

A CFD approach to study catalytic reactors filled with open cell foams

José Daniel Araújo, Daniel Direito and Manuel Alves

H2020: PRINTCR3DIT - Process Intensification through Adaptable Catalytic Reactors made by 3D Printing www.printcr3dit.eu

Computational Fluid Dynamics

Main uses

- Fundamental science: discover new phenomena
- Design and optimization: design and improve equipment
- Substitute for experiments and monitoring: modeling of existing equipment or natural phenomena

U.PORTO CFD simulations

PRINT CREDIT

Software: Open ∇ FOAM

CFD simulations – tracer tests

CFD simulations – tracer tests

CFD simulations – tracer tests

CFD simulations – surface reaction

 $U_{sup} = 0.03 \text{ m/s; } k_r = 0.1 \text{ s}^{-1}$

Species

A – reagent B – product

Reaction

$$A \to B$$
$$r_A = -k_r \cdot C_A$$

Fluid

Water properties $D_m = 1x10^{-9} m^2/s$

H2020: PRINTCR3DIT - Process Intensification through Adaptable Catalytic Reactors made by 3D Printing www.printcr3dit.eu

Α

B

lustry through

CFD simulations – fluid phase reaction

Species	<u>Reaction</u>	<u>Fluid</u>
A – reagent	$A + B \rightarrow$	$\Rightarrow C $
C – product	$r_A = -k_r \cdot$	$C_A \cdot C_B$ $T_{in} = 373 \text{ K}$
D – inert	$-\Delta H_r = 500$	kJ/mol
	A B H2020: PRINTCR3DIT - Process Intensification three	but but the transformed of the t

CFD simulations – fluid phase reaction

CFD simulations – fluid phase reaction

Optimization procedure

Fully automatic

Input – initial parameter values Output – stl file with optimized shape

Couples several tools

Geometry generator CFD software Optimizer

Versatile

Useful for optimization of different types of systems and process units

PRINT CREDIT

Optimization procedure

PRINT CREDIT

Optimization procedure

2 – CFD tools

OpenFOAM® software (freeware)

Communication with other blocks – application of bash scripts

Language – C++

Meshing – cfMesh or snappyHexMesh tools

Solver – Single-phase flow with heat and mass tranfer

Cyclic BC – to benefit from the periodicity of flow field in open channel structures

PRINT CREDIT

3 – Post-processing

Optimization procedure

Acknowledgements

PRINT CREDIT

The project leading to this application has received funding from *the European Union's Horizon 2020 research and innovation programme* under grant agreement No 680414. The project belongs to the SPIRE programme and information can be found in www.printcr3dit.eu.

