

i.

#### HYDROGEN PRODUCTION FROM NATURAL GAS WITH VERY LOW CO<sub>2</sub> INTENSITY

-1-

Julian Straus, Vidar Skjervold, Rahul Anantharaman, David Berstad

## Overview

- Natural gas reforming process description
- Recap: Improved process configuration
- CO<sub>2</sub> liquefaction as separation technology
- Analysis of operation conditions
- Comparison to aMDEA + PSA process
- Conclusion



## Natural gas reforming



- Hydrogen separation technologies:
  - Pressure swing adsorption (PSA)
  - Palladium membrane (Pd)
- Focus on:
  - Recap of last results

**SINTEF** 

## Natural gas reforming



- Hydrogen separation technologies:
  - Pressure swing adsorption (PSA)
  - Palladium membrane (Pd)
- Focus on:
  - Recap of last results
  - Improvements for CO<sub>2</sub> liquefaction while maintaining similar CO<sub>2</sub> capture rate

**SINTEF** 



#### **Recap: New process conditions**

**()** SINTEF





- Process for simultaneous separation and liquefaction of CO<sub>2</sub>
- Costs of separation characterized by
  - Feed stream composition







- Process for simultaneous separation and liquefaction of CO<sub>2</sub>
- Costs of separation characterized by
  - Feed stream composition
  - Separation conditions (*p* and *T*)





- Process for simultaneous separation and liquefaction of CO<sub>2</sub>
- Costs of separation characterized by
  - Feed stream composition
  - Separation conditions (*p* and *T*)

- Heat integration
- Refrigeration cycle performance



**()** SINTEF



### Impact of separation conditions



**SINTEF** 



# Refrigeration cycle performance

- Performance depending on distribution of cooling duties
- Different feed conditions result in different performance improvements
- Potential for further improvement through rigorous optimization



#### Comparison to aMDEA-PSA technology



**()** SINTEF

### **Comparison to aMDEA-PSA technology**

89.9





- Improved performance through:
  - Reduced natural gas demand
  - Increased carbon capture ratio
  - Novel process layout (to be published in a paper)
- Requires however more external power through lower power generation
  SINTER

## Conclusion

- Natural gas reforming with carbon capture has potential for:
  - Very low CO<sub>2</sub> intensity of hydrogen
  - High efficiencies independently of the hydrogen separation technology
- Liquefaction of CO<sub>2</sub> as separation technology:
  - Relatively new technology with further potential for improved performance above the achieved 20 % reduction in energy consumption
  - Based on widely applied unit operations



## Acknowledgements



With funding from The Research Council of Norway

This publication is based on results from the research project Hyper, performed under the ENERGIX programme. The authors acknowledge the following parties for financial support: Equinor, Shell, Kawasaki Heavy Industries, Linde Kryotechnik, Mitsubishi Corporation, Nel Hydrogen, Gassco and the Research Council of Norway (255107/E20).

