UiT

THE ARCTIC UNIVERSITY OF NORWAY

Environmental geochemistry of sub-sea and on-land tailings from Cu-sulfide mines

Yulia Mun, Sabina Strmic Palinkaš, Matthias Forwick, Kristine Bondo Pedersen, Juho Junttila, Kai Neufeld

27.11.2018

2 µm

Past and future of mining in the Repparfjord area. Cu century...

- Ulveryggen was discovered in 1900-s Nussir was discovered later in 1970-s From 1972 until 1978/1979 Ulveryggen was in production by Folldal Verk AS, from early 2000-s is owned by Nussir ASA.
- About 1 Mt of mine waste was deposited into the Repparfjord (*Kvasness and Iversen, 2013*)
- Ulveryggen: approx. 3.7 Mt of indicated resources (~0.8% Cu grade)

(<u>http://www.nussir.no/en_projec_ulvery.php</u> accessed on 19.11.2018)

Nussir: approx. 5.8 Mt of indicated resources (1.15% Cu grade)

(<u>http://www.nussir.no/en_projec_nussir.php</u> accessed on 19.11.2018)

19.12.2016 Nussir ASA gained permission to place tailings into the fjord

(http://www.nussir.no/index.php)

Green Shift requires Cu

Lithogeochemistry of ore minerals: NS-35 chalcopyrite; Ulv -2 bornite

#sample	٧	Cr	Co	Ni	Cu	ı Zn	Ga	Ge	As	Rb	Sr	Мо	Ag	In	Sn	Sb	Cs	Ва	Та	w	ті	Pb	Bi	Th	U
	ppm	ppm	ppm	ppm	ppm	n ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
LD	5	20	1	20	10	30	1	0,5	5	1	2	2	0,5	0,1	1	0,2	0,1	3	0,01	0,5	0,05	5	0,1	0,05	0,01
NS-35	5	< 20	85	100	> 10000	310	< 1	< 0.5	< 5	< 1	48	< 2	0,5	0,5	< 1	< 0.2	< 0.1	12	< 0.01	0,6	3,69	< 5	0,3	< 0.05	0,05
Ulv-2	27	140	2	< 20	> 10000	< 30	6	0,6	< 5	24	186	5	< 0.5	< 0.1	< 1	< 0.2	0,4	527	0,13	< 0.5	0,96	< 5	0,1	3	3,02
																									/

Chemistry	of selecte	ed Cu min	erals (wt	%)														
Lab	Mineral	Sample	S	Fe	Со	Ni	Cu	Zn	As	Se	Мо	Ag	Cd	Те	Hg	Bi	Au	Total
UiO	Сср	NS-12	35,95	30,94				0,05									0,09	100,92
UiO	Сср	NS-42	34,7	29,77			33,29	0,07	0,01	0,03	2,86	0,03						100,76
UiO	Bn	NS-32	25,2	10,93		0,02	62,42	0,04		0,12	1,92	0,15		0,03	0,06			100,92
UiO	Bn	NS-40	24,95	10,72		0,04	62,83	0,11		0,42	2,18							101,26
UiO	Cct	NS-32	20,5	0,19	0,01	0,01	78	0,14		0,17	1,59	0,22						100,83
UiO	Cct	NS-40	20,63	0,03	0,01		78,05	0,17		0,31	1,54	0,01			0,1			100,85
UiO	Dg	NS-16	20,9	0,12			79,21	0,11				0,17						100,38
UiO	Dg	NS-26	22,81	0,73			75,09	0,07				0,6						99,19
UiO	Cv	NS-14	25,98	11,5			62,53	0,07	0,06			0,29						100,36
UiO	Cv	NS-26	25,45	11,36			62,37	0,11	0,05			0,14						99,44
UCR	Bn	Ulv-5	24,79	12,6			60,72											98,11
UCR	Cct	Ulv-5	20,65	1,02			77,96											99,63
UCR	Cct	Ulv-14	21,51	0,36			77,54											99,42

TOC, XRD (bulk, clays)

Position [°2Theta]

☆ Quartz

Plagioclase Muscovite

∆ Zinnwaldite

Air dried

50

EG

400°C

550°C

EG

4 550°C

20

5

10

15

Position [°2Theta]

400°C 6

3-4

60

Ó Illite

Kaolinite

According to SFT, 2008

Lithogeochemistry

Acmelabs	Int	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K20	TiO2	P2O5	MnO	Cr	Ba	Ni	Sc	Be	Co	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	Mo	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Hg	ті	Se
	(cm)	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DL		0,01	0,01	0,04	0,01	0,01	0,01	0,01	0,01	0,01	0,01		1	20	1	1	0,2	0,1	0,5	0,1	0,1	0,1	1	0,5	0,1	0,2	0,1	8	0,5	0,1	0,1	0,1	0,1	0,1	1	0,1	0,5	0,1	0,1	0,1	0,1	0,5	0,01	0,1	0,5
HH-004	0	68,1	11,81	4,57	1,78	1,14	2,84	3,19	0,44	0,09	0,03	342,0972	1216	49	8	4	13,6	1,6	14,9	3,7	6,6	93	2	109,4	0,6	6,7	2	86	<0,5	142	12,8	1,7	640,8	7,4	31	29,6	5	<0,1	0,2	0,3	<0,1	3,4	0,02	0,2	<0,5
	2,5	69,89	12,41	4,14	1,81	0,5	2,83	3,41	0,43	0,07	0,03	396,8327	1356	52	8	1	13,4	2	16,1	3	5,3	97,9	2	82	0,6	6,4	2,2	92	0,6	116,4	10,9	1,8	518	5,3	21	30,9	3,8	<0,1	0,1	0,4	<0,1	3,2	0,04	0,2	<0,5
~	6	70,82	12,08	4,44	1,81	0,51	2,8	3,26	0,38	0,06	0,02	403,6746	1377	49	8	1	12,6	1,6	15,2	2,5	4,4	87,5	1	72,3	0,3	5,9	1,8	86	<0,5	91,3	8,7	0,6	747,7	3,2	21	32,1	2,1	<0,1	0,1	0,4	<0,1	4,8	0,04	0,1	<0,5
	8	68,65	12,72	5,05	2,17	0,6	2,7	3,42	0,41	0,06	0,03	417,3585	1097	59	9	3	16	1,7	16,4	2,9	4,5	95	1	62,8	0,4	6,5	1,8	96	<0,5	107,4	10,7	1,1	486,6	3,4	19	37,7	2	<0,1	<0,1	0,4	<0,1	3,5	0,02	0,1	<0,5
-	10	69,42	10,96	4,3	1,7	1,82	2,87	2,46	0,62	0,13	0,04	150,5228	618	87	10	<1	11,4	2	13	6,7	8,9	80,3	2	179,6	0,7	7	2,6	81	<0,5	265,1	19,8	1,1	237,6	8,7	33	22,4	3,9	<0,1	0,1	0,1	<0,1	2,5	0,02	0,1	0,8
-	12	71,26	10,6	3,73	1,55	1,94	2,82	2,21	0,65	0,13	0,04	95,7872	536	27	10	1	10	2,2	11,5	7,9	10,1	76	2	186,6	0,7	6,9	2,9	71	0,7	297,9	22,7	1,1	86,6	8,7	37	18,3	3,9	<0,1	0,1	<0,1	<0,1	2,8	0,03	0,2	0,8
ActLabs																																													
DL		0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,001	0,01	0,001	20	2	20	1	1	1	0,1	1	0,1	0,2	1	1	2	0,01	0,05	0,01	5	0,5	1	0,5	2	10	5	30	20	5	nd	0,2	0,1	0,5		nd	0,05	
Rpelv		70,69	9,82	3,66	0,95	1,65	2,01	2,02	0,714	0,14	0,077	100	561	50	9	1	11	1,9	13	9	7,7	74	<1	189	0,87	7,85	3,45	60	4,5	344	28,4	< 2	10	18	40	50	< 5	nd	1,4	<0,1	0,6		nd	0,06	

Acmelabs	Interval cm	Cr	Ni	Cu	Pb	Zn	As	Cd	Hg
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DL			20	0.1	0.1	1	0.5	0.1	0.01
HH-004	0	342.1	49	640.8	7.4	31	5	<0.1	0.02
-	2.5	396.8	52	518	5.3	21	3.8	<0.1	0.04
-	6	403.7	49	747.7	3.2	21	2.1	<0.1	0.04
-	8	417.4	59	486.6	3.4	19	2	<0.1	0.02
-	10	150.5	87	237.6	8.7	33	3.9	<0.1	0.02
H	12	95.8	27	86.6	8.7	37	3.9	<0.1	0.03
ActLabs									
DL		20	20	10	5	30	5	nd	nd
Repparfjordelva		100	50	10	18	40	< 5	nd	nd

Sequential extraction: HH-12-004-GC-MF0312

On-land conditions. Pyrite FeS₂

 $4\text{FeS}_{2}+14\text{H}_{2}\text{O}+15\text{O}_{2} \leftrightarrow 4\text{Fe(OH)}_{3}+16\text{H}^{+}+8\text{SO}_{4}^{2-}$ $K = \frac{[H^{+}]^{16}[SO_{4}^{2^{-}}]^{8}}{pO_{2}^{15}} / log \text{Redox}$ $logK = 16log[H^{+}] + 8log[SO_{4}^{2^{-}}] - 15logpO_{2}$

Anoxic marine sediments conditions. Ore mineralogy and thermodynamic modelling. Pyrite.

HH-12-004-GC 3-4 cm

Chalcopyrite CuFeS₂

Partly oxidized chalcopyrite

Chalcopyrite. Thermodynamics

 $4\text{CuFeS}_2+14\text{H}_2\text{O}+15\text{O}_2 \leftrightarrow 4\text{Cu}^{2+}+4\text{Fe}(\text{OH})_3+8\text{SO}_4{}^{2-}+16\text{H}^+$

$$K = \frac{[Cu^{2^{+}}]^{4}[SO_{4}^{2^{-}}]^{8}[H^{+}]^{16}}{pO_{2}^{8}} / log$$

logK=4*log*[*Cu*²⁺]+8*log*[*SO*₄²⁻]+16*log*[*H*⁺]-8*log pO*₂ **Redox**

 $4Cu_5FeS_4+22H_2O+27O_2 \leftrightarrow 20Cu^{2+}+4Fe(OH)_3 + 16SO_4^{2-}+32H^+$

$$K = \frac{[Cu^{2^{+}}]^{20}[SO_{4}^{2^{-}}]^{16}[H^{+}]^{32}}{pO_{2}^{27}} / log$$

Vs.

 $4Cu_{5}FeS_{4}+22H_{2}O+27O_{2}+20CI^{-} \leftrightarrow 20CuCl_{2} (aq)+4Fe(OH)_{3} + 16SO_{4}^{2-}+32H^{+}$

$$K = \frac{[CuCl_2]^{20}[SO_4^{2^-}]^{16}[H^+]^{32}}{pO_2^{27}[Cl^-]^{20}} / \log \frac{1}{pO_2^{27}[Cl^-]^{20}} + \frac{1}{pO_2^{27}[Cl^-]^{20}}$$

IG-15-1-1039-MC-3-4 cm

Bornite Cu₅FeS₄

Bornite Cu₅FeS₄ HH-12-004-GC 0-2 cm

Speciation of Cu in sub-sea vs. on-land conditions

Conclusion

- The mineralization at Nussir and Ulveryggen deposits is characterized by a high Cu and lov As and Cd).
- The host volcar including Cr an
- The Cu content
- The main ore n weathered (cha
- Thermodynami fugacity is the r in the tailngs
- Dissolved Cu²⁺ fresh water
- Cu-chloride cor
- At near neutral sulphides in the sea water

Thank you for listening.

Any questions?

n compatible elements,

weakly he disposal) edox potential/oxygen Ilfide minerals deposited

th in sea water and

nificant importance fect the solubility of Cu

Chalcopyrite with CI in sea water

