Feasability of battery storage systems

Nils Arild Ringheim

November 2001

TECHNICAL REPORT

SUBJECT/TASK (title)

SINTEF Energy Research

Address: NO-7465 Trondheim,

NORWAY

Reception: Sem Sælands vei 11 Telephone: +47 73 59 72 00

+47 73 59 72 50 Telefax:

http://www.energy.sintef.no

Enterprise No :

Feasability of battery storage systems

CONTRIBUTOR(S)

Nils Arild Ringheim

CLIENTS(S)

Margas Forekningeråd

NO 939 350 675 MVA		Norges Forskinngsrad	
TR NO.	DATE	CLIENT'S REF.	PROJECT NO.
A5473	2001-11-28	Else Boon	12X127
ELECTRONIC FILE CODE		RESPONSIBLE (NAME, SIGN.)	CLASSIFICATION
011128nar123449		Nils Arild Ringheim	Unrestricted
ISBN N0.	REPORT TYPE	RESEARCH DIRECTOR (NAME, SIGN)	COPIES PAGES
82-594-2115-1		Petter Støa	4
DIVISION		LOCATION	LOCAL FAX
SINTEF Energiforskning AS		Sem Sælands v. 11	+47 73 59 72 50

RESULT (summary)

This report reviews secondary (rechargeable) batteries, while primary (non-rechargeable) are left out. In addition, emphasize is made on stationary battery energy storage systems, while portable (consumer) electronics and vehicle specific application are not included.

Batteries are very diverse in characteristic and application. Well-known technology like lead-acid and nickel-cadmium are used in large battery energy storages (tens of MWh). Flow batteries (Regenesys, Redox and Zinc/Bromine) are promising for very large-scale storages (>100 MWh). High temperature sodium-sulfur batteries (NaS) are also installed in some MWh-plants. New technology like Li-ion batteries shows promising characteristics, but is not mature for larger energy storage application. Leadacid is a clear winner on initial cost, followed by NiCd and then NiMH and at last Li-ion. Li-ion is not inherently expensive: Cost is very volume sensitive. (Metal-air batteries are the least expensive alternative, but are not mature for energy storage applications with electrical recharge.) In addition, flow batteries are cost effective in very large-scale energy storages.

Different charging characteristics for lead acid batteries are compared and evaluated. Based on the results, an I-U-(I) characteristic is recommended for a planned battery testing in the laboratory (constant currentconstant voltage-constant current).

KEYWORDS					
SELECTED BY AUTHOR(S)	Secondary batteries	Characteristics			
	Battery storage	Application			

TABLE OF CONTENTS

		Pa	<u>ige</u>
1	CITAMA	DV	
1		RY	
2		AL COMMENTS ON BATTERIES	
		NCTIONAL DESCRIPTION	
		Electrode basics	
_	2.1.2	Electrolyte basics	
3	BATTER	RIES	
		AD-ACID TYPES	
		KALINE BATTERIES	
	3.2.1	Ni-Cd	
	3.2.2	Ni-MH	
		TYPES	
		Li-polymer	
	3.3.2	Li-ion	•••••
	3.4 SOE	DIUM SULFUR (NaS)	
		ΓAL-AIR BATTERIES	
		OW BATTERIES	
	3.6.1	Redox batteries	
	3.6.2	Regenesys batteries	
	3.6.3	Zinc/Bromine batteries	
		MPARISON OF BATTERY TYPES	
	3.7.1	Energy and power densities	
	3.7.2	Life time	
	3.7.3	Life cycles	
	3.7.4	Temperature	
	3.7.5	Efficiency	
	3.7.6	Summary of battery comparison	
4	MAINTE	ENANCE AND CHARGING METHODS OF LEAD ACID BATTERIES	
5		NCES	
A	PPENDIX A	A: DEFINITIONS AND NOMENCLATURE	

12X127 A5473

1 **SUMMARY**

This report reviews secondary (rechargeable) batteries, while primary (non-rechargeable) are left out. In addition, emphasize is made on stationary battery energy storage systems, while portable (consumer) electronics and vehicle specific application are not included. A review of different methods for charging lead acid batteries are done.

Batteries are very diverse in characteristic and application. Well-known technology like lead-acid and nickel-cadmium are used in large battery energy storages (tens of MWh). Flow batteries (Regenesys, Redox and Zinc/Bromine) are promising for very large-scale storages (>100 MWh). High temperature sodium-sulfur batteries (NaS) are also installed in some MWh-plants. New technology like Li-ion batteries shows promising characteristics, but is not mature for larger energy storage application. Lead-acid is a clear winner on initial cost, followed by NiCd and then NiMH and at last Li-ion. Li-ion is not inherently expensive: Cost is very volume sensitive. (Metal-air batteries are the least expensive alternative, but are not mature for energy storage applications with electrical recharge.) In addition, flow batteries are cost effective in very large-scale energy storages.

Different charging characteristics for lead acid batteries are compared and evaluated. Based on the results, an I-U-(I) characteristic is recommended for a planned battery testing in the laboratory (constant current- constant voltage-constant current).

12X127 A5473