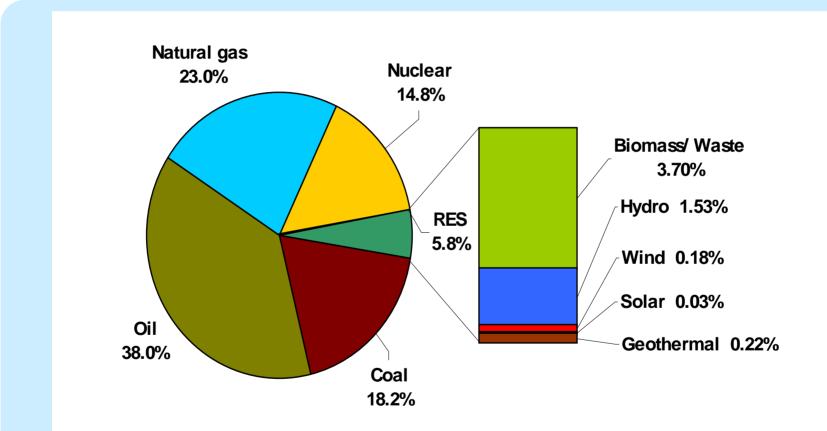

Does the 'NextGenBioWaste' proje represents any common interest

Teamleader/Dr.ing. Lars Sørum SINTEF Energy Research Norway

Polen 2006 October 18, 2006

O SINTEF



Content

- Renewable energy production from biomass and waste within the EU
 - Polish and Norwegian biomass resources and use
- Framework for Renewable energy production from biomass and waste in the EU
 - EU policies
 - EU targets
- Challenges for renewable energy production from biomass and waste
 - Focus on technological challenges
- The "NextGenBioWaste" project

Slide Courtesy of J.Riesgo: EC-DG TREN

Polen 2006 October 18, 2006

SINTEF Energy Research

Biomass resources in Poland and Norway

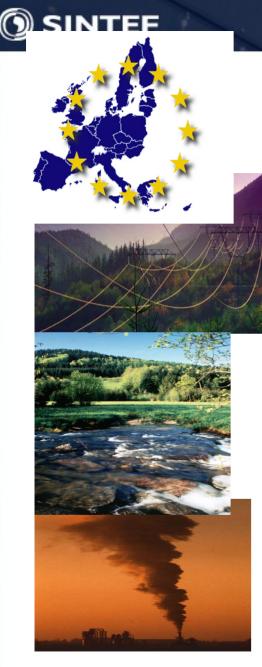
- Large unexploited resources
 - Poland: 5-6 times current use
 - Norway: ~3 times current use

Challenges in Polish waste management

- Increasing per capita waste generation due to increased standard of living
- Current waste management: Landfilling
- Greenhouse gas emissions
- Poland as a new member state:
 - Complying to EU directives
 - Transition phase

EU Policies and Targets: Energy (1)

• **RES White paper 1997:** increase share of RES from 6% to 12% of gross consumption by 2010


• To reduce greenhouse gas emissions (meet the commitments made by the EU under the 1997 Kyoto Protocol)

• To contribute to Security of Supply [COM(2000)769 - C5-0145/2001]

• Directive 2001/77/EC of 27.09.01 on RES-e : to establish a framework to <u>increase the share</u> of green electricity from 14% to 21% of gross electricity consumption by 2010

• Directive 2004/8/EC on cogeneration of heat and power. target: 18% by 2010

Slide Courtesy of J.Riesgo: EC-DG TREN

EU Policies and Targets: Energy (2)

• Landfill (1999/31/EC)

Reduced landfilling of biodegradable component of waste by 65% by 2016

• Waste Incineration (2000/76/EC) Limits on emissions from thermal treatment of Waste materials (effective 12/2005)

• Directive 2003/30/EC of 08.05.2003 on the promotion of liquid and gaseous biofuels for transport: targets: 2% by 2005; 5.75% by 2010

TYPE OF ENERGY	ADDITIONAL CAPACITY 1997-2010	UNIT COST 1997 ECU	UNIT COST 2010 ECU	AVERAGE UNIT COST ECU	TOTAL INVESTMENT 1997-2010 billion ECU	ADDITIONAL ANNUAL BUSINESS 2010 billion ECU	BENEFIT OF ANNUAL AVOIDED FUEL COSTS 2010 billion ECU	TOTAL BENEFIT OF AVOIDED FUEL COSTS 1997-2010 billion ECU	CO ₂ REDUCTION milliom tn/year IN 2010
1. Wind	36 GW	1,000/KW	700/KW	800/KW	28.8	4	1.43	10	72
2. Hydro	13 GW	1,200/KW	1,000/KW	1,100/KW	14.3	2	0.91	6.4	48
3. Photovoltaics	3 GWp	5,000/KWp	2.500/KWp	3,000/KWp	9	15	0.06	0.4	3
4. Biomass	90Mtoe				84	24.1	-	-	255
5.Geothermal (+ heat pumps)	2.5 GW	2,500/KW	1,500/KW	2,000/KW	5	0.5	-		5
6.Solar Collectors	94 Mio m ²	400/m ²	200/m ²	250/m ²	24	4.5	0.6	4.2	19
Total for EU market	-		-		165.1	36.6	3	21	402

Infrastructure

- District heating systems
- Fuel (Biomass)
 - Cost efficient and sustainable fuel production

Economic incentives promoting RES

- Feed-in tariffs
 - Norway:
 - Power production from biomass: 1,2 eurocents/kWh in addition to market price
 - Germany:
 - Power production biomass: 21,5 eurocents/kWh
 - Power production solar cells (up to 30 kW): 62,4 eurocents/kWh

Major Technological Challenges

Environmental issues

- Ash upgrading/valorisation
- Particulate emissions
- NOx emissions
- Clean biomass vs wood waste

Electrical efficiency

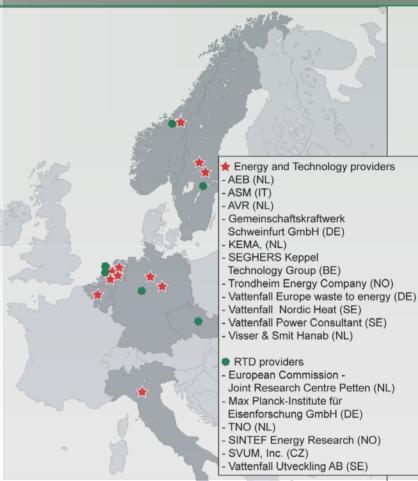
- Natural gas: ~60%
- Coal: ~40%
- Biomass: ~30%
- Waste: ~20%
- Costs
 - Investment costs
 - Operating costs

NextGenBioWaste

EUs largest project within energy from waste and biomass Homepage: www.nextgenbiowaste.com

NextGenBioWaste

- <u>Title:</u> "Innovative demonstrations for the next generation of biomass and waste combustion plants for energy recovery and renewable electricity production"
- Funded by the European Commission (6FP)
- Contract no.: 019809
- Project duration:2006-2010 (48 months)
- Budget: 29 017 555 €
- Co-ordinator: SINTEF Energiforskning AS,

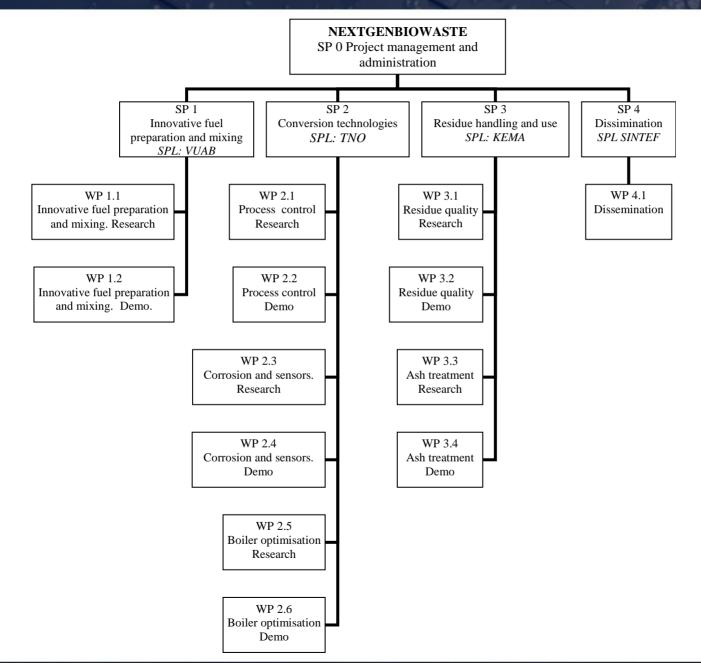

Consortium - 17 partners from 7 countries

Co-ordinator:

SINTEF Energiforskning AS (NO)

Partners:

NextGenBioWaste's Targets

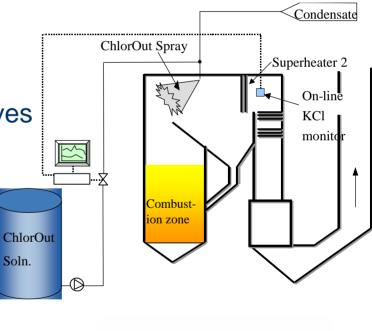

- Increase the electric efficiency for waste to energy plants from 22% to 30% (gross generated).
- 2. Double the lifetime of heat exchange components at existing steam temperatures
- Increase the electric efficiency for biomass combustion plants from 33% to 35%, while making the systems more cost-effective by the use of more low-grade fuels
- Lower the fuel cost at least 1 mill. €/year for a 100 MW_{th} biomass combustion plant while maintain the two former sub targets (2 and 3).
- 5. Enable technologies for upgrading of bottom ash, thus, enabling the utility companies to valorise from 70% of their bottom ashes for civil engineering purposes

Demonstrations on 8 plants in Europe

- 1. A full-scale demonstration of a retrofit fluidised bed bottom design for combustion of 100% of waste wood fuel in a 100 MWth biomass boiler
- 2. Large-scale demonstration of advanced control systems enabling plant operators to obtain more stable conditions and improved electrical efficiency
- 3. Large-scale tests of advanced boiler materials and cladding of superheater surfaces to reduce maintenance costs
- 4. Large-scale demonstration of advanced combustion techniques using low excess air enabling more compact and cost-effective systems with higher electrical efficiency
- 5. Full-scale demonstration of high-dust selective catalytic reduction (SCR) of NOx for improved electrical efficiency and environmental performance
- 6. Full-scale demonstrations on the use of additives in order to reduce operation costs because of decreased fouling and to reduce maintenance costs via an increased lifetime
- 7. Demonstration of novel design and retrofitting of boilers for improved efficiency
- 8. Full-scale demonstration of artificial aging of bottom ashes for improved leaching properties giving added value products

🕥 SINTEF

Polen 2006 October 18, 2006


SINTEF Energy Research

Examples of large-scale demonstrations

Vattenfall Europe Waste to Energy, Hamburg Germany

A few details:

- WtE plant, MSW 320 000tons waste/year
- Grate fired. 2 lines. 380C steam
- 100 MW. A present heat.
- Possible to convert to heat and power
- Corrosion reduction by use of additives
- First time trial in a WtE plant
- Both short-term and long term tests to be performed
- The level of KCI will be monitored on-line

ASM SPA, Brescia Italy

A few details:

- Fuel: MSW / biomass
- 3 lines; 552 000 t/a (137.000 t biomass)
- 361GWh electric and 292 GWh thermal
- Reducing NOx emissions while improving the electrical efficiency
- Presently SNCR system is installed
- Installation of <u>high-dust SCR</u> system in existing boiler
- Risks: material performance and energy recovery potential

Examples of large-scale demonstrations

- Vattenfall Nordic Heat, Nyköping, Sweden **vattenfall**
 - A few details:

- BFB plant, 100MWth
- 1 line, CHP, 540°C steam
- Fires about 50/50 forest wood residue/waste wood
- Reconstruction of the bed bottom design, enabling the plant to burn 100% waste wood
- Assess the impact of corrosion and fouling due to increased use of low-grade fuels
- Demonstrate the use of additives to reduce corrosion and fouling
- Potential to reduce fuel costs with 1 mill. e/year

SINTEF activities in "NextGenBioWaste"

Fuel testing

- Fuel mixtures
- Additives
- Impact on:
 - Flue gas quality
 - Particle formation
 - Corrosion and fouling
- Corrosion and fouling
 - Equilibrium calculations on combustion chemistry
 - Boiler design
 - CFD
 - Particle transport in boiler
 - Detailed combustion mechanisms

Is there a potential for collaboration?

Based on similar challenges on:

- Increased utilisation of biomass and waste
- Increased power production from biomass and waste (electrical efficiency)
- Infrastructure

SINTEF Energy Research

Polen 2006 October 18, 2006

Thank You For Your Attention!

Polen 2006 October 18, 2006

SINTEF Energy Research