UiT

THE ARCTIC UNIVERSITY OF NORWAY

Interaction of submarine tailings with natural sediments in Ranfjorden and Bøkfjorden.

Sedimentary processes, geochemistry and dispersion patterns.

Content

- The project
- Study areas
- Materials & methods
- Results
- Conclusion

The project

- Part of NYKOS WP3
 - study of three comparable fjords
- Three theses:
 - Nikolai Figenschau (me)
 - Bøkfjorden, Stjernsundet & Ranfjorden
 - Anders Haugen
 - Randfjorden
 - Anette Klev
 - Bøkfjorden
- Main supervisor
 - Matthias Forwick (UiT)
- Co-supervisors:
 - Juho Junttila (UiT)
 - Aivo Lepland (NGU)
 - Nicole Baeten (NGU)
- Objective:
 - Study the impact of Submarine Tailings Placement (STP)
 - Interaction of tailings and natural sediments
 - Sedimentary processes
 - Dispersion patterns

Study areas

- Two fjords Bøkfjorden and Ranfjorden
- All associated with STP from local mining activity
 - Sydvaranger Gruve (iron) in Bøkfjorden
 - Bonded iron formation (BIF)
 - Magnetite
 - Rana Gruber (iron) in Ranfjorden
 - High Fe-grade metamorphosed sedimentary rocks
 - Hematite
 - Magnetite

Ranfjorden

- 26 km long, 530 m deep
- Recipient of tailings since since late 180C
 - Fe, Cu, Pb and Zn
 - Coking plant and iron works
 - Still active (Fe)
- 1965 2014
 - Two discharge sites
 - Coarse-grained = G
 - Fine-grained = F
- 2014 present
 - One discharge site (star)
 - Combined particles
- Ranelva plays a key factor
 - High input of freshwater
 - High input of sediments
- Relatively steep slopes
 - 6° inclination
- Flat, deep basin

Bøkfjorden

- 17 km long, 285 m deep
- Mining activity since 1906
 - Recipient of tailings since 1971
 - Halt in production since 1997 2009
 - Mine closure in 2015
 - Inactive since
- One discharge site (blue dot)
- Pasvik elva important for water circulation
- Flat, shallow inner basin
- Flat, deep outer basin

Material and methods

- Data base:
 - 61 sediment cores
 - SWATH Bathymetry & TOPAS Seismic
- Multi-proxy analyses of 10 cores
 - Physical analysis
 - Grainsize distribution analysis
 - Magnetic susceptibility analysis
 - X-radiography
 - Geochemical analysis
 - Qualitative & quantitative X-ray fluorescence analysis
 - XRF core scanner and XRF spectrometry
 - Bulk mineral assemblage (NGU)

TOPAS Seismic

- Two distinct units
 - We focus on Unit B
 - - Acoustic laminated
 - Truncated
 - Out-fjord movement
 - Hemipelagic sedimentation and turbidity currents
 - Chaotic and blocky features in the east
 - Mass movements
 - » Debris flow lobes
 - Submarine channel bed
 - Erosive
 - Accumulation

Sediment cores - Ranfjorden

Sediment Grabs (Haugen, 2018)

- Varying sediment-content
 - Outside vs inside the channel

Bathymetry, Bøkfjorden

Legend

Tailings output location

2,5

lometers

•

Results - Bøkfjorden

Three depositional environments

- Endmember 1 Natural deposition (E1)
- Endmember 2 Tailings deposition (E2)
- Transitional zone (TZ)

	Bøkfjorden	Ranfjorden
Endmember 1	-Yellow-greyish -Massive -Fluctuating grainsize -Low magnetic susceptibility -Stable element ratios -Low Fe2O3 & SiO2	-Yellow-greyish -Massive -Relatively coarse-grained sediments -Low magnetic susceptibility -Low tailings-content (Low Fe2O3) -Elevated Pb and Zn-levels
Endmember 2	 -Alternating grey and dark, stratified/laminated sediment -Fine-grained -High, fluctuating magnetic susceptibility -Fluctuating element ratios -Very high SiO2 -High Fe2O3 	-Red colored -Mostly massive (also laminated) -Fine- and coarse-grained -High magnetic susceptibility -High tailings-content (High Fe2O3) (Lowered Pb and Zn)
Transitional zone	No distinct transitional zones	-Dark grey to red color -Gradually decreasing grainsize -Increasing magnetic susceptibility -Increasing tailings content (Fe2O3, Pb and Zn)

Comparison between the fjords

Conclusions

- Transport mainly by bedload currents
 - Both continuous and episodic deposition
 - Settling of sediment plumes
 - Mass movement turbidity currents
 - Triggered by high sed. rate
 - Slope failure
 - Mainly out-fjord, also lateral
 - Sharp contacts
 - Little to no physical mixing (capping effect)
 - Gradual transition
 - Physical mixing
 - Isolation (capping effect)

Summary

- Study of two STPs in northern Norway
- Two endmembers
 - Tailings
 - Natural sediments
 - Varying degree of transition
 - Abrupt vs Transitional
- Meandering channel controlled
 - Slope and topography
 - Coarse-grained sediments confined in channel
 - Fine-grained sediments outside channel
 - Either by spill-over events or sediment plumes