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Abstract
Optimization on large scale reservoir models may be prohibitive in terms of run-time. The adjoint based method is an efficient
way to compute gradients in such systems. The presence of state constraints however may be detrimental to computational
efficiency. In this paper we explore the use of adjoints and the interior point method for reservoir problems, in particular the
optimal production setting problem with state constraints. State constraints typically include limits on water saturation in grid
blocks close to producer wells or limits on water production rate. Results are encouraging since computational efficiency is
maintained in the two examples which are studied in this paper.

Introduction
Many problems in reservoir engineering can be casted as optimization problems, among others optimal production settings,
parameter/state estimation or history matching, and well placements and design. Optimal production settings have been addressed
by Montleau et al. (2006), Sarma et al. (2008), parameter estimation or parameterizations in Wu (1999), Sarma et al. (2006),
Rommelse (2009), and well placement in Zandvliet (2008), Vlemmix et al. (2009), Castineira et al. (2009). In order to perform
optimization efficiently, gradient based methods are usually preferable. Since oilfields often are modeled as large scale systems
consisting of millions of grid blocks, computing gradients can be a prohibitive task. Therefore, gradient computations using
adjoints, which originates from optimal control theory, can be very useful. Adjoint based gradient computations require only
two simulations regardless of the number of decision variables in the optimization problem. The conventional way to compute
gradients, i.e. using finite differences, however, implies that the number of simulations increases proportionally to the number of
decision variables.

The goal of the optimization problem may vary depending on the application. In the production optimization problem one
may hope to increase some economical measure such as the net present value, recovery factor, cumulative oil production, and
so on. In the history matching problem the objective is to minimize some misfit error between observations and model outputs.
In this work we focus on the optimal production setting problem. The decision variables in these cases may include rates or
bottom-hole pressures in producer and injector wells.

The closed-loop reservoir management paradigm introduced by Jansen et al. (2005) embeds the optimal production problem
into a feedback structure as shown in Fig. 1. Data is used to update a model using some appropriate history matching technique
and this model, possibly with an uncertainty description, is then used for decision support in an optimizer. Further, the feedback
loop, i.e. the estimator and the optimizer, is traversed with regular intervals to exploit the information in newly received data
as far as possible. Finally, it should be added that the estimator and optimizer blocks always include human judgement simply
because it is impossible to capture all relevant issues in the mathematical formulation.

An optimization problem will usually include constraints. In production optimization there will be constraints on the control
inputs and state variables. There will for instance always be capacity constraints on an injector well, i.e. on the control inputs of
a model. More challenging, however, are state or output constraints. An example of this is an upper bound on water saturation in
the wells of a two-phase (oil and water) oil reservoir.

In this paper we propose an adjoint based method to include state constraints in an adjoint formulation. The goal is to reduce
the loss of computational efficiency in this case by applying an interior point optimization method. We continue the paper by first
describing the optimization problem in the presence of state constraints. Then we explain existing methods which handle this
problem and explain in detail our proposed method. Further, we present two rather simple case examples applying our method.
In the last part we discuss each case separately before drawing our conclusions.
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Fig. 1—Closed-loop reservoir management

Problem Formulation
The reservoir model We focus on the optimal production case for two-phase (oil and water) reservoirs. Further, we assume im-
miscible and incompressible fluids and rocks, no gravity effects or capillary pressure, no-flow boundaries, and finally isothermal
conditions. The corresponding state equations are referred to as the pressure equation and the saturation equation. The pressure
equation is given by

~v = −Kλ(s)∇p, ∇ · ~v = q, (1)

where ~v is the Darcy velocity, K is the permeability tensor, and q is the volumetric source/sink term. Finally λt is the total
mobility, which in this setting is the sum of the water and oil mobility functions,

λt(s) = λw(s) + λo(s) = krw(s)/µw + kro(s)/µo. (2)

Here, krw, kro and µw, µo are the water and oil relative permeabilities and viscosities, respectively. Assuming no-flow boundaries
means that the normal component of the Darcy velocity across boundaries is zero. The saturation equation is given by

φ
∂s

∂t
+∇ · (fw(s)~v) = qw, (3)

where φ is the porosity and qw the volumetric water source. Finally, fw is the water fractional flow function fw(s) = λw(s)/λt(s).
The nonlinear behavior of the above equations is mainly dictated by the shape of the relative permeability functions, which in this
paper are taken to be quadratic.

The reservoir simulation model is typically given as a (non-matching) hexahedral grid, where each grid block is assigned
reservoir properties such as permeability and porosity. For ease of exposition we here assume that the pressure equation Eq. 1 is
discretized using a two-point flux approximation (TPFA) (see e.g., Aziz and Settari (1979)), although the MATLAB implementa-
tion employed in this work (Krogstad et al. 2009) is more general in the sense that a wider range of discretization schemes can be
used. For a given saturation field, the TPFA assumes that the Darcy flux from one grid block i to its neighbor j is proportional to
the pressure drop between the two blocks, i.e.,

vij = tij(si, sj)(pi − pj). (4)

In the above equation, tij is referred to as the transmissibility which in this formulation is taken to be dependent on the saturation
in the two blocks(or rather λ(si) and λ(sj)). Wells are implemented using the Peaceman well model (Peaceman 1983)

qw
i = −WIw

i (si) (pw − pi) . (5)

Here qw
i is the flow rate from well w into grid block i and pw is the wellbore pressure (assumed to be constant since we neglect

gravity and wellbore flow effects). Finally, WIw
i (si) is the Peaceman well-index as a function of the grid block saturation si.

The implementation uses a sequential splitting, that is, the pressure field at time-step n is calculated based on the saturation at
time step n− 1, and the saturation at time step n is calculated based on the pressure field at time step n. Let pn denote the vector
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containing the grid block pressures and unknown wellbore pressures at time-step n. Similarly let sn−1 denote the grid block
saturations at time step n − 1. Enforcing volume balance, i.e., setting the sum of all out-fluxes (expressed as Eq. 3 and Eq. 4)
from each block equal to the source, leads to a positive definite matrix A(sn−1) in a linear system equation

A(sn−1)pn = Bun. (6)

Here we have taken the right-hand-side as a function of a control input vector un for time step n, which can either be well rates
or well pressures. We note that the right-hand-side is linear in un and refer to Eq. 6 as the discretized pressure equation.

We discretize the saturation equation Eq. 3 using a standard upstream weighted implicit finite volume method to form

sn = sn−1 +4tn D−1
PV

(
M (vn) fw (sn) + q (vn)+

)
. (7)

Here 4tn is the time step and DPV is the diagonal matrix containing the grid block pore volumes. The matrix M (vn) is the
sparse flux matrix based on the upstream weighted discretization scheme, and q(vn)+ is the vector of positive sources (in this
setting, water injection rates). We note that the matrix M and vector q are linear functions of vn, while vn = T(sn−1)pn

where T(sn−1) is a matrix containing the transmissibilities and well indices based on sn−1. We refer to Eq. 7 as the discretized
saturation equation.

Optimization problem As mentioned there are different goals which can be used as the key performance index in production
optimization. Net present value (NPV), recovery factor and sweep efficiency are typical objective functions. In this work, we use
the NPV with a fixed well configuration and apply this to a fixed optimization horizon. This horizon is divided into N equal time
steps, i.e n = 1, ..., N . The discrete state equations Eqs. 6 and 7 can be rewritten in the following form

F(x̃, ũ) =




F1
(
p1, s0, s1,u1

)
...

FN
(
pN , sN−1, sN ,uN

)
,


 (8)

xnT = (pnT , snT ), n = 1, ..., N,

x̃T = (x1T , ...,xNT ),
ũT = (u1T , ...,uNT ).

We assume xn ∈ Rnxand un ∈ Rnu .
The control inputs are usually bounded and some of the states should be maintained around desired values. We use g (u)

and h(x,u)∈Rnh as functions to represent input- and state- constraints, respectively. The state constraint is a function of both
the control inputs and states since the states are influenced by the control inputs. As an example any change in the bottom
hole pressure (BHP) or well rate will change pressures and saturations accordingly. For the sake of brevity, we denote the state
constraint by h (x,u) instead of h (x(u),u). Let Jn (xn,un) be the objective function at time instance n. Hence, we formulate
the optimal production setting with known initial states, x0, into the following optimization problem :

max
u∈U

J (x̃, ũ) =
∑N

n=1 Jn (xn,un) (9)

subject to : F (x̃, ũ) = 0,

g(un) ≤ 0, n = 1, ..., N,

h (xn,un) ≤ 0, n = 1, ..., N,

x(0) = x0.

The reservoir model is posed as an implicit constraint while the input and state constraints are explicit. The state constraint
may be imposed as a final time constraint meaning that we may constrain the state only at the final time N . Hence, we may
have used hn to capture this case but leave this out in the interest of simple notation. Some references (Sarma et al. 2008),
(Kraaijevanger et al. 2007) use an output constraint term instead of state constraints. This case is however captured with our
formulation.

Solution Methods
In terms of run time the optimization problem in Eq. 9, if it is solved using nonlinear programming (NLP) methods, is far more
expensive than a simulation run of the reservoir model Eq. 8 itself. A bottleneck lies in the gradient calculations due to the large
scale nature of the oil reservoir models. Explanation on nonlinear programming methods can be found in books like Nocedal and
Wright (2006), Bonnans et al. (2006). There are two main frameworks, the line search and trust region methods. In this work we
use both of the frameworks although the line search framework is dominantly found in the flow control community (Gunzburger
2003). This section will focus on how to obtain the gradient and how to handle the state constraints.
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Adjoint Gradient and Jacobian computation There are three methods available for computing gradients; the finite difference
method, sensitivities, and the adjoint method. Finite differences is the most commonly used method. For few decision variables or
control inputs finite difference works fine with low computational cost while many control inputs add substantial computational
cost. Since un ∈ Rnu there will be N · nu decision variables on a N step horizon if a straightforward parametrization is applied.
In this case finite differences require N · nu + 1 simulation runs in the forward difference case and 2 ·N · nu + 1 simulation runs
in the central difference case for only one gradient calculation.

Although finite difference methods are problematic they are trivial to code, easy to understand and is a standard tool to check
gradient calculations from other methods. As a side remark it may be noted that in the meteorology community gradients are
often checked by using Frechet derivative properties (Talagrand and Courtier 1987).

The sensitivity method can be used to compute gradients. The sensitivity equations are derived by using the chain rule, such
that

DJ
Dũ

∣∣∣∣
ũ

=
∂J
∂x̃

∣∣∣∣
ũ

dx̃
dũ

∣∣∣∣
ũ

+
∂J
∂ũ

∣∣∣∣
ũ

. (10)

In the above equation, ∂J
∂x̃ and ∂J

∂ũ can be determined directly by taking their derivatives in the objective function. Then dx̃
dũ is

again derived from using the chain rule in Eq. 8, namely :

(
∂F
∂x̃

∣∣∣∣
ũ

)
dx̃
dũ

∣∣∣∣
ũ

= −∂F
∂ũ

∣∣∣∣
ũ

. (11)

Eq. 11 are the so-called sensitivity equations and the number of equations is equal to the dimension of the decision variables.
In other words, we need to solve N equations and then plug the solutions into Eq. 10. This also applies to the gradient of the state
constraints since this gradient is necessary in a NLP algorithm. One should note that the dimension of the sensitivities is nu times
the dimension of the states, hence Eq. 11 is usually a much larger system than Eq. 10. It may be added that by exploiting causality,
computations can be halved since a control input change at time step n only influences the states on the interval n, ..., N .

The idea of the adjoint method is based on the adjoint equation which originates from the Karush-Kuhn-Tucker (KKT)
conditions: (

∂F
∂x̃

∣∣∣∣
ũ

)T

λ = −
(

∂J
∂x̃

∣∣∣∣
ũ

)T

, (12)

In the above equation, λ is the solution of Eq. 12 and usually called the Lagrange multipliers or adjoint variable. Using Eq. 10
we can eliminate ∂J

∂x̃ to obtain
DJ
Dũ

∣∣∣∣
ũ

= −λT

(
∂F
∂x̃

∣∣∣∣
ũ

)
dx̃
dũ

∣∣∣∣
ũ

+
∂J
∂ũ

∣∣∣∣
ũ

. (13)

Substituting with Eq. 11, this yields
DJ
Dũ

∣∣∣∣
ũ

= λT dF
dũ

∣∣∣∣
ũ

+
∂J
∂ũ

∣∣∣∣
ũ

. (14)

For clarity the λT refers to (λ1T , . . . , λNT ) with λnT = (λnT
p , λnT

s ). Here λn
p and λn

s correspond to pn and sn, respectively.
All derivative terms of Eq. 12 with respect to the states must vanish as required by necessary optimality condition. Further-

more, due the fact that all λN+1 are zero, we can obtain λn by solving Eq. 12 in a backward manner, namely n = N, . . . , 1. We
then use the obtained λ in Eq. 14.

Similarly to the above, we have to derive adjoints for the state constraints h since these constraints depend on the control
input. This implies that it is necessary to compute adjoint variables for all state constraints. Remembering that h ∈Rnh , this gives
rise to nh adjoint equation sets which may reduce computational efficiency significantly. It is however possible to exploit the fact
that the adjoints equal zero for all non-active constraints. Hence, some of the adjoint calculations are trivial.

In the optimal control society, there are attempts to find workarounds to the state constraint problem in adjoint calculations.
Among others, Bloss et al. (1999) proposed the use of the Kreisselmeier-Steinhauser function to approximate the state constraint
gradient. As mentioned above, we need both the gradient of the objective function and the state constraints. Bloss et.al suggested
to use constraint aggregation to reduce the number of constraints as seen from the optimization algorithm, ultimately from nh to
1. Further, he added the state constraints term as a penalty term in the objective function. Similarly, Sarma et al. (2008) used a
smoothed penalty term in the objective function. These penalty terms may however result in infeasible solution, i.e., a solution
where the state constraints are not satisfied. Mehra and Davis (1972) proposed the Generalized Reduced Gradient method and
Kraaijevanger et al. (2007) approached the problem by using dependent variables and free/independent variables. However, it
turns out that it is difficult to change the the set of dependent and free variables whenever the decision variables hit the boundary.
Other approaches in the optimization community is to use numerical approximations of the state constraint gradient or Jacobian
(see Griewank and Korzec (2005)).
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Optimization method Our proposed method is to remove the state constraints and add them as a barrier term in the objective
function. To this end, we are still able to utilize the efficiency of the adjoint method to compute the gradient. The difference
between a barrier term and a penalty term is that the barrier function must use a strictly feasible initial guess (Boyd and Vanden-
berghe 2004). Hence, the control input must lie within the feasible set given by all the constraints in the optimization problem.
For clarity the picture below displays the principle of the interior point method. Such methods always move within the interior of
the feasible set. They may however converge to the boundary at the limit, i.e. at the point where the algorithm terminates.

Fig. 2—Interior point method maintains feasibility of decision variables

From now on the objective function is given by

Jb (x̃, ũ) =
N∑

n=1

[
Jn (xn,un) +

1
µ

nh∑

i=1

log (h (xn,un))

]
, (15)

where µ is a barrier parameter and the optimal solution is found when µ → ∞. By using Eq. 15 we compute one gradient since
the objective incorporates the state constraints. The logarithmic function is used as the barrier function. The barrier function must
be self-concordant and an alternative function is 1

(h(xn,un))2
(Nesterov and Nemirovsky 1994).

To deal with the optimization problem Eq. 9, we choose the interior point method as our optimization algorithm. The main
ingredients of an interior point method are: backtracking line search, a Newton method for equality constrained minimization,
and a barrier function.

We need one more barrier function to tackle the input constraints. Let us again modify the objective function such that

Jf (x̃, ũ) = Jb (x̃, ũ) +
1
t

N∑

i=1

ng∑

i=1

log (g (un)) . (16)

To find the minimum value of the modified objective function in Eq. 16, we perform the following procedure :
Step 0 : Give strictly feasible ũ, and choose µ
Step 1 : Compute the gradient by using the adjoints
Step 2 : Compute optimal solution ũ of Eq. 16
Step 3 : Check stopping criteria
Step 4 : Repeat step 1 until the stopping criteria is met.

Steps 2, 3, 4 are done by an interior point method solver which in this paper is IPOPT (Wachter and Biegler 2006) or KNITRO
(Byrd et al 2006). IPOPT is a line search based method while KNITRO is based on a trust region method. Both solvers have an
adaptive way to parameterize the barrier parameter t. The barrier parameter, µ is not parameterized in order to keep the number
of iterations low. Hence, we fix µ to some, possibly, large number. Ideally, one should add an outer iteration loop to adjust µ.

Numerical examples
We present two numerical case examples to clarify our proposed method. All examples use NPV as their objective function.
Both cases have well rates as control inputs. The oil reservoirs in all cases are 2D incompressible systems with heterogenous
permeability and homogenous porosity. Further, we assume perfect knowledge of all variables meaning that the estimator block
in Fig. 1 can be removed.

Case example 1 This case originates from the SPE 10th Comparative Study (Christie and Blunt 2001) with five wells, one
injector in the middle and four producers at the corners. We take layer 36 to make a 2D oil reservoir with fixed well locations.
The grid consists of 31× 41 grid blocks, constant porosity 0.2, initial water saturation 0.2 , connate water saturation and residual
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oil saturation 0.2, and oil-to-water mobility ratio 5. The grid block dimension is 2m × 2m × 2m. The permeability field is
depicted in Fig. 3.

Fig. 3—The plots depict the well locations and permeability field in case no. 1

The state constraint is water saturation at the producer wells, denoted SN
prod, i in the equation below. This should not exceed

0.65 at the end time N = 407 days. In principle this constraint could have been enforced explicitly at all time steps. We
do however know that by the construction of our problem, water saturation will always be a monotonic increasing function,
hence enforcing the constraint at the end time will ensure compliance also at earlier time steps. The modified objective function
corresponding to Eq. 15 is given by

Jb(x̃, ũ) =
N∑

n=1

Jn (xn,un) +
1
µ

nh=4∑

i=1

log
(
0.65− SN

prod, i

)
,

where Jn is the NPV with a discount rate of zero. In order to really achieve maximum water saturation constraints, we use
normalized prices with oil price is set equal to 1 per barrel, and water separation and water injection costs, are set to zero. With
initial control input setting, the injection well will inject water up until 0.2 of the pore volume of the reservoir. This takes N days
and this time interval is always divided into 5 control intervals. Hence, we have 25 control variables since there are 5 well rates
for each control interval. Since we do not take feedback from measurements into account, this case is an open loop optimization
problem. The injection rate must always equal the total producer rates, as it is an incompressible flow case. Moreover, we set an
upper bound of 100m3/day on the rates.

Case example 2 In this case, we constrain the total water production rate. This case originally comes from Brouwer (2004)
where a reservoir has 45 horizontal injector well segments on one side and 45 horizontal producer well segments on the other
side. The control inputs are well rates at the 90 well segments. We parameterize the control inputs into 5 time intervals which
results in 450 control variables. We fix each control interval to 120 days, hence in total we have a 600 day simulation horizon.
The permeability of the reservoir is shown in Fig. 4 and it has constant porosity 0.2, initial water saturation 0.2, connate water
saturation and residual oil saturation 0.2, unit oil-to-water mobility. The reservoir consists of 45× 45 grid blocks with grid block
dimension is 10m × 10m × 10m. The total water production rate constraint is set to 500m3/day with an oil price $125 per
barrel, water production cost is $10 per barrel and zero water injection cost. Having the total water production constraint, then a
modified objective function for this case is

Jb (x̃, ũ) =
N∑

n=1

Jn (xn,un) +
1
µ

N∑
n=1

log

(
500−

45∑

i=1

qn
prod,i fw

(
Sn

prod,i

)
)

.

The well rates are bounded by 0m3/day and 200 m3/day.

Results
Case 1 We run the optimization with IPOPT with an initial injector rate of 10m3/day and 2.5m3/day for the producers on the
whole interval. These initial values yield a water saturation below 0.65 at each producer well at the end time. For this particular
setting the NPV is 3228.
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Fig. 4—The well settings and permeability field case no. 2

The injection rate must equal the total producer rates. This gives rise to an equality constraint with Jacobian
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01×5 01×5 01×5 01×5 11×5


 ∈ R5×25,

which must be provided to IPOPT. Note that we supply the Jacobian with respect to input constraints only, since the state
constraints are added to the objective function. The barrier parameter is set to µ = 105. After running the optimization algorithm,
with the adjoints and the interior point method, we end up with an NPV of 4698. Fig. 5 and Fig. 6 below are the plots of NPV
as a function of the iteration number, water saturation at the producer wells, and the optimized control inputs. Fig. 6 shows that
the injector acts to decrease its rate as the saturation constraints at the producer wells are active. One of the producers, prd1 at
grid block (1, 1), has the highest rate change since it is located in low permeability area. This also applies to prd4, grid block
(31, 41), but not as drastically as prd1. Note that in Fig. 6 the convention sign for the injector is positive and producers are
negative. Moreover, with these setting of prices, NPV is the same as maximizing the recovery factor. It takes 7.2 of pore volume
of injected water to achieve this water saturation level. The interior point method successfully equalizes the water saturation at
each producer well, which is consistent with our optimization goal. This can be seen in Fig. 6 since the saturation values are
approaching 0.65 but they do not exactly reach this value.

If we change the barrier parameter the optimization ends close to NPV of 4699 for a large range of values. If we increase the
value we do observe a final water saturation closer to 0.65 and vice versa. It does however never reach 0.65 for positive µ values.
The optimization run appears to be robust towards changes in the initial values provided they are feasible. The optimization
runs suggest a rapid improvement after only a few iterations. Hence, in some situations it may make sense to terminate the
optimization after 5− 10 iterations. We also run the optimization using KNITRO which gives almost identical results as IPOPT.

Case 2 If the producer rates are chosen to be 4 m3/day this yields an NPV of $72.9 million and 0.27 pore volume of water
injection. After running IPOPT in this case, we end up with an NPV of $130.4 million and 0.85 of pore volume water injection.
Almost identical results are obtained for other feasible input sequences. Similar to the first case we have to supply the Jacobian
of the constraint to IPOPT, which has the same pattern as the first case, but with dimension R5×450. We then run the optimization
using the KNITRO which yields an NPV of $137.2 and 0.87 of pore volume water injection.

As seen in Fig. 7 the total water production rate honor the 500m3/day constraint. Moreover, the IPOPT result is not close to
the boundary as opposed to the KNITRO. Consequently, KNITRO achieves a higher NPV than IPOPT. In general the line search
method fails to handle a barrier function with a large barrier parameter, µ, since it leads to an ill-conditioned Hessian matrix of
modified objection function Jb. Therefore a trust region method is more preferable. As a consequence, seen in Fig. 8, Fig. 9,
KNITRO has a large spread in the optimized well rates. Furthermore, the well segments which are located in the low permeability
regions have higher well rates. This is shown in Fig. 10 and Fig. 11 where it is important to note the difference in the color coding
in the two figures.

Discussion
In both cases, it is shown that the interior point method succeeds to achieve our optimization goal. In the first case the optimization
terminates due to the number of iteration while in the second case because of the step length. The gradient from the adjoint is
implemented analytically as explained in Eqs. 12 and 14.

One may notice that the barrier function term in the modified objective function, shown in Eqs. 15 and 16, may lead to an
undefined number since we use the logarithmic function. This might happen if the optimized control inputs yield a value on the
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CPU time (in seconds) with state constraint without state constraint
Case 1 410-717 90-122
Case 2 232-250 282-294

TABLE 1—Comparison of CPU time. In case 1 IPOPT is used with µ = 105 and in case 2 KNITRO is used with µ = 108. For each solver,
ten runs have been completed and the minimum and maximum run time are shown

boundary of its feasible set. To prevent this, we put a condition in the objective function that if the value is undefined we set it to
a real number whose value is negative infinite. The obtained gradients for both cases are verified by using the derivative check
facility in IPOPT.

The results in this work are obtained using large barrier parameter values. Hence, the first term in Eq. 15 dominates the
expression except for situations where the constraint is almost active. We will continue this work by studying the trade off
between µ and the distance output constraints.

We compare CPU time for the both cases with and without state constraints using IPOPT and KNITRO, respectively. In
all cases the output constraints are violated in the ”without state constraint” column as opposed to the runs in the ”with state
constraint” column. In case 1 we use IPOPT and experience a substantial increase in CPU time when we include state constraints.
It is however far below the CPU time if we were to apply finite differences. In case 2 we use KNITRO and experience a slightly
shorter run time when state constraints are included. The reason is the fact that in this particular case the optimization algorithm
with state constraints converges faster, i.e. with fewer iterations than without state constraints. We made a similar test using
IPOPT where the run time was similar in both cases, i.e. with and without state constraints.

Conclusions
We have shown that the interior point method is able to tackle the state constraint problem by adding these constraints as a barrier
function. The efficiency of computing gradients using the adjoint method is still to a large degree maintained. Furthermore, there
is only one gradient needed for both the objective function and state constraints. If there are input constraints, then computing the
Jacobian of these can be done easily by hand.
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Nomenclature
Physical quantities:
f = fractional flow function
K = absolute permeability
p = pressure
S, s = saturation
t = time
~v = total Darcy velocity
q = volumetric rate
WI = well index
λ = total mobility
φ = porosity
π = face pressure

Functions, etc:
F = reservoir equations
J = objective function
t,µ = barrier parameter

Vectors and matrices:
s = vector of cell/block saturations
p = vector of cell/block pressures
π = vector of cell/block face pressures
v = vector of outward fluxes on cell/block faces
T = transmissibility matrix
g = input constraint
h = state constraint
x = state vector
u = control input vector
λα = Lagrange multiplier corresponding to state α

Numbers:
N = number of time steps

Subscripts:
i, j = block/cell numbers
f = fine grid/model quantity
w = well number

Superscripts:
w = well number
n = time step
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