
Gas Technology Center NTNU-SINTEF 

Liquefaction of Natural Gas –  
How can fundamental R&D help the industry?  

Case studies from GTS 

Geir Skaugen 
SINTEF Energy Research,  

Trondheim, Norway 

6th Annual LNG TECH Global Summit 2011  
De Doelen, Rotterdam 3rd-5th October 



Gas Technology Center NTNU-SINTEF 

Content of the presentation  

 The Gas Technology Centre at NTNU - SINTEF 
- What is GTS 
- Research areas and capabilities 

 Case Studies: 
- LNG Heat Exchanger Studies 

• Multilevel experiments and modelling  
- Small scale LNG systems 

• From laboratory experiments to installation onboard a gas carrier 
- LNG and Low temperature Energy chain 
- Future research tasks within LNG at GTS 

 
 http://www.ntnu.no/gass/ 
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Gas Technology Centre NTNU - SINTEF 
Researchers 
NTNU 
• 75 professors 
• 135 Ph.D. researchers 
• 30 post.doc. researchers  
SINTEF 
• 200 research scientists  

Students 
• Award 75% of all M.Sc. in 

Norway’s gas-related industry  

Cooperation 
• Virtual organisation  
• Tight links to industry 
• International network 

Strategic partners 
• Statoil  

Mission:  
• To act as a common 

interface in gas technology 
R&D between NTNU- 
SINTEF and the marked: 

Presenter
Presentation Notes
Sorry about this researcher-like slide, but a Center is much like a jigsaw puzzle where every part is important to draw a complete picture
Virtual organisation means that all groups are located physically within their local departments 
Let us have a tour of some of the laboratories.
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The Norwegian University of Science & Technology (NTNU) 
-   and The SINTEF Group 

Number of employees (2010): 
 

NTNU 4.700 
(Scientific 60%) 
  

SINTEF    2.145 
(Scientific 73%) 
  

Students:      18.500 
10.000 in Engineering & Science 
 

A technological cluster with education, basic & applied 
research, innovations and business developments 

-  of large importance for Norway 
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SINTEF Building and 
Infrastructure 
SINTEF ICT 

SINTEF Materials and 
Chemistry 

SINTEF Technology and Society 
 
 
 

SINTEF Energy Research 
SINTEF Fisheries and Aquaculture 
SINTEF Petroleum Research 
MARINTEK 

SINTEF is a multidisciplinary research organisation with 
international top level expertise in specific fields 

Presenter
Presentation Notes
SINTEF’s eight research institutes. 
The four in the left-hand column are in the SINTEF Foundation, others are research companies. All are part of the SINTEF group 
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Disciplines around Gas Technology Centre 
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R&D along the Natural Gas value chain  

 Reservoir technology (including CO2-injection) 
 Gas transport (multiphase pipelines, LNG, LPG, 

energy markets) 
 Chemical conversion  
 Gas processing  
 Gas transport infrastructure and techno-economic 

optimisation 
 Fossil fuel hydrogen production, storage and 

usage 

Presenter
Presentation Notes
OK
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Laboratory facilities 

 Refrigeration and Combustion Technology LAB  
- Multiphase flow of oil and gas  
- Heat transfer and pressure drop for gas mixtures in compact 

geometries 
- Small scale laboratory prototype for liquefaction of Natural 

gas 
- Oxy-fuel Combustion for Gas Turbines 

 Absorption LAB 
- Absorption of CO2, H2S and NOx 

- Catalysts and absorbents 

 Membrane technology LAB 
- Membranes for hydrogen and CO2 separation 

 Hydrogen production, liquefaction and  
     storage 
 Fuel cell technology 

 

Presenter
Presentation Notes
Internal coordination: Gass og samfunn; SFP-søknad (teknologi og økonomi; modellering og beslutninger under usikkerhet); integrerte energi og økonomi-analyser; internal funds 5MNOK/yr;
NFR: ”Prosess”; CO2 + posisjonerling ift. Innovasjonsselskapet i Grenland; integrert system analyse; SFP-søknad
Strategisk partner: extenal funding
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1. Common strategies 
2. Industrial relevance and involvement 
3. Basic scientific methodology 

NTNU & SINTEF 
A Strategic Model of Cooperation: 

NTNU-personnel 
participates in 
SINTEF-projects 

SINTEF-personnel 
participates in 
teaching at NTNU 

Joint use of 
laboratories and 
equipment 

Core Areas: 
- Education 
- Basic Research Core Area: 

Strategic Research 

Core Areas: 
- Contract Research 
- Applied Research 
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Strategic Research - Competence Building Projects for 
the Industry 
Some key characteristics: 
 Long term projects 3-5 years 
 Cooperation with leading international research partners and includes PhD 

education 
 Results are to be published in open scientific journals 
 Minimum industry funding of 20% of total budget  
 The industry is represented in the steering committee of the project 
 
"Enabling Low Emission LNG-systems"  
 Project figures: 

 Duration 2009-2014 
 Total budget:  44 million NOK (With 61% from the research council) 

 2 industry partners and support from the Gas Technology Centre 
 Educate 3 PhD candidates and 1 postdoc candidates within the field 
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Enabling low-emission LNG systems 
Fundamentals for multilevel modelling 
 Focus towards fundamental phenomena occurring in 

LNG equipment 
- Experimentally 
- By modeling 

 Unit design/operation in perspective of: 
- Fundamental phenomena 
- Robust modeling approach 
- Integration with the process 

 Process design and system analysis including: 
- LNG process optimizing taking into account detailed unit models 
- LNG process dynamics 
- Process evaluation methodology  

 

LNG fundamental 
phenomena 

LNG 
systems 

LNG heat 
exchangers 
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Droplet and film phenomena (PhD and PostDoc) 

 To be able to model and predict heat exchanger shell-side flow, droplet and 
bubble and film interaction needs to be better understood, hence both 
experiments and numerical analysis is required.  

 instabilities and heat transfer for two-phase flow in confined geometries 
representing heat exchanger tube side phenomena. 

 Fundamental knowledge can 
be applied to build more 
accurate engineering models. 
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Droplet and film phenomena – experimental setup 

Experiments conducted with water and with n-Pentane  
on a horizontal or a  tilted flowing film 
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General and modular heat exchanger modeling 
framework 
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Generic tool with building blocks of:  
• fluid nodes 
• heat nodes 
• surfaces  
• thermal resistors 
 

• splitters 
• mixers 
• flash units 
• flow restrictions 
 

Surfaces: 
• geometry models 
• heat transfer/pressure drop models 
 

Fluid nodes: 
• thermodynamic model 
• numerical and physical flow model 
 

Example:  
Counter-flow HX with wall heat conduction 
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Use of detailed heat exchanger simulation 
models in an engineering flow-sheeting 
environment for static instability analysis  
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Process optimisation 

 Heat exchanger representation in process simulation and 
optimisation are most often: 

- Black or grey boxes that provide the process input/output states 
- Some degree of ”zone-analysis” in a simplified manner 
- Using lump, composite warm and cold streams 

 
 Using a detailed heat exchanger model, a chosen design can be 

validated and the process operability can be investigated in a more 
complete way 
 

 The focus of this presentation is to investigate heat exchanger 
design in terms of steady state instability, also referred to in 
literature as: Ledinegg type instability. 

16 
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Industrial relevance 
 Increased focus on compact and 

energy efficient solutions 
 

 Compact, optimized LNG 
processes using are proposed and 
presented in literature are often 
based on using brazed aluminum 
heat exchangers (BAHX) only 

 

 A recent example: 
- The ExxonMobile EMR process.  

- About 30 parallel cores 
      (Denton 2010) 

 

 The issues of potential instability 
need to be addressed  Presented at: 89th Annual GPA Convention,  

21-24 March 2010, Austin , TX (Denton et.al) 
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Ledinegg instability in boiling services 

 An N-shape may occur in boiling 
services if an increase in flow rate 
results in a decrease in pressure- 
drop  
 

 Counteracting effects: 
- Increase in flow -> higher 

pressure drop 
- Decrease in average void 

fraction -> lower pressure drop 
 

 Combination: increased flow -> 
decrease in average void fraction 
may give an N-shape 
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Case: Optimised SMR process for liquefaction of 
natural gas 

 Cooling and liquefaction of 1 kmole/s NG from 25 
to -155 °C 

 
 

 Optimisation of flow-rate, composition, and 
pressure levels to obtain minimum energy 
consumption with restrictions: 

- 10 K superheat 
- 1.2 K minimum temperature approach (MITA) 

 
With specifications: 
- External cooling to 25°C  
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25°C
Single phase vap

-155°C
Subcooled 

single phase liq

N2,C1,C2,C3,iC4 and nC4 
flowrates

P1

P2

External cooling to 25°C

10K superheat

MITA=1.2 K

1 kmol/s
(≈ 64 t/h)
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Optimised process design with a fully designed heat 
exchanger 

20 

T NG -155 
T LP -157.1 
P LP 5.34 
P HP 25.88 

N2 0.0929 
C1 0.2913 
C2 0.3887 
nC4 0.2271 
MREFR (kmol/s) 3.15 
MNG 1 
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Check for operability  -  
Pressure drop vs. flow rate for the evaporating stream 
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Consequences of Ledinegg instability 
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Equal cold stream pressure drop with flow-rate split 42/58 (+/- 8%) 

Individual temperature profile 

Temperature profiles 
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Remedies for avoiding Ledinegg instabilities 

 Move the operating 
point within the blue 
line. 

 Get rid of the N-shape 
- Modify HX design,  
- Reduce outlet resistance 
- Increase inlet resistance 
- Avoid cold end pinch 
- (Reduce the heat load) 
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Example on modified design 

 Reduced heat flux for cold channels – increased surface 
while maintaining - or reducing the pressure drop… 
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Summary – on heat exchanger / process analysis  

 In cryogenic processes using fluids with low density and low latent 
heat, instabilities are more likely to occur  
 

 The risk of ending up with a design operating point in an unstable 
region is high, if  

- processes are optimised based on composite curves and minimum 
temperature differences,  

- the pressure drop vs flowrate curve exhibits an N-shape  
 

 When equipment with a high degree of parallelism is used, this could 
have serious consequences in terms of thermal stress or inefficient 
operation 
 

 There are currently 3 PhD studies on the topic of instability in heat 
exchangers at NTNU. 

 
25 
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Small Scale LNG production –  
The SINTEF Mini-LNG concept – from laboratory to 

installation onboard a gas carrier 

 
Contact person on Mini LNG: Petter Nekså  

     (petter.neksa@sintef.no) 
 

26 

• The Mini-LNG technology 
• General characteristics 

• Re-Liquefaction plant, application example 
• Full scale plant analysis 
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NG liquefaction plants, capacity range 
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Mini-LNG 
LNG production: 3.5 – 35 kT/year 
               (10 – 100 T/day)   

Peak shaving 
LNG production: 35 – 150 kT/year   

Base-load 
LNG production: 1500 – 5000 kT/year 
Hammerfest/Snøhvit 4300 kT/year (12500T/day) 
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The cost challenge of  
small scale LNG 
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The energy efficiency challenge  
of small scale LNG 

SINTEF 
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Mini  LNG 
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The SINTEF mini-LNG concept - Liquefaction Unit 

 Using standard equipment for low investment cost and fast 
manufacture of the liquefaction unit 

- Copper brazed plate heat exchangers, withstands rapid temperature 
changes 

- Lubricant injected screw compressors 
- Proven robust oil/lubricant management 

 Construction in steel frames: 
- Lower manufacturing cost 
- Faster manufacture time 
- Modular movable plant elements 

 Refrigeration cycle with mixed refrigerant (N2,C1,C2,C3,C4) for 
low energy demand 

 Adaptation of selected equipment, MR and operational 
conditions to given application and NG composition 

30 
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From theory – laboratory - full scale 

 Theoretical 
- Process development and simplification 
- Analysis 

 Laboratory plant 1 tonnesLNG/d 
- Fully instrumented closed loop lab plant at SINTEF 
- Operation since 2003, 2000 h (500 continuous) 
- Lubricant tests, various operating conditions, rapid 

start-up 

 Full scale test, 20 tonnesLNG/d 
- Design and construction 
- FAT test at SINTEF Tiller lab in Trondheim 2008 
- Analysis of results 
- Installation onboard a gas carrier 2009 
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Application example SINTEF Mini-LNG 
Reliquefaction of boil-off gas from a small IMS Multigas carrier 
using the Mini-LNG Techology 

33 

3D illustration of the tanker with the 
refrigeration system on the top deck 

10.000 m3 

Multigas 
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Plant design simulation results (mini-LNG) 
BOG NG with 89 mol% CH4, 11 mol% N2 (18 bara) 

Boil-off gas liquefaction capacity 20 tonnes/d 

LNG exit temperature (before throttling to tank) -155 oC 

MR (at first vapour-liquid separator inlet) and NG pre-
cooling temperature  

-35 oC 

Mixed refrigerant compressor pressure ratio 9.3 - 

Mixed refrigerant compressor power consumption 395 kW 

Estimated compressor isentropic efficiency  0.65 - 

Mixed refrigerant actual suction volume 1520 m3/h 

Specific suction volume 1.8 m3/kg LNG 

Specific power consumption mini-LNG 0.47 kWh/kg LNG 
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Heat Exchanger HX 2, MR-HP/MR-LP, high temp 
Duty vs. Temperature 
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Heat Exchanger HA2 Zones Analysis
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Heat Exchanger HX 7, NG/MR-LP 
Duty vs. Temperature 

37 
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Plant exergy loss analysis 

38 

HA2
21 %

HP MIXER
0 %

HA4
34 %

HA7
27 %

FCV4
3 %

FCV5
2 %

LP MIXER
7 %

FCV1
6 %

- Still considerable potential for reducing losses 
- Especially for compressor and heat exchangers 
- Dependent on component availability 

Plant Coldbox 
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Full scale test results 

 Capacity difference relative to nominal (18.8 tonnes/d) 
1) Corrected for leak in safety valve by-pass from high p to low p and 

undersized stop valve in suction tube 
2) Corrected to nominal precooling temperature (-35°C) 

 

 Some maldistribution in first secondary hx (HX 2) observed 
- Estimated influence on capacity 5 - 7 % 

 
 
~ 14 %-points 
~   9 %-points 

39 

Parameter 
………………………………………….. Unit          . 

Measured 
…. 

Simulation 
….. 

Simulation 
corrected 1) 

(dp and leak) 

Simulation 
corrected 2) 

(precooling t) 

Liquefaction capacity tonnes/d 14,4 14,4 17,1 18,8 

LNG exit temperature before 
throttling to tank oC -154,1 -154,1 -155 -155 

MR precooling temperature at 
vap-liq separtor oC -24,9 -24,9 -24,9 -35 

NG precooling temperature oC -31,7 -31,7 -35 -35 

Refrigerating capacity kW   70,7 84,3 93,2 
Volume flow LP MR out of 
coldbox m3/h   1436 1512 1517 

Results from full scale tests and simulation model verification 
Including simulation results for future plant operating conditions (corrects for off-design conditions at full scale tests) 
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Constraints and possible improvements 

 Some constraints today 
- NG pressure from BOG handling system 18 bar (balance BOG 

compr./Mini-LNG) 
- Storage pressure in chain, carrier tanks can handle 5 bara 
- Design for high ambient temperatures - Sea water temperatures in north 

of Europe relatively low  
- Availability of components 

 Efficiency improvements 
- Improved compressor efficiency 
- Reduced temperature differences in hx 
- Optimisation of MR composition 

 Plant operation without pre-cooling could be possible 
- Existing refrigeration system on-board is used for precooling today 

40 
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Liquid Energy Chain Optimization 

Contact person: Prof. Truls.Gundersen 
                           (truls.gundersen@ntnu.no) 

Aspelund A. and Gundersen T.  ”A Liquefied Energy Chain for Transport and Utilization of Natural Gas for 
Power Production with CO2 Capture and Storage − Part 1”, Journal of Applied Energy, vol. 86, pp. 
781-792, 2009 . 
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T. Gundersen 

LNG LNG LNG LIN CO2 CO2

A Liquefied Energy Chain (LEC) 

Aspelund A. and Gundersen T.  ”A Liquefied Energy Chain for Transport and Utilization of Natural Gas for 
Power Production with CO2 Capture and Storage − Part 1”, Journal of Applied Energy, vol. 86, pp. 
781-792, 2009 . 
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T. Gundersen 

A Liquefied Energy Chain (LEC) 

 Key Features of the “LEC” Concept 
♦ Utilization of Stranded Natural Gas for Power Production 
♦ High Exergy Efficiency of 46.4% (vs. 42.0% for traditional) 
♦ Elegant and Cost Effective solution to the CCS Problem 
♦ CO2 replaces Natural Gas injection for EOR 
♦ Combined Energy Chain (LNG) and Transport Chain (CO2) 
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T. Gundersen 

Simulation-Optimization of the entire LEC 
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T. Gundersen 

Optimizing the Liquefied Energy Chain 
 First:  Near-Optimal Design established by 

♦ Domain Knowledge related to LNG 
♦ Heuristic Design rules   (new and old) 
♦ Pinch Analysis   (the Composite Curves) 
♦ Exergy Analysis   (calculating ηExergy) 
♦ Rigorous Simulation by HYSYS   (testing the Concept) 

 Second:  Mathematical Programming and a novel (and 
innovative) Superstructure 

♦ Offshore and Onshore Processes Optimized separately  
 Third: Stochastic Search with Rigorous Simulation 

♦ Referred to as “Simulation−Optimization” 
♦ Taboo Search (global) and Nelder Mead (local) 
♦ HYSYS providing Objective Function Values 
♦ Applied Simultaneously to the entire Chain 
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T. Gundersen 

Progress of the Optimization 
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Myklebust J., Aspelund A., Tomasgard, A., Nowak M. and Gundersen T., “An Optimization-Simulation 
Model of a Combined Liquefied Natural Gas and CO2 Value Chain”, INFORMS Annual Meeting, Seattle, 

November 2007 
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Future research tasks – Rapid Phase Transition (RPT) 

 What is RPT? 
- can occur if liquid natural gas is spilled on / and mixed with water 
- a physical explosion where unstable, superheated liquid instantaneously 

expands to vapour phase and creates overpressure and pressure 
waves 

- explosion impact often converted to tons of TNT 
 

 Increased attention in recent safety studies 
- increased use and transport of LNG 
- well researched, but still difficult to predict 
- complex chain of various physical phenomena 
- challenging in terms of scale-up from laboratory tests 
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Physics of RPT – single component 
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Future research tasks – Rapid Phase Transfer (RPT) 

 Plan to start up new 3 mill EUR project in 2012 – 
awaiting governmental financial support – still open for 
industry participation 

- Both experimental and modelling approach are planned 
 

 2 PhD from NTNU from the mid 90's  
- pool boiling of hydrocarbon on water surface 
- mixing of  cryogenic jet in water 
- fragmentation  
- modelling 
- spreading 

 Now: Utilize advances in measurement and visualization  
techniques and advances in modelling experience on 
fast transients on pressure wave propagation 
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Thank you for 
your attention! 
 
 
 
 
 
Gas Technology Centre: 
 www.ntnu.no/gass 
 www.sintef.no 
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