

Trondheim CCS Conference

CO₂ Capture, Transport and Storage

RETROFITTING CO₂ CAPTURE IN REFINERIES

R Anantharaman, K Jordal, S Roussanaly, P E Wahl, C Fu **SINTEF Energy Research**

C Girardi, L Boschetti, A Clapis, L Mancuso, M Castellano AMEC Foster Wheeler

14th June 2017

ReCap project

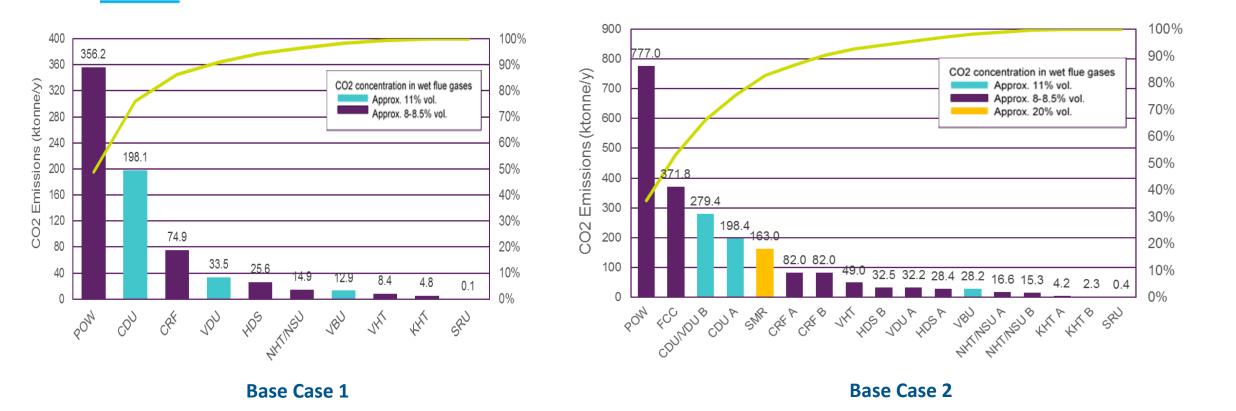
- Project Participant
 - SINTEF Energy Research Project owner
 - IEAEPL (IEA Environmental Projects Ltd., the operating agent of IEAGHG)
 - CONCAWE
- Sub-Contractor:
 - Amec Foster Wheeler
- Main funding body:
 - GASSNOVA

Background

- Global refining sector contributes to around 4% of the total anthropogenic CO₂ emissions and CCS is considered one of the technologies that could be applied to curb these emissions.
- No new refineries are expected to be built in OECD countries studying the feasibility of cost of retrofitting is important.
- It is essential to have a good understanding of the direct impact on the financial performance and market impact posed by retrofitting refineries with CO₂ capture technology.

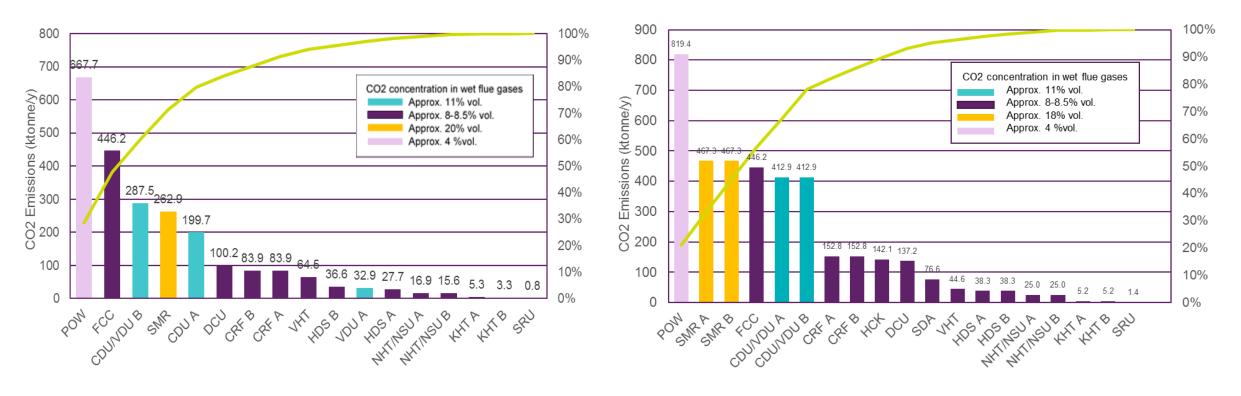
Motivation

- Policy makers should fully understand the cost of CCS deployment in this sector in order to develop policies
- Current open literature does not provide data that are comparable to each other.
- Studies are usually done in a top-down approach and results cannot be taken out of context and are very site specific.
- A consistent bottom-up approach is necessary to identify precisely what the oil industry is likely to achieve in terms of CO₂ reduction, the related costs, their impact on global competitiveness.



Base case refineries

• 4 base case refineries defined:


- Simple refinery with a nomical capacity of 100,000 bbl/d
- Medium and highly complex refineries with nominal capacity of 220,000 bbl/d
- Highly complex refinery with nomical capacity 350,000 bbl/d

CO₂ emissions from base case refineries

SINTEF

CO₂ emissions from base case refineries

Base Case 4

() SINTEF

Base Case 3

7

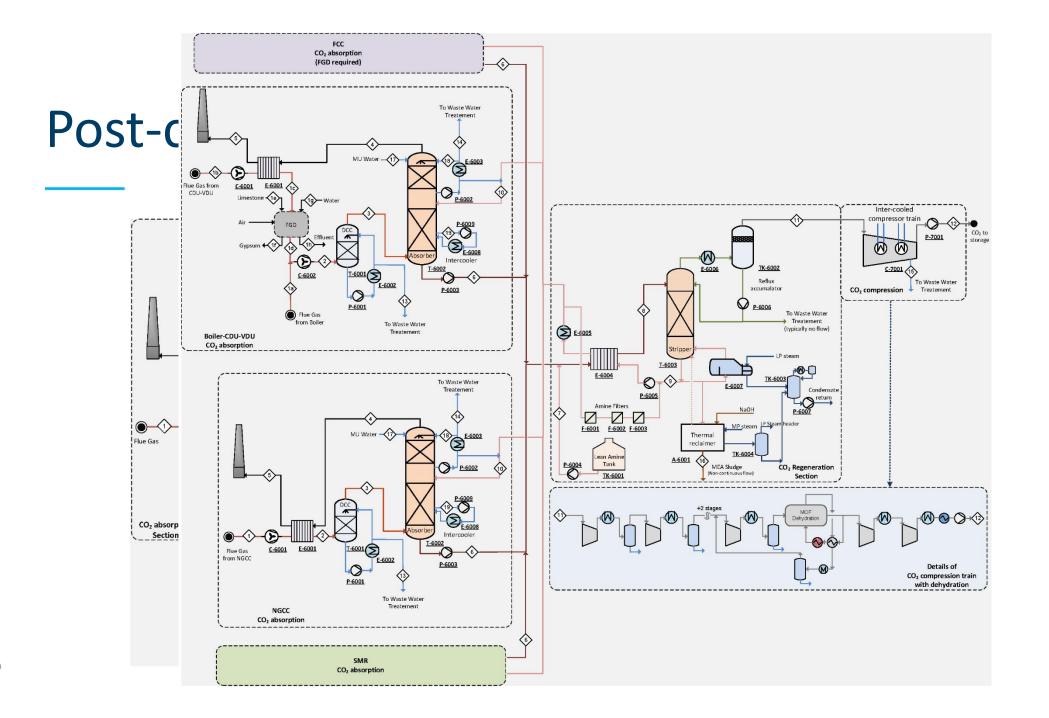
Base Case 4: Capture Cases

		CO ₂ [t/h] @ operating point	% of total CO₂ emissions	CO₂ %vol	CO₂ %wt	Flue gas [t/h] @ operating point
D1	POW ¹	76.0	20.9%	4.23	6.6	1160.5
		21.4		8.1	12.9	165.5
D2	FCC	53.1	11.4%	16.6	24.6	215.9
D3	CDU-A/VDU- A	49.2	10.5%	11.3	17.2	286.5
D4	CDU-B/VDU- B	49.2	10.5%	11.3	17.2	286.5
D5	SMR	19.8	25.1%	17.7	26.7	438.6
		97.5				

04-

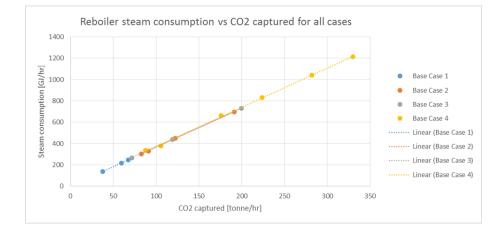
04-

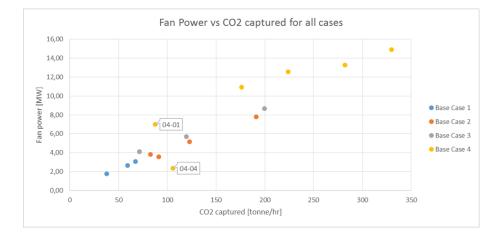
04-(

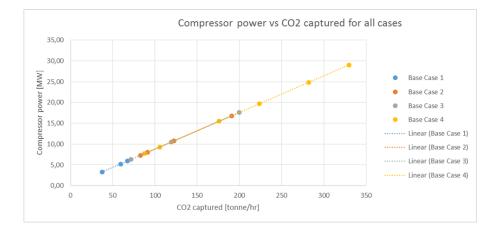

04-

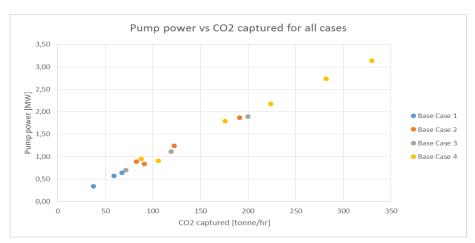
04-

04-

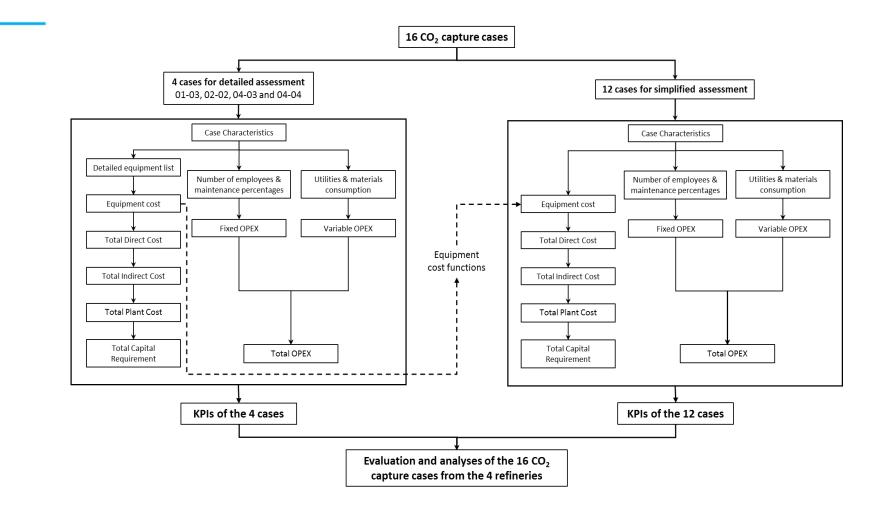

14	.2	200.5				
26	6.7	438.6	CO ₂ emissions [t/h] @ operating point	% of total CO ₂ emissions	Avg CO ₂ vol%	
-01		D1	97.4	20.9	4.7	
-02	C	01+D3+D4	195.8	42.0	6.7	
-03	D1+D	02+D3+D4+D5	366.2	78.5	9.4	
-04		D5	117.3	25.1	17.7	
-05	D1	+D3+D4+D5	313.1	67.1	8.7	
-06	D1	+D2+D3+D4	248.9	53.3	7.7	🕥 SINTEF


8



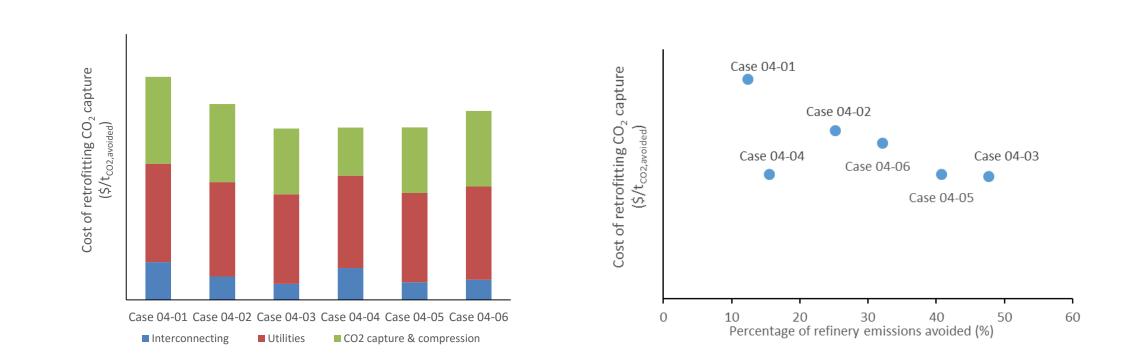

() SINTEF

Results from simulations



SINTEF

Methodology for techno-economic analysis


Plot plan example

SINTEF

12

Base Case 4: Cost of retrofitting CO₂ capture

Important factors affecting CO₂ avoidance cost

- Utility plant
 - NG cost
- CO₂ capture plant
 - CO₂ concentration
 - Quantity of CO₂ captured
 - Flue Gas Desulphurization units
- Interconnecting sections

Summary

- ReCAP has evaluated the cost of retrofitting CO₂ capture technologies in an integrated oil refinery an understand its implication to:
 - CO₂ avoidance cost
 - Refinery fuel balance
 - Utilities requirement
 - Contructability
- Provided industry with data and tools to estimate impact of CO₂ capture in their respective refineries

Summary

CO ₂ avoidance cost (\$/t _{CO2,avoided})	Characteristics	ReCap Cases
Very high	Very low CO_2 concentration in flue gas (4-5%) coupled with a small amount of CO_2 captured (around 750 kt _{CO2} /y)	04-01
High range	Low to medium CO_2 concentration in flue gas (6-9%), very low amount of CO_2 captured (300-600 kt _{CO2} /y), significant fraction of the flue gases require FGD (50-100%) or a combination of these factors	02-04, 01-02, 01-01, 03-01, 01-03, 04-02
Medium range	Low to medium CO_2 concentration in flue gas (6-9%), low amount of CO_2 captured (600-750 kt _{CO2} /y), small fraction of the flue gases require FGD (20-50%) or a combination of these factors	03-02, 04-06, 02-02, 02-01
Low range	Medium to high CO_2 concentration in flue gas (10-18%), large amount of CO_2 captured (2000-3000 kt _{CO2} /y), small fraction of the flue gases require FGD (<10%) or a combination of these factors	03-03, 02-03, 04-05, 04-04, 04-03

Teknologi for et bedre samfunn