear to be quite close in the visual norm.

For single-phase problems, a multiscale flow solver without any form of paral-
lelism will have a computational cost that is comparable to that of a fine-scale
flow solver equipped with an efficient linear routine, i.e., Matlab’s built-in
solvers for small problems and e.g., the AGMG solver [28] for large problems.
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Figure 6: Comparison of the MsMFE and fine-scale mimetic flow solvers for the setup
from Figure 4. The top plots show the layered permeability field and the corresponding
partitioning into coarse blocks. The lower plots show the fine-scale pressure solution
(left) and the multiscale solution (right).

The advantage of a multiscale solver comes first when considering multiphase
flow problems, as we will discuss in the next section.

2.6 Two-Phase Flow

Two-phase incompressible flow of a wetting and non-wetting fluid can be de-
scribed by the following system of equations:

∇ · ~v = q, ~v = −K
[
λ∇p+ (λwρw + λnρn)g∇z

]
, (8)

φ
∂sw
∂t

+∇ ·
(
fw(sw)

[
~v + λn(ρn − ρw)gK∇z

])
= qw. (9)

Here, ρα denotes the density, λα the mobility, and fα = λα/λ the fractional
flow of phase α, where λ = λn+λw is the total mobility. The industry-standard
approach is to use implicit discretisations and solve (8)–(9) as a fully-coupled
system. In MRST, on the other hand, our goal has been to obtain maximum
flexibility in combining different types of solvers. Hence, the toolbox assumes
a sequential solution strategy: First, (8) is solved with fixed saturation val-
ues to provide pressure and fluxes, and then the fluxes are used to evolve the
saturations according to (9). If necessary, the two steps can be iterated until
convergence in a suitable norm.

All flow solvers in MRST are fully applicable to the two-phase flow equa-
tion (8), except for the MsMFE method, which does not support gravity in
the current release of MRST. On the other hand, multiscale flow solvers are
developed mainly to be efficient for multiphase problems, and in particular for
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two-phase incompressible equations, where the key to computational efficiency
is reuse of previous computations. For a multiphase system, the basis functions
will become time-dependent when K is replaced by λK in (6), but this time-
dependence is weak for an incompressible system, and the basis functions can
therefore be computed initially and updated infrequently throughout a simula-
tion. Solving the coarse-scale problem (7) is usually inexpensive compared to
solving the corresponding fine-scale system or computing basis functions.

MRST supports two basic saturation solvers that both use a single-point
upwind discretisation. Dropping subscripts to denote phases and assuming no
gravity, they can be written in the form

sn+1
i = sni +

∆t
φi|ci|

(
max(qi, 0) + f(smi ) min(qi, 0)

)
− ∆t
φi|ci|

(∑
j

[
f(smi ) max(vij , 0) + f(smj ) min(vij , 0)

])
, (10)

Here, si is the average saturation in grid cell ci, vij denotes the flux over the face
between cells i and j. For m = n, the scheme is explicit, whereas for m = n+ 1,
we obtain an implicit scheme that is solved by a Newton–Raphson method. For
systems with gravity forces, MRST uses standard upstream mobility weighing;
that is, the upwind direction is determined independently for each phase using
the phase velocities ~vα.

The observant reader may have noticed that the capillary pressure is missing
in our two-phase model. In (8), capillary effects can be included by defining the
pressure as the global pressure, p = pn− pc, where the so-called complementary
pressure is defined through the relation ∇pc = fw∇(pn − pw).

So far, the paper has given a quick overview of the basic functionality and
solvers in MRST Release 2010a. In the next section, we will go into more de-
tails about consistent and convergent discretisations on unstructured polyhedral
grids, before we end the paper with an overview of how the resulting solvers can
be applied to more advanced examples, including solvers and functionality that
are not yet released publicly.

3 Mimetic Discretisation Methods

In this section we will discuss the mimetic method in more detail. We start by
discussing the inner product, which can be used to design the properties of the
method. Then we give a short discussion of Peacemann-type well models for
the method.

3.1 Inner Products

The mimetic method (see [8]) is defined in terms of an inner product M or
equivalently an inverse inner product T . As we have seen above, the system
(3) can be reduced to a linear equation that only involves the face pressures
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π, using a transformation that requires the computation of B−1. In this case,
only an inverse inner product is needed. In the following, we describe a few
inner products (and inverse inner products) while emphasising aspects of imple-
mentation and discuss specific properties of the different discretisations. The
implementation can be found in computeMimeticIP.m in MRST [25].

In the original method [8], inner products of discrete velocities are consid-
ered. In reservoir simulation however, it is more common to consider the face
fluxes as unknowns. Accordingly, we will consider inner products of fluxes rather
than velocities. We note here that the relation between the two is trivial, as
an inner product of velocities becomes an inner product for fluxes by pre- and
post-multiplying by the inverse area of the corresponding faces. Let A be the
diagonal matrix with aii the face area of the i-th face. Then the flux inner
product Mflux is related to the velocity inner product Mvel through

Mflux = A−1MvelA
−1. (11)

Henceforth we will only consider inner products for fluxes.
To yield a consistent discretisation of (1), an inner product matrix M or an

inverse inner product T must result in a discretisation which is exact for linear
pressures. This condition can be written as

MNK = C,

NK = TC,
(12)

where each row ~cTi of the matrix C is the vector pointing from the cell centroid
to the corresponding face centroid, and each row ~nT

i of N is the area weighted
normal vector. Furthermore, the inner product matrix must be positive definite.
Any inner product fulfilling these requirements (see [8] for the discrete flux case)
can be represented in the form

M =
1
|Ωi|

CK−1CT +Q⊥N
T
SMQ

⊥
N , (13)

where Q⊥N is an orthonormal basis for the null space of NT, and SM is any
positive definite matrix. In the code and the following examples, we use a null
space projection P⊥N = Q⊥NSMQ

⊥
N = I −QNQN

T where QN is a basis for the
space spanned by the columns of N . Similarly, the inverse inner products take
the form

T =
1
|Ωi|

NKNT +Q⊥C
T
SQ⊥C . (14)

We will now outline a few specific choices that are implemented in MRST.

IP SIMPLE. In MRST the default inner product reads

Q = orth(A−1N)

M =
1
|Ωi|

CK−1CT +
d|Ωi|

6 tr(K)
A−1(I −QQT)A−1

(15)
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with the approximate inverse

Q = orth(AC)

T =
1
|Ωi|

[
NKNT +

6
d

tr(K)A(I −QQT)A
]
.

(16)

This inner product was used in [3] inspired by [8] and was chosen to resemble the
the mixed Raviart–Thomas inner product (they are equal for scalar permeability
on orthogonal grids). Since this inner product is based on velocities, the pre- and
post-multiplication of (inverse) face areas appear, and it might not be obvious
that it fits into the formulations (13)–(14). However, after a small computation
one is convinced that the second part of (13) is invariant under multiplication by
P⊥N so its eigenspace corresponding to the non-zero eigenvalues must be equal
to the nullspace of NT. A similar argument holds for the inverse inner product.

Two-point and related. The TPFA method is the gold standard for prac-
tical reservoir simulation despite its theoretical shortcomings. Since the TPFA
requires a diagonal tensor, it is easily seen from (12) that this is only possible in
the case when the vectors K~ni and ~ci are parallel, i.e., the grid is K-orthogonal.
In any case (K-orthogonality or not), we define the diagonal TPFA transmissi-
bility tensor T by

T ii = ~ni ·K~ci/|~ci|2. (17)

This defines the unique TPFA method for K-orthogonal grids; the extension
to non-orthogonal grids is not unique, however, since the TPFA method does
not give a consistent discretisation in this case. Because of its simplicity, the
TPFA method is strictly monotone, which implies that the fluxes form a directed
acyclic graph, a property that can be used to accelerate the solution of the
transport equations considerably, as discussed in [27].

When written in its standard form, the TPFA method is cell-centred and thus
less computationally costly than face-centred methods that arise from a consis-
tent hybrid mimetic formulation. However, since the method is not consistent,
it will in many cases be necessary to investigate the grid-orientation effects of
the TPFA method before using it for realistic simulations. We therefore present
a mimetic-type discretisation that coincides with the TPFA method in its region
of validity, while at the same time giving a valid mimetic inner product for all
types of grids and permeability tensors. This minimises the need for investi-
gating other effects of the TPFA method, such as errors introduced by corners
and well modelling. An advantage of this method compared to using, e.g., an
MPFA method is that the implementation is simpler for general unstructured
grids. We call the corresponding method IP QTPFA and it is defined by

T =
1
|Ωi|

[
NKNT + 2P⊥C diag(NKNT)P⊥C

]
,

M = T−1.

(18)

We emphasise that this inner product evidently is invariant under coordinate
transformations, but will only be diagonal for K-orthogonal grids.
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Raviart–Thomas. Equation (1) is invariant when space and permeability
are transformed as ~x 7→ A~x and K 7→ ATKA, respectively. Because the inner
product (15) uses the trace of K as a scaling factor, it will not be invariant
under such transformations, since the trace of a matrix is only invariant under
similarity transformations, i.e., tr(AKA−1) = tr(K). However, we note that
for orthogonal transformations we have A−1 = AT.

To eliminate the transformation dependency of IP SIMPLE we introduce an
inner product that is equivalent to the mixed Raviart–Thomas inner product for
grids that are orthogonal and has the same principal axes as the permeability
tensor

M =
1
|Ω1|

CKCT +
|Ωi|
6
P⊥N

[
diag(NKNT)

]−1
P⊥N . (19)

We call this inner product for IP QRT. The corresponding quasi-inverse, which
is the exact inverse for orthogonal grids, reads

T =
1
|Ωi|

[
NKNT + 6P⊥C diag(NKNT)P⊥C

]
. (20)

This inner product will also, by the transformation property, be equal to the
Raviart–Thomas formulation for all cases that can be transformed to the above
case by an affine transformation. Using a mimetic inner product which is simpler
to calculate and equal to the mixed Raviart–Thomas inner product for all grid
cells is not possible because of the need to integrate the nonlinear function
introduced by the determinant of the Jacobian of the mapping from the grid
cell to the unit cell, in which the Raviart–Thomas basis functions are defined.

Local-flux mimetic MPFA. In addition to the above methods, which are
all based on the assumption of a positive-definite inner product and exactness
for linear flow, the MPFA method can be formulated as a mimetic method.
This was first done by [20, 23] and is called the local-flux mimetic formulation
of the MPFA method. In this case, all faces of a cell are such that each corner
is associated with d unique faces, where d is the dimension. The inner product
of the local-flux mimetic method gives exact result for linear flow and is block
diagonal with respect to the faces corresponding to each corner of the cell, but it
is not symmetric. The block-diagonal property makes it possible to reduce the
system into a cell-centred discretisation for the cell pressures. This naturally
leads to a method for calculating the MPFA transmissibilities. The crucial point
is to have the corner geometry in the grid structure and handle the problems
with corners which do not have three unique half faces associated. Currently
the MPFA-O method is formulated in such a way [20] and work has been done
for the MPFA-L method, but in this case the inner product will vary over the
different corners.

We notice the the inner products IP QTPFA in (18) and IP QRT in (20)
only differ by a constant in front of the regularisation part (the second term).
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TPFA MFD MPFA

Figure 7: Grid-orientation effects for a homogeneous domain with Dirichlet boundary
conditions (left,right) and no-flow conditions (top, bottom) computed with three differ-
ent pressure solvers in MRST. The permeability field is homogeneous with anisotropy
ratio 1 : 1000 aligned with the grid. The upper row shows streamlines visualizing the
velocity field, whereas the bottom row shows the pressure field.

Both methods belong to a family whose inverse inner product can be written in
the form

T =
1
|Ωi|

[
NKNT + tP⊥C diag(NKNT)P⊥C

]
M = T−1,

(21)

where t is a parameter that can be varied continuously from zero to infinity.

Example 3 (Grid-Orientation Effects and Monotonicity) It is well known
that two-point approximations are convergent only in the special case of K-
orthogonal grids. Mimetic and multipoint schemes, on the other hand, are
constructed to be consistent and convergent for rough grids and full-tensor per-
meabilities, but may suffer from pressure oscillations for full-tensor permeabil-
ities and large anisotropy ratios and/or high aspect ratio grids. In this exam-
ple, we use one of the example grids supplied with MRST to illustrate these
two observations. The routine twister normalises all coordinates in a rec-
tilinear grid to the interval [0, 1], then perturbs all interior points by adding
0.03 sin(πx) sin(3π(y−1/2)) to the x-coordinates and subtracting the same value
from the y coordinate before transforming back to the original domain. This cre-
ates a non-orthogonal, but smoothly varying, logically Cartesian grid.

To investigate grid-orientation effects, we impose a permeability tensor with
anisotropy ratio 1 : 1000 aligned with the x-axis and compute the flow resulting
from a prescribed horizontal pressure drop and no-flow conditions on the top and
bottom boundaries. Figure 7 shows pressure computed on a 100 × 100 grid by
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TPFA MFD MPFA

Figure 8: Monotonicity effects demonstrated with the same setup as in Figure 7, but
with the anisotropy ratio 1 : 1000 making an angle π/6 with the grid directions.

SIMPLE QRT QTPFA

Figure 9: Lack of monotonicity visualised by tracing streamlines for the velocity fields
computed by three mimetic pressure solvers in MRST for the same setup as in Figure 8.

the TPFA method, the mimetic method with inner product IP SIMPLE, and the
local-flux mimetic version of the MPFA-O method. To visualise the correspond-
ing velocity field, we also show streamlines traced by MRST’s implementation
of Pollock’s method. Whereas the mimetic and MPFA-O schemes produce the
expected result, the pressure and velocity solutions computed by TPFA show sig-
nificant grid-orientation effects and are obviously wrong.

In Figure 8, we have repeated the experiment with the tensor rotated by
π/6 on a grid with 11 × 11 cells. Again, we see that the solution computed
by the TPFA scheme is wrong. In this case, the pressures computed with the
mimetic and the MPFA-O schemes appear to be correct and have no discernible
oscillations. However, the streamline distributions clearly show that the resulting
velocity fields are highly oscillatory, in particular for the mimetic method with
the IP SIMPLE inner product. To compare the effect of using an approximate
inverse in the inner-product matrices, we have computed the velocity field for
the mimetic methods resulting from inner products (16), (20), and (18). From
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Table 1: Maximum error in cell pressure relative to maximum difference in cell-
pressure for the family of inner products in Equation (21). The corresponding
errors for the MPFA-O and the TPFA methods are 0.0074 and 0.035, respec-
tively.

Inner product (t) 0.5 1 2 3 4
Error 0.0328 0.0202 0.0088 0.0074 0.0082

Inner product (t) 5 6 7 10 100
Error 0.00959 0.0106 0.0114 0.0129 0.0172

the streamline plots shown in Figure 9, it is evident that both IP SIMPLE and
IP QRT yield more oscillatory velocity fields than the IP QTPF method.

Example 4 (Real-Field Model) In this example, we consider a synthetic 2D
model derived from the 3D simulation model of a reservoir from offshore Nor-
way. The original model is given as a 46× 112× 22 logically Cartesian corner-
point grid with 44,915 active cells. To assess grid-orientation effects introduced
by different inner-products, we consider only the layer ten from the top of the
model, which we flatten and modify so that the thickness of the layer is constant
and all pillars in the corner-point description are vertical. Wells are assigned
by keeping one perforation for some of the original wells. To generate a rep-
resentative analytical solution, we model each well as a logarithmic singularity
and set boundary conditions according to the solution obtained for the prescribed
well pattern in an infinite reservoir,

p(x, y) =
∑
i

qi
2πK/µ

ln
(√

(x− xi)2 + (y − yi)2
)
.

Figure 10 shows the pressure and the corresponding relative error for the IP QRT
method, as well as the error for the TPFA method. With the consistent mimetic
scheme, the error is localized around the wells, whereas it is up to 10 % and
distributed all over the reservoir for the TPFA method. (The full 3D model has
a much rougher geometry that contains pinch-outs, sloping faults, and eroded
layers, which all will contributed to larger grid-orientation effects for inconsis-
tent methods). Note that a well model can correct for errors in the vicinity of
the well, but not global errors as in the inconsistent TPFA method.

In Table 1 we report the maximum relative error in pressure for various
members of the inner-product family introduced above. For this particular grid,
the minimum error occurs around t = 3, which is a method somewhere between
the quasi-two-point and the quasi-Raviart–Thomas methods. The minimal error
is similar to the error of the MPFA-O method.

3.2 Finite Difference Stencils

To complete the discussion of the previously presented mimetic finite difference
methods we demonstrate a few of the resulting finite difference stencils that re-
late the interface pressure values in (4). In particular, we discretise the pressure
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Figure 10: Grid-orientation errors on a 2D cartoon of a real-field model. The upper-
left plot shows wells and streamlines tracing flow paths, the upper-right plot shows
the pressure field computed by the IP QRT inner product, the lower-left plot shows
the corresponding relative error, whereas the lower-right plot shows the error for the
TPFA method.

equation (1) with permeability K = I on a two-dimensional, equidistant grid,
∆x = ∆y = 1 using inner products already implemented in MRST. Figure 11
shows the results. We notice in particular that the ‘IP SIMPLE’ inner product
of equation (16) and the ‘IP QRT’ inner product of equation (21) with param-
eter t = 6 produce stencils that have both positive and negative off-diagonal
coupling terms. Moreover, setting t = 4 produces a stencil that resembles the
classical five-point discretisation scheme of the Laplace operator on a rotated
grid. Finally, if t ∈ (2, 4), all off-diagonal coupling terms are negative.

3.3 Well Modelling

Wells in reservoirs typically have small diameters compared to the size of the
simulation cells, and it is therefore common to employ a well index (productivity
index) WI to relate the local flow rate q to the difference between the well
pressure pw and numerically computed pressure pE in the perforated grid-cell
as follows

−q = λt(sE)WI(pE − pw). (22)
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Figure 11: Finite difference stencils for interface pressures when ∆x = ∆y = 1
and K = I.

Commonly used is Peaceman’s well index [29], which for a vertical well in a
Cartesian cell with dimensions ∆x×∆y ×∆z is given as

WI =
2πk∆z

ln(r0/rw)
. (23)

For isotropic media, k is given by K = kI, and r0 = 0.14(∆x2 + ∆y2)
1
2 . Here, r0

is the effective well-cell radius and can be interpreted as the radius at which the
actual pressure equals the numerically computed pressure. The validity of the
Peaceman well-index decreases rapidly with increasing near-well heterogeneity
and grid skewness. It is also important to note that the Peaceman well-index
is developed for the TPFA method and is not valid for other methods (such as
MFE method with exact integration or mimetic methods in general) because
different numerical methods in general give different well-block pressures. We
will now give a short description of how to extend Peaceman’s results to other
methods than TPFA; for a more extensive study of well models, we refer to [22].

Assuming steady-state, single-phase, horizontal flow in a homogeneous and
isotropic reservoir with radial flow near the well, there exists an analytical flow
model near the well given by

p(r) =
qµ

2πk∆z
ln
( r

rw

)
+ pw. (24)

We refer to [26, pages 150–153] for a derivation of this expression. Peaceman
used the five-spot pattern problem to derive both numerical and analytical ex-
pressions for r0 based on the relation above. However, the equivalent radius can
also be calculated by simulating an infinite reservoir with one well and radial
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Figure 12: Section of infinite reservoir with well and radial flow.

Table 2: The constant C(β) in the formula (25) for equivalent well radius for
mimetic methods as a function of the aspect ratio β of the well block.

Inner product (β) 1 2 4 8 16 32 64
IP SIMPLE 0.2926 0.2782 0.2520 0.2317 0.2198 0.2133 0.2100

flow, and we employ this method to calculate new equivalent radii for mimetic
methods.

The radial flow simulation is done by forcing appropriate flux boundary
conditions. Consider a section of the reservoir containing a well as displayed in
Figure 12, we set Fi = qθi/2π as flux boundary conditions on a face i. When the
resulting system is solved for pressure and flow, we use the analytical pressure
relation (24) to compute a numerical equivalent radius r0 from the pressure
values in the well-block and on one boundary face.

If we assume that the equivalent radius for mimetic methods is on the same
form as for TPFA shown above, then r0 will depend on the actual inner product
and the grid aspect ratio of the well block, β = ∆x/∆y, i.e,

r0(IP, β) = C(IP, β)(∆x2 + ∆y2)
1
2 . (25)

The constant C is given in Table 2 for selected β for the IP SIMPLE inner
product.

4 Advanced Examples

A main purpose of MRST is to provide an efficient toolkit for the development
and testing of new ideas. In this section, we present examples in which the
solvers described in the previous sections are applied to more advanced exam-
ples. We will also show examples of solvers and functionality that have not yet
been publicly released.

Given the importance of grid geometry on the quality of numerical com-
putations, it is crucial to have flexible tools that allow testing algorithms on
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Figure 13: Two-phase flow computed on a pillar grid constructed by extruding an
areal grid consisting of structured and unstructured parts: a radially refined grid,
a Cartesian grid along the outer boundary, a hexahedral grid in the interior, and
general polyhedral cells to glue everything together. The plots show permeability
(left), pressure field (middle), and water saturation after 5000 days.

many different types of grids. In the first example, we highlight the ability to
construct unstructured grids with complex connectivity and local refinement.

Example 5 (Flexible Gridding) In this example we construct a constrained
Voronoi grid from an initial distribution of points. Using the built-in Matlab
command voronoin, it is possible to construct uniform grids from uniform dis-
tributions of points. We extrude an unstructured areal grid with 4509 cells to a
faulted model with 5 layers. The areal grid consists of three parts: A Cartesian
grid at the outer boundary, a hexahedral grid in the interior, and a radial grid
with exponential radial refinement around the wells. The radial grids is refined
to an inner radius of 0.3 m.

As in the standard corner-point grid format, the extrusion process is accom-
plished by assigning pillars to each node in the areal grid. Each volumetric cell
in the extruded grid is given a set of z-coordinates for each of the nodes. The x
and y coordinates can be computed from the pillars associated with the cell.

To illustrate the use of this grid, we have sampled permeability and porosity
from layers 40–44 of Model 2 from the 10th SPE Comparative Solution Project
[10]. The permeability field is shown on the left in Figure 13. The wells are
modelled as Dirichlet boundaries with pressures set to 200 bar and 100 bar, re-
spectively, and we compute the pressure and water saturation with a sequentially
implicit scheme in time steps of 50 days using the mimetic flow solver. The oil-
water viscosity ratio is 10. The pressure and water saturation are shown after
5000 days of injection in Figure 13.

In the rest of this section, we will go through several examples taken from
our ongoing research activities, in which MRST is used to simulate flow on
polyhedral grids of varying complexity in 3D. By doing so, we hope to give the
reader a taste of the utility of the toolbox. We start by a short example which
demonstrates the applicability of the MsMFE method on unstructured grids in
3D. Although several of our papers have argued that the method can easily be
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Triangular coarse grid Multiscale pressure solution

PEBI coarse grid Multiscale pressure solution

Figure 14: Multiscale discretisation of a flow problem with linear pressure drop
on a triangular and a PEBI grid.

formulated on fully unstructured grids in 3D, the following is the first example
demonstrating the actual capability on grids that do not have an underlying
logically Cartesian structure.

Example 6 (Extruded Triangular and PEBI Grids) The MsMFE method
was previously demonstrated on Cartesian and logically Cartesian (corner-point)
grids, see [2, 19, 3]. However, the method is equally feasible on general, un-
structured grids provided there exists a suitable partitioning of the underlying
(fine-scale) grid. Figure 14 shows the solution of the single-phase flow prob-
lem (1) with isotropic, homogeneous K on a computational domain Ω that has
been discretised using both triangular and PEBI cells. These cells are subse-
quently partitioned into a coarse grid by means of the well-known software pack-
age METIS [18]. For simplicity, the PEBI grid was created as the Voronoi
diagram of the triangular grid and hence the fault is more irregular on this grid.
Despite the irregular block boundaries, the multiscale method is able to accu-
rately capture the linear pressure drop from the west to the east boundaries on
both grids.

The public version of MRST currently supports single-phase and two-phase
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Figure 15: Primary production from a gas reservoir computed by the MsMFE method.

flow. Our in-house version of MRST has compressible black-oil fluid models im-
plemented, along with several flow and transport solvers. In the last example,
we will demonstrate the use of one of our experimental multiscale flow solvers to
simulate compressible flow on a geological model with industry-standard com-
plexity.

Example 7 (Primary Production from a Gas Reservoir) In this exam-
ple, we will briefly discuss the use of the MsMFE method to compute primary
production from a gas reservoir. As our geological model, we will use one of the
shallow-marine realisations from the SAIGUP study [24]. In our current in-
house implementation of compressible black-oil models in the MsMFE method,
compressibility is handled using a mixed residual formulation[

B C

CT P

] [
ums + ûν+1

pms + p̂ν+1

]
=
[

0
Ppn + V uν

]
,

for which the elliptic multiscale basis functions act as predictors and a parabolic
correction is computed using a standard (non)overlapping Schwarz domain-
decomposition method. The method then iterates on the multiscale solution and
the corrections until the fine-scale residual is below a prescribed tolerance. The
geological model consists of 40×120×20 cells (see Figure 15) and is assumed to
be initially filled with an ideal gas at 200 bar pressure. The reservoir is produced
by a single producer, operating at a constant bottom-hole pressure of 150 bar.
Figure 15 compares the fine-scale reference solution with multiscale solutions
for different tolerances; as our measure, we have used the rate in the well perfo-
ration. Except for the coarsest tolerance, 5·10−2, the multiscale solution appears
to overlap with the fine-scale reference solution.

Many reservoir management challenges can be cast as mathematical optimi-
sation problems. Examples include data assimilation where a misfit function is
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to be minimised, and finding optimal well controls to maximise some economic
performance measure. A popular approach to obtaining objective function gra-
dients is the use of adjoint equations. The adjoint system of equations is the
transpose of the linearised forward system, and accordingly has similar com-
plexity as the forward simulation. Our in-house version of MRST includes an
adjoint code for a sequential forward simulation using the mimetic discretization
for the pressure equation and an implicit version of the scheme (9) for satura-
tion. In addition, an adjoint code for the multiscale method combined with the
flow based coarsening approach is included, see [21].

Example 8 (Optimising Net Present Value (NPV)) In this example we
consider a synthetic model with two horizontal injectors and one multilateral
producer, see Figure 16. We attempt to maximise a simple NPV function; the
oil revenue is $100 per barrel and our costs are realised through water injection
and production, each $10 per barrel. This means that when the water cut in the
producer exceeds ≈ 0.82, we are no longer making money. We compare three
production strategies:

1. The producer operates at constant BHP until the water cut reaches 0.82,
and the well is shut.

2. We assume that each producer well-segment is equipped with an inflow
control device (ICD). The producer operates at constant BHP and when-
ever the water cut in a segment exceeds 0.82, the corresponding ICD shuts.
The process is continued until all ICDs are shut.

3. We use the adjoint code to find optimal segment rates corresponding to a
local maximum of the NPV-function.

The initial simulation input is constant and equal rate for the two injectors and
constant BHP for the producer. The initial simulation time is set to 500 days
which is equivalent to 1.25 PVI. In Figure 16 we show the accumulated NPV for
the three production scenarios. We observe that for production scenario 1, the
well is shut down after about 225 days with an achieved NPV of $ 72.8 million.
Scenario 2 is equal to scenario 1 until the first ICD is shut, and the improvement
obtained by being able to shut down individual segments of the well is evident.
All ICDs are shut after about 375 days, and the obtained NPV is $ 79.9 million.
Finally, in scenario 3, water cut is not taken into account, only maximising the
NPV. The obtained NPV is $ 92.6 million.

5 Outlook

Replicablility is a fundamental scientific principle that is currently receiving
increasing attention among computational scientists. The level of sophistication
and complexity in new computational methods makes it difficult for researchers
to implement methods published by others and replicate their results.
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Figure 16: Accumulated net present value for the three production strategies.

We believe that releasing the Matlab Reservoir Simulation Toolbox (MRST)
under the GNU General Public License (GPL) is an important step for our group
towards supporting the idea of reproducible science, thereby allowing others to
more easily benefit from our efforts. In this paper we have given an overview
of MRST and discussed in detail a family of consistent methods that are con-
vergent on fully unstructured, polyhedral grids. We have also demonstrated the
compressible black-oil and adjoint multiscale features that currently exists only
in our in-house, development version of the package. Although we are not yet
there, we are aiming towards a state where our publications on new computa-
tional methodologies can be accompanied by open-access software that can be
used by others to verify our computational results.
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