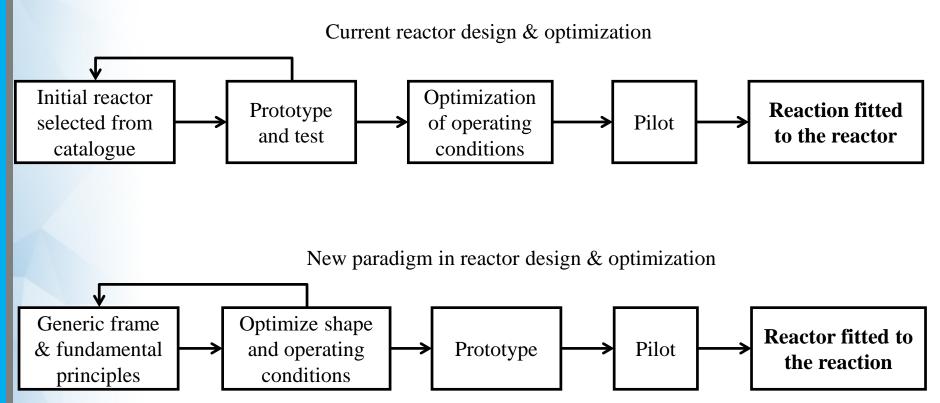


Process Intensification by 3D printing technologies applied to NO (\rightarrow NO₂) oxidation

Carlos Grande ¹, Hans-Jörg Zander ², David Waller ³, Luis Suarez-Rios ⁴, Juan C. Piquero Camblor ⁴

- 1. SINTEF. Forskningsveien 1 (0373) Oslo, Norway
- 2. Linde AG, Engineering Division. Dr. Carl von Linde Strasse 6-14. Pullach 82049, Germany
- 3. YARA International ASA. Yara Technology Centre. P.O. Box 1130. Porsgrunn 3905, Norway
- 4. Prodintec. Avda Jardín Botánico 1345. Gijón 33203, Spain.

Email: carlos.grande@sintef.no


Outline

- Project introduction
- NO \rightarrow NO₂ oxidation
 - Technology
 - Process intensification concept
 - Catalytic approach
- Structured catalysts
 - Design
 - Production
- Demonstrator: design & results
- Conclusions
- Acknowledgments & announcements

Motivation

Design the best reactor for your particular purpose

Consortium

THE LINDE GROUP

13 Partners:

Industrial: 4

SME: 4

R&D: 4

Academic: 1

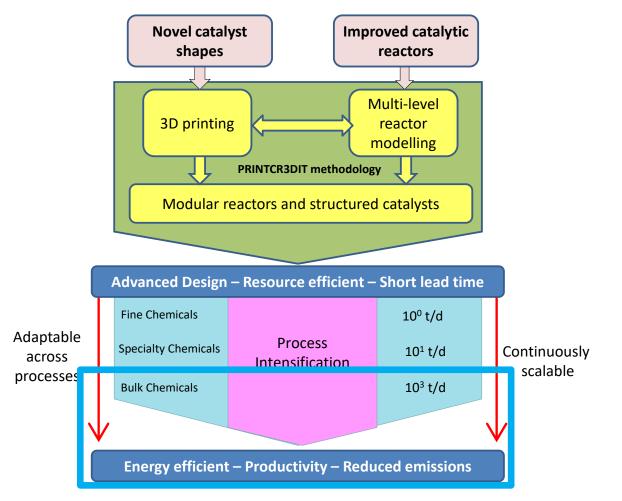
JM 🛠

Johnson Matthey

Linde

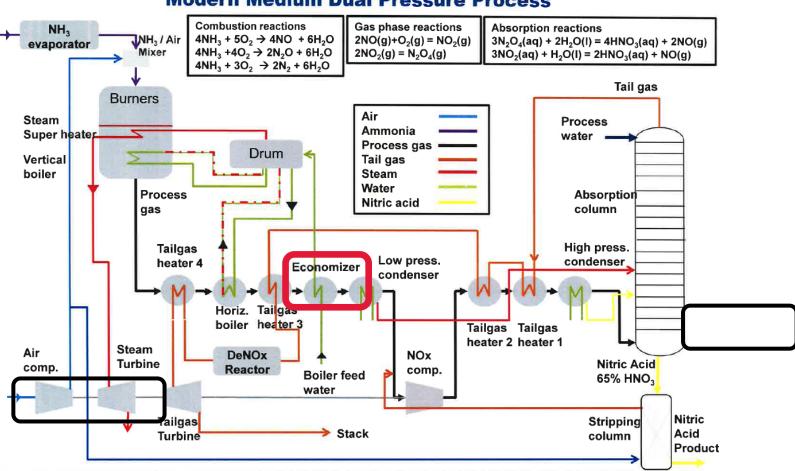
INSTITUTE OF CHEMICAL PROCESS FUNDAMENTALS OF THE CAS

FACTORY OF FUTURE


U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

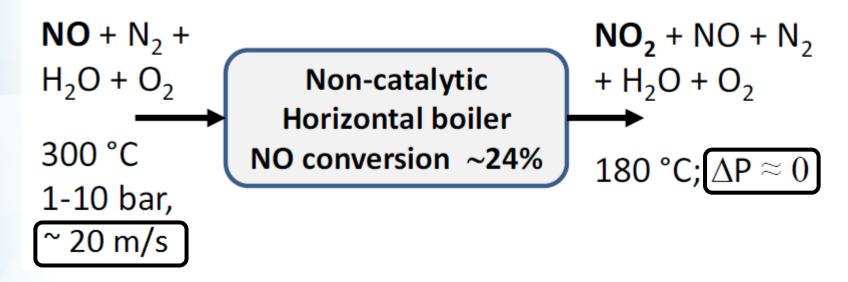
Duration: 36 months, 1/10/2015 – **30/9/2018** Budged: 5,493,891 €

PRINTCR3DIT: **Pr**ocess **Int**ensification Through Adaptable **C**atalytic **Re**actors Made By **3D** Printing



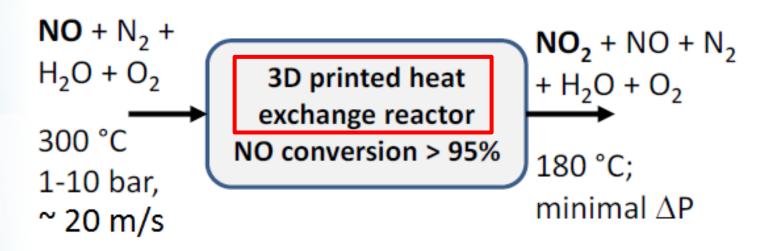
H2020: PRINTCR3DIT - Process Intensification through Adaptable Catalytic Reactors made by 3D Printing www.printcr3dit.eu

NO + $\frac{1}{2}$ O₂ \rightarrow NO₂: existing technology



NO + $\frac{1}{2}$ O₂ \rightarrow NO₂: existing technology

Economizer: heat-exchange reactor

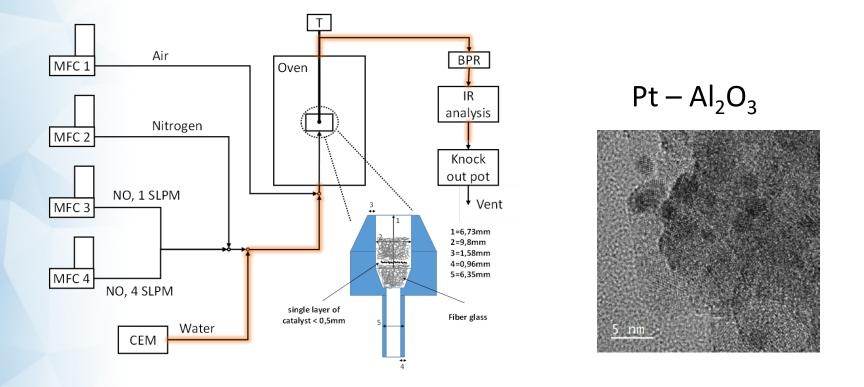


NO + $\frac{1}{2}$ O₂ \rightarrow NO₂: process intensification

Mass transfer rate is slower than heat transfer rate. We want to increase NO conversion at high temperature to recover the energy of oxidation (-114 kJ/mol) at higher temperatures.

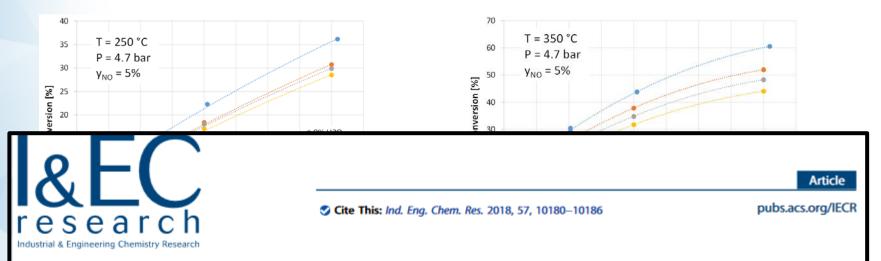
Challenge No. 1

Lack of normative: No entity is qualifying 3D printed reactors.


Solution: design the internals (catalyst) and use in standard reactor

Challenge No. 2

NO oxidation mechanisms known only at the ppm level (not %)


VERY CORROSIVE REACTION!!!

Catalytic results

We have measured 819 points to determine the kinetic equation

Process Intensification in Nitric Acid Plants by Catalytic Oxidation of Nitric Oxide

Carlos A. Grande,^{*,†®} Kari Anne Andreassen,[†] Jasmina H. Cavka,[†] David Waller,[‡] Odd-Arne Lorentsen,[‡] Halvor Øien,[‡] Hans-Jörg Zander,[§] Stephen Poulston,^{||} Sonia García,^{||} and Deena Modeshia^{||}

[†]SINTEF AS, P.O. Box 124 Blindern, Oslo N0314, Norway

[‡]Yara International ASA, Yara Technology Centre, P.O. Box 1130, Porsgrunn 3905, Norway

[§]LINDE AG, Engineering Division, Dr.-Carl von Linde Stra β e 6-14, Pullach 82049, Germany

^{IJ}Johnson Matthey Technology Centre, Blount's Court, Sonning Common RG4 9NH, United Kingdom

SPR Statistic Provide Holes

3D printing

Simplified description of 3D printing techniques (by 2015)

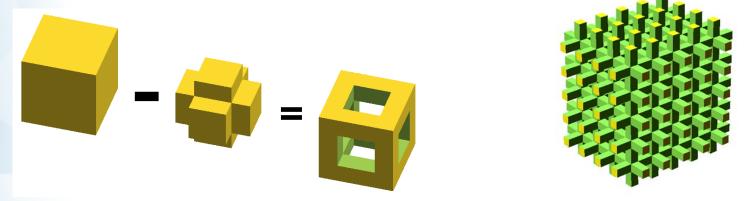
Xy + z motors with a "dispenser". Catalyst can be embedded in a polymer or in a slurry. Heat required to remove the polymer. Lowmedium accuracy.

Fuse deposition

Laser sintering

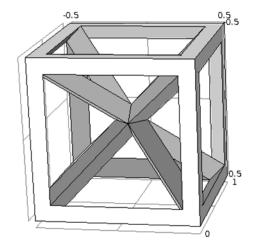
Heat used to sinter particles. Extremelly high T for ceramic materials. Non porous materials. Print with very high accuracy. Stereolithography

Low-power laser or light to make a polymerization. Ceramic in the slurry. Heat required to remove the polymer. Very high accuracy.


We want high accuracy for design!

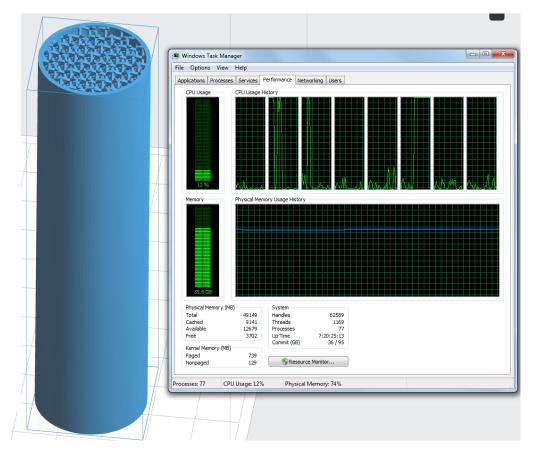
Catalyst design: macro-level control

Design of iso-reticular (perfect) foams. Make one cell at the time with mathematical operations. Then replicate over space.


Shape	Porosity	Strut width
Cubic cell	$\varepsilon_f = \frac{\left[3(L-P)P^2 - 2P^3\right]}{L^3}$	(L-P)

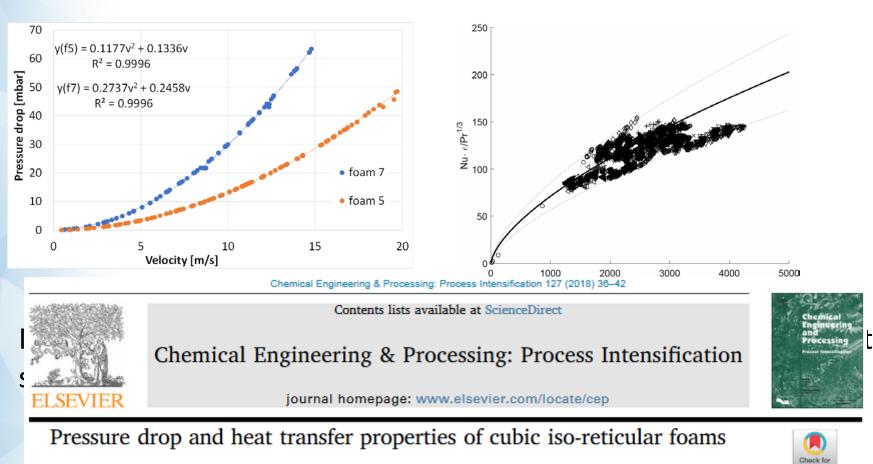
Catalyst design: macro-level control

To change the porosity vs strut dimension, change the solid.


■ search.patentstyret.no

Descriptior / title	Method for manufacturing a porous foam support, and porous foam supports for catalytic reactors, adsorption processes and energy storage
Status Legal status Detailed status	In force () 2017.11.20 Granted 2017.11.10 Granted (B1)
Patent number	341465
Application number	20160738
Filed	2016.05.03
Priority	None
Case type	National
Effective date	2016.05.03
Expiry date	2036.05.03
Publicly available	2017.11.06
Granted	2017.11.20
Applicant	Sintef TTO AS (NO)
Owner	Sintef TTO AS (NO)
Inventor	Carlos Grande (NO)
Agent	BRYN AARFLOT AS (NO)

ro-level control

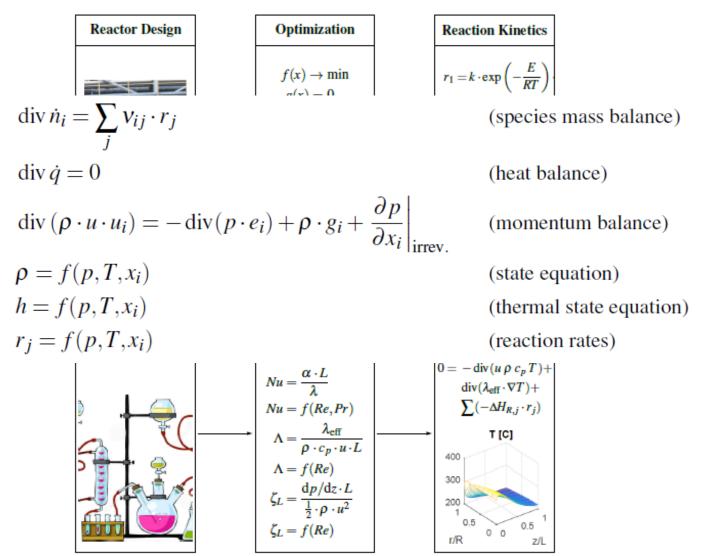

s strut dimension, change the solid.

PRINT CREDIT

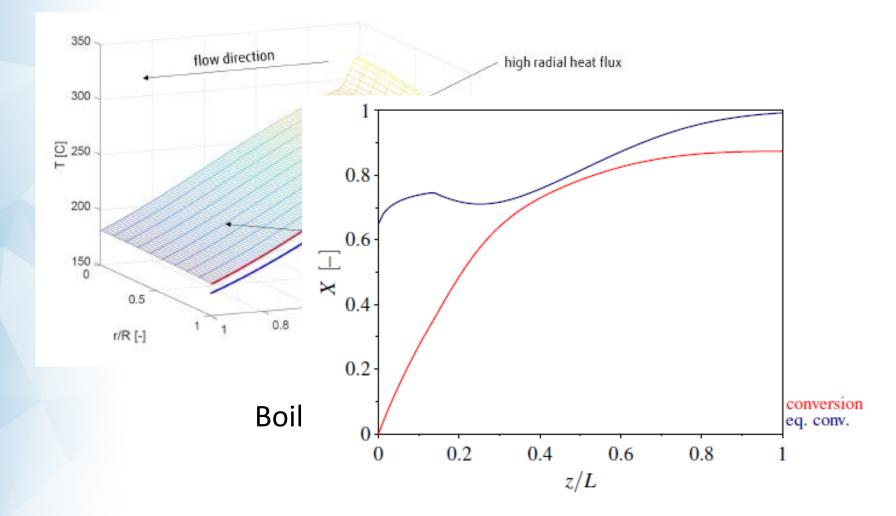
Pressure drop & heat transfer

Núria F. Bastos Rebelo^a, Kari Anne Andreassen^a, Luis I. Suarez Ríos^b, Juan C. Piquero Camblor^b, Hans-Jörg Zander^c, Carlos A. Grande^a.*

SINTEF Industry, P.O. Box 124, Blindern, N0314 Oslo, Norway


^b PRODINTEC Parque Científico Tecnológico de Gijón, Avda. Jardín Botánico, 1345, 33203 Gijón, Asturias, Spain

^e LINDE AG, Engineering Division, Dr.-Carl von Linde Straße 6-14, 82049 Pullach, Germany


Reactor modelling: problem approach

Reactor modelling: results \rightarrow learning for design

H2020: PRINTCR3DIT - Process Intensification through Adaptable Catalytic Reactors made by 3D Printing www.printcr3dit.eu

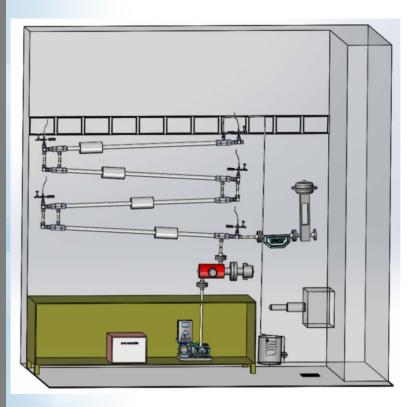
Scale-up & demo decisions

The demo will replicate 1 tube of the multi-tubular economizer.

- Length: 7.5m. Diameter: 1 inch external.
- Performance will be monitored in different configurations
 - The length will be divided into 4 tubes of 1.85m
- The heat transfer fluid is pressurized water.
 - It can boil so the sections will be slightly tilted.
- The system will have real feed gas coming from another demo
 - Many variables monitored and gas returned to main unit

Catalyst scale-up

- All the catalyst support was printed in the same run.
- Not problem-free
 - The length diameter ratio complicates the printing.
- Powder cleaning had to be solved.



H2020: PRINTCR3DIT - Process Intensification through Adaptable Catalytic Reactors made by 3D Printing www.printcr3dit.eu

Demo unit

Design

The unit

Conclusions

- Normative should be the next step
- Is possible to produce a multi-functional catalyst
- The initial tests confirm that a catalytic process can work
- Using 3D printing is possible to obtain new shapes that can unlock new operation modes of processes. This statement is valid for new process design or for retrofitting.

Announcements

www.printcr3dit.eu

PRINTCR3DIT: DEMO OF FIRST 3D PRINTED CATALYSTS

1st EUROPEAN FORUM ON NEW TECHNOLOGIES A new event series of the European Federation of Chemical Engineering

PRINT CREDIT

The project leading to this application has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 680414. The project belongs to the SPIRE programme <u>www.printcr3dit.eu</u>.

Carlos

