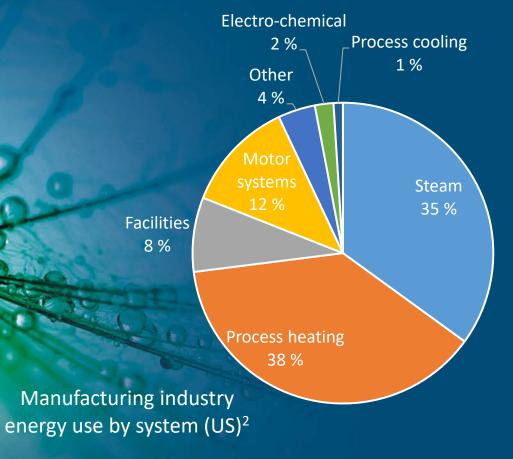


Thermal storage for improved utilization of renewable energy in steam production

Hanne Kauko and Gerwin Drexler-Schmid (AIT)
HighEFF ACM 8.-9.5.2019

Outline

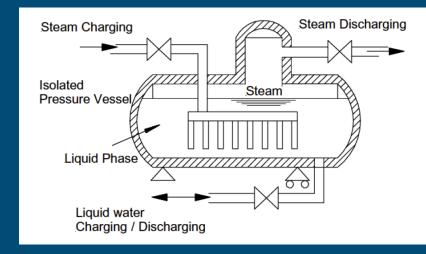


- The problem steam demand and the way it's produced
- Fossil-free production of steam & the role of thermal storage
- Relevant thermal storage technologies
- Alternatives for fossil-free steam production
 - Power-to-heat: Results from a case study
 - Concentrated solar power (CSP)
- Summary and on-going/future work in HighEFF

U High**EFF**

Background

- Steam systems are a part of almost every major industrial process, in nearly all industrial sectors
 - Estimated to account for 38 % of global final manufacturing energy use¹ - 9 % of the global final energy consumption
- Steam production primarily based on the use of fossil fuels
 - 37 % of fossil fuel burden in US industry is burned to produce steam³
- Huge potential for large reductions in GHG emissions

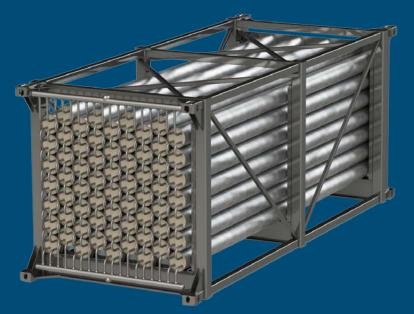


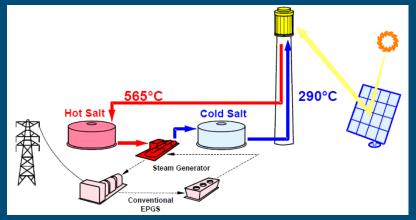
Relevant thermal storage technologies


Thermal storage technologies (1)

- Steam accumulator (Ruths steam storage)
 - High charging/discharging rates
 - Storage medium = heat transfer fluid no extra heat exchangers
 - Challenge: low energy density not suitable for large-scale applications, or longer time scales

- Latent heat storage (LHS)
 - High energy densities
 - Temperature can be tailored to the application by the choice of material (PCM)
 - Challenges: Low TRL, low thermal conductivity




U High**EFF**

Thermal storage technologies (2)

- Sensible heat storage in concrete (e.g. EnergyNest)
 - Cost-efficient, safe and easy-to-use
 - Scalable, modular design
 - Challenges: limited charging/discharging rates
- Molten salt storage
 - High thermal conductivities
 - May be used as the heat transfer fluid as well
 - Challenges: keeping the salt in liquid state, corrosivity

https://energy-nest.com/

Pacheco, J. E et al. (2002). "Final test and evaluation results from the solar two project." Report No. SAND2002-0120, Sandia National Laboratories, Albuquerque, NM **45**.

Fossil-free steam production

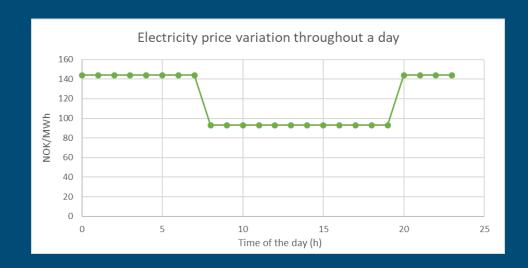
Alt. 1: Power-to-heat

Results from a case study

Gerwin Drexler-Schmid and Anton Beck (AIT)

Case study definition

Energy source:


 Electricity market with diurnal price variation, modelled in 2 cases

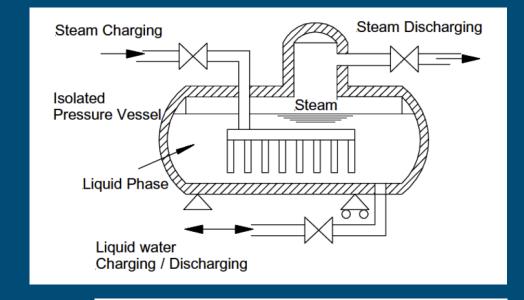
Heat demand:

- Saturated steam at 15 bar (200 °C)
- Steady volume flow rate: 1200 t/h

Two storage technologies compared:

- Ruths steam storage
- Latent heat storage (LHS)

[USD/MWh]	Case 1	Case 2
High	17	34
Low	11	11

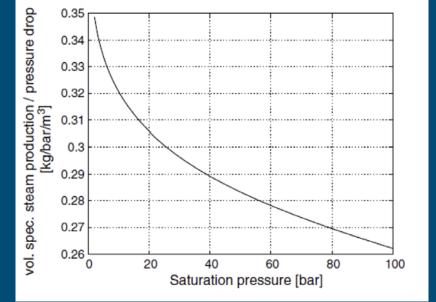


U High**EFF**

Existing technology: Ruths steam accumulator

Characteristics

- Storage medium: Water, steel
- Direct storage
- Variable power to energy ratio
- Storage density:
 - ~ 40 kWh/m³ at 30 bars
 - ~ 31 kWh/m³ at 100 bars
- Costs: 4 €/ton of water, 6000 €/t steel
- Wall thicknesses 3-10 cm



Pros

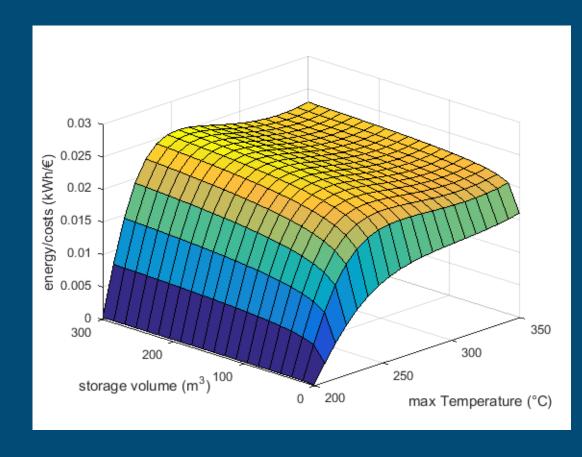
- Simple
- Commercially available
- Short storage time with high output power

Cons

- Low storage density at high pressures
- High amount of of steel

Cost estimates: Ruths steam storage

Ruths steam storage


- Steel: P460NH
- Safety: the required amount of steel depends on the pressure and temperature
- Storage capacity per € increases with storage size – but size limited by manufacturing and transport

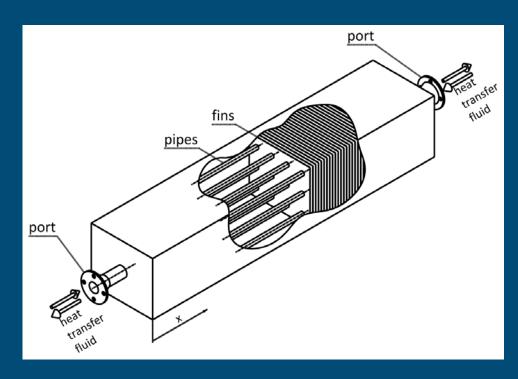
Optimal storage unit:

- Chosen max volume: 300 m³
- T_{max} ~255 °C

Cost for kWh of stored energy: 40 €/kWh

Upcoming technology: Latent Heat Storage

Characteristics


- Storage medium: phase change material (PCM)
- Indirect storage
- Variable power to energy ratio
- Storage density:
 - ~ 100 kWh/m³ at atmospheric pressure
- Unpressurized storage vessel
- Costs: 300-600 €/ton PCM, 6000 €/t steel

Pros

- High energy density
- Low amont of steel
- Unpressurized storage vessel

Cons

- TRL 5-7
- Low thermal conductivity

Design sketch of the shell and tube latent heat thermal energy storage (Ind. Eng. Chem. Res., 2016, 55 (29), pp 8154–8164)

Cost estimates: Latent heat storage (LHS)

Assumptions:

- 2 cm diameter piping
- T_{max} ~255 °C
- Effective enthalpy 140 kJ/kg within the applied temperature range
- No additional heat transfer measures
- EUR/USD = 1.14

Results:

- Costs more independent of storage size mostly affected by pipe diameter
- Cost for PCM/Steel ~50/50

Cost for kWh of stored energy: 24.4 €/ kWh

Cost estimates for thermal storage technologies: main results

Electricity prices:

[USD/MWh]	Case 1	Case 2	
High	17	34	
Low	11	11	

Cost estimates:

Tech. type	Steam (t/h)	Thermal storage capacity (MWh)	Number of storage units	Storage tech. costs (mill. EUR)	Payback (yr) Case 1	Payback (yr) Case 2
Ruths	1200	9493 MWh	461	375	20.1	5.2
LHS	1200	9493 MWh	NA	230	12.3	3.2

Payback times should be balanced with the cost to access additional power from the power network and cost of additional boilers to charge the TES units.

Conclusions from the case study

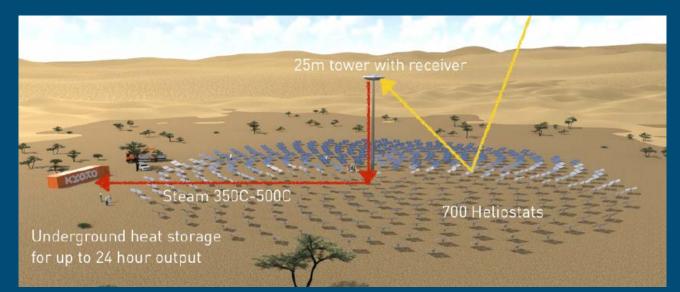
Identified limitations

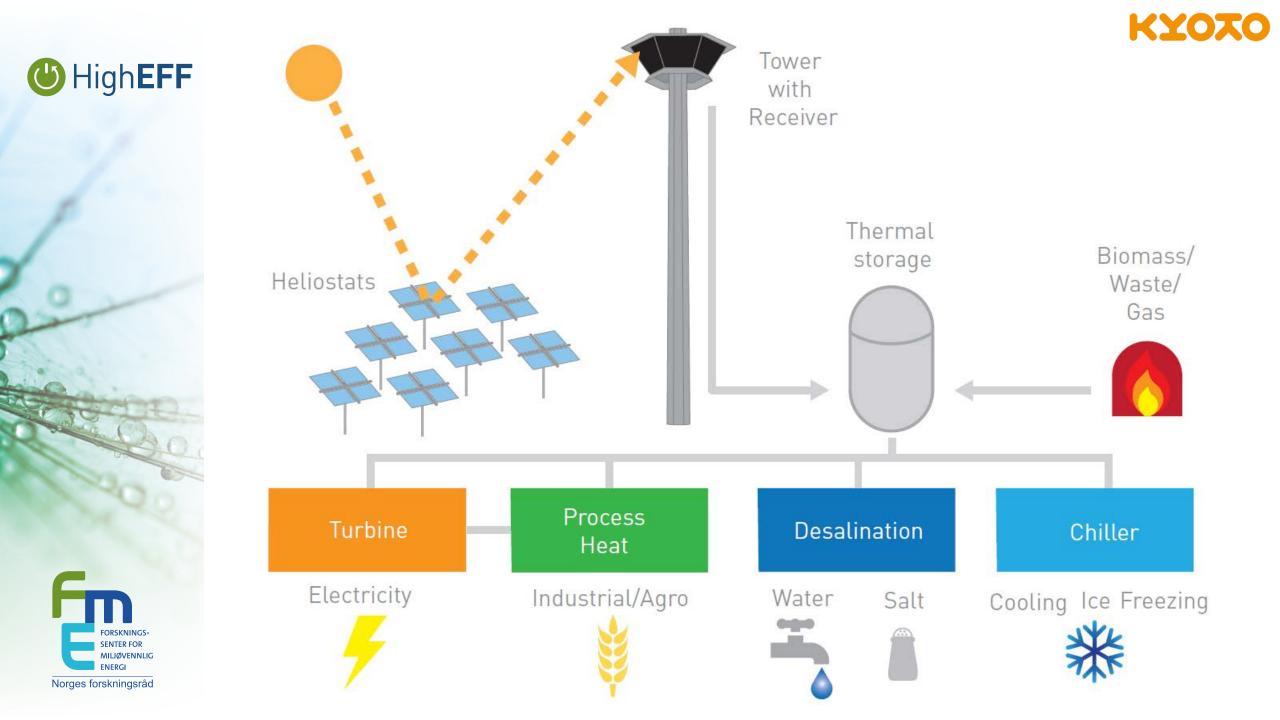
- Additional costs should be taken into account in the case studies (e.g. additional boilers and access to additional power from network)
- Large steam accumulators or other TES tech. of **such high scale might not be realisable** for constant steam delivery over 12 hours

Further work

- Feasibility with regards to the large scale of TES
- Evaluation of potential alternative storage technologies
- Techno-economics to evaluate the correct storage and conversion technology for a given application
 - → Nove Emerging Concept (NEC) application

Fossil-free steam production


Alt.2: Concentrated solar power (CSP)



Concentrated solar power (CSP)

- Concentrating the sunlight to heat up a heat transfer fluid to high temperatures to produce steam or electricity
 - Parabolic trough (150–350 °C)
 - Solar tower (500–1000 °C)
- Kyoto Group
 - Modular CSP systems for the demands of the industry
 - Cost-efficient
 - Fast to build
 - Thermal storage: Novel molten salt developed by Yara
 - Lower melting point
 - Cheaper
 - Less corrosive

Summary and on-going/future work in HighEFF

Summary

- Steam demand is huge + the production is still largerly based on the use of fossil fuels
 - Switching to renewable-based production can allow fast and large reduction in GHG emissions
- Fossil free alternatives for steam production
 - 1. Power-to-heat using high-temperature heat pumps or electric boilers
 - 2. Concentrated solar power
- In either case thermal storage is required
 - 1. To enable the use of renewable power when prices are low
 - 2. To enable continuous output from CSP plants

On-going and future work in HighEFF

- D3.3_2019.01: Thermal storage for improved utilization of renewable energy in steam production
 - Description and comparison of relevant storage technologies
 - Integration of HTHPs

- NEC application: Cost-efficient thermal energy storage for increased utilization of renewable energy in industrial steam production
 - Power-to-heat
 - Development of methodology to find the correct storage and conversion technology for a given application
 - Conversion technologies: HTHP, electric boiler

Reference group meeting: Energy Storage

- Wish to affect the research work within Energy Storage in HighEFF?
- Join the reference group meeting tomorrow at 13:30 (KJL21)!

Thank you for your attention.

Hanne.kauko@sintef.no