Risk based distribution system asset management the Norwegian experience

Kjell Sand, SINTEF Energy Research

kjell.sand@sintef.no

CIGRE Seminario Internacional on Asset Management Regente Palace Hotel Buenos Aires – 23 al 24 de Oct. de 2006

SINTEF Energy Research

Content

- The Norwegian T&D System
- SINTEF Energy Research
- Asset management in a T&D income cap regulatory regime
- Stakeholders' (conflicting) asset management objectives
- Quality of supply regulation and the impact on asset management
- Trends
- State of the art risk management practices within utilities
- State of the art available methodologies and tools
- Case studies examples of risk based asset management projects and obtained benefits.
- Ongoing work looking ahead

Electrical energy consumption per capita x 1 000 kWh (2000)

The Nordic Power System General Overview Year 2003

		Denmark	Finland	Norway	Sweden	Nordel
Installed capacity	MW	12.830	16.893	28.081	33.361	91.165
Generation	GWh	43.754	79.855	107.122	132.547	363.278
Imports	GWh	7.163	12.262	13.472	24.367	57.264
Exports	GWh	15.707	7.415	5.586	11.438	40.146
Total consumption	GWh	35.210	84.702	115.008	145.476	380.396
Consumption per capita	kWh	6.520	16.289	25.002	16.164	15.719
Breakdown of electricity g	generation	:				
Hydropower	%	0	12	99	40	47
Nuclear power	%	-	27		50	24
Other thermal power	%	87	61	1	10	27
Other renewable power	%	13	0	0	0	2

Source: Nordel

.

The Norwegian Power System

Electricity supply in Norway – some key figures

- ~ 4,55 million inhabitants
- ~ 123 000 km (overhead and underground power cables <1 - 420kV>)
- ~ 115 TWh annual el. consumption (ex transmission losses ~ 10 TWh)
- ~ 20 GWh energy not supplied in 2002 (0,017 % with reference to delivered energy)
- ~ 150 network companies (mostly owned by municipalities).
- Third party access to the electricity marked since 1991.

SINTEF - A contract research organization based in Trondheim, Oslo, Bergen and Stavanger

SINTEF is one of the largest independent research organisations in Europe.

SINTEF Energy Research - a part of SINTEF

Vision:

With the energy industry for a better environment

focusing on

- research and development
- dissemination and information

concerning the

- production
- generation
- transmission/distribution
- consumption of energy
- industrial processes and commercial products

in order to stimulate developments in the industry and the public sector

GLØSHAUGEN CAMPUS (Trondheim) SINTEF and NTNU,

The Norwegian University of Science & Technology

Number of employees:

NTNU	3.300
Scientific	1.800
(Incl. Post.doc and SINTEF	1.400
(Scientific	1.100)
Students:	20.000
Around:	8.000
in Engineering	& Sciences

Organisation

Number of employees: 179

Asset management

The process of managing demand and guiding acquisition, use and disposal of assets to make the most of their service delivery potential, and manage **risks** and costs over their entire life.

Main utility value chains - Norway

Norwegian T&D Regulation The history so far...

- Rate of return regulation (ROR) at first (1991)
 - giving incentives for possible over investments in T&D and high service levels
- Income cap regulation from 1997
 - maximum permitted income separate from actual costs
 - maximum permitted income dependent on benchmarking performance (DEA used for subtransmission and distribution)
 - giving incentives for possible under investments and reduced service levels

DEA – Data Envelopment Analysis

The history so far...

- Quality dependent revenue caps and individual service interruption payment 2001
 - maximum permitted income separate from actual costs
 - maximum permitted income dependent on benchmarking performance (DEA)
 - giving incentives to counteract possible under investments

The history so far...

- From 2002 Quality dependent income cap regulation/ Delayed cost plus...(hybrid)
 - maximum permitted income separate from actual costs
 - but updated by actual investments (delayed)
 - maximum permitted income dependent on benchmarking performance (DEA)
 - slightly increased incentives for investments

Income cap 2002 - 2006

Income cap regulation principle (ex-ante) from 1997

Including customer outage costs (CENS) 2000-2001

Asset management - Decision making - regulation: Lessons learnt

closer integration between technical, administrative and economical processes within the utility

more consistent criteria and regulation applied at different system levels (transmission, sub-transmission, distribution)

problems in giving the right incentives for investments

Asset management - Decision making - regulation: Lessons learnt

- how to balance costs, power quality, safety, environment still unsolved to some degree
- more short term focus
- regulation a dynamic process

Asset management - Decision making - regulation: Lessons learnt

Focus change from technical administration to more businesslike management

Focus on new business areas outside the regulation

More profit-seeking owners – often more demanding than the regulator

Mergers – new business models – more outsourcing

Interface network owner - service providers (entrepreneurs) a new challenge

Results - experience: Efficiency as observed by the regulator - DEA model

- Improved data quality and reporting system but more heterogenic utility behaviour
- 17,5 % improvement in technical efficiency 1997-2001
- 82% have improved their efficiency 1997-2001
- Positive experience with stepwise development

Experience - survey results

91% of the utilities found their activities influenced by the regulation

91% had cut their workforce of which 72% were motivated by the regulation.

59% had employed new skills to adapt to the new regime.

85% had changed their investment objectives.

Experience - survey results

- 79% reported changes in the demands from the owners of which 96% reported higher demands on returns on capital.
 - 48% found that the regulator's benchmarking was reasonable.

Concequences of regulation:

To manage more with less people

Consequences of regulation: Postponement of reinvestments

Aging infrastructures is a challenge

Age profile MV overhead lines and cables

Asset management hierarchy

Economy (Income, Investment costs, operation costs, maintenance costs, cost of electrical losses, outage costs…)				Economy		
Performance indicators: Quality of supply , EMC, Health, Environment, Security, Safety, Vulnerability					Performance	
Operation, Control,	Customer managemer	Maintenance, nt repairs	State control, Diagnosis	Construction work	Crisis & emergency preparedness	Work Planning
ComponentsSystem topologyPlants, ApparatusSystem protection		Customers Loads	Production	Neighbouring- grids	Physical "assets"	

The value chain is getting longer and more integrated - long distance from component level to economical regulation - challenge to establish a holistic and consistent asset management approach

Asset management objective - as defined by the regulator

Minimize overall costs:

Investments, reinvestments

- Cost of power losses
- Outage costs (utility and customer costs)
- Congestion costs
- Maintenance and operating costs

while satisfying relevant restrictions

Investment drivers

Grid level	New connections (new grid	Improvement of existing grid	Total
	customers)	(%)	(%)
	(%)		
Transmission	10	90	100
Subtransmission	10-40	90-60	100
MV	20-50	80-50	100
LV	40-60	60-40	100

.

Investment drivers - economy versus restrictions

(new grid customers are classified under restrictions)

Grid level	Restrictions	Economy	Total
	(%)	(%)	
			(%)
Transmission	10-15	90-85	100
Subtransmission	20-60	80-40	100
MV	60-90	40-10	100
LV	80-90	20-10	100

Quality regulation – development An ongoing process

1991	1991 1995		2000 - 2001	
Energy Act Socioeconomic optimization Mandatory information about quality of supply Results from customer survey	Mandatory reporting of interruptions > 3 minutes	Mandatory reporting of failures and disturbances 33 - 420 kVRevenue cap regulation introduced	Standardized method for estimation of Energy not supplied (ENS) Mandatory reporting of ENS per end-user group CENS introduced	

¹⁾ FASIT - standardized system for reporting of failures and interruptions

Quality regulation – cont.

2002	2003 2005		2006
A new regulation period Results from a new customer survey	<text></text>	New regulations relating to the quality of supply	Revision of the regulations relating to the quality of supply Registration and reporting of short interruptions according to FASIT ¹⁾ requirements

¹⁾ FASIT - standardized system for reporting of failures and interruptions

.

New PQ regulation in Norway

- Developed by the Norwegian Regulator (NVE)
- Includes rules for measurement and information
- Includes response times for management of complaints
- Based on EN 50160 but EN 50160 not considered sufficient by the regulator
- Stricter limits for some characteristics based on experience complaints problems with equipment
- Covers voltage quality and interruptions i.e. the characteristics in EN 50160
- Implemented by 2005-01-01

Characteristic LV	EN 50160-1999	Norwegian PQ Code	
Power frequency The interconnected system	50 Hz <u>+</u> 1% (99,5% yr) 50 Hz + 4/-6% (100% yr)	Referring to the Nordic system operation agreement. 50 Hz <u>+</u> 0,2% in normal operating conditions	
Supply voltage variations	230V <u>+</u> 10% - (95% week) 230V+10/-15%	230V <u>+</u> 10% - (all 1 min values)	
Magnitude of rapid voltage changes	Generally < 5% Up to 10%	 ≤ 1 (per day): 10% <24 (per day): 5% ≥ 24 (per day): 3% 	
Flicker severity	Plt <u><_</u> 1 (95% week)	Pst <u><</u> 1,2 (95% week) Plt <u><</u> 1 (100% of time)	
Supply voltage dips	Few tens up to one thousand	No limit *1)	
Short interruptions	Few tens up to several hundreds	No limit *1)	
Long interruptions	Less than 10 up to 50	No limit *1)	
Temporary overvoltages live/earth	Indicative < 1.5 kV	No limit *1) Apply also between phases.	
Transient overvoltages	Generally less 6kV peak	No limit *1)	

*1) NVE may order to reduce the consequences of such events.

. . . .

.

FASIT: Fault and interruption statistics

Norwegian standard Nordic cooperation and harmonization

Enforced by the regulator. Main purposes:

- Network expansion planning
- Planning of operation and maintenance
- Design and technical measures
- Standards for quality of supply
- Information to customers
- Quality adjusted revenues (CENS)
- Reporting of key figures
- Benchmarking

Heggset, J., Kjølle, G.: Experiences with the FASIT reliability data collection system, IEEE WM 2000, Singapore

Overview of the concept

- Used by all T&D companies in Norway
- Software quality assurance (contracts and acceptance test)

Examples indicators :

Fault statistic information Fault rate distribution transformers - from one utility with 6500 distribution transformers

Age

Examples indicators : Fault statistic information: Power transformers and aging

Statnett - (The Norwegian TSO)

Analysis of 1700 power transformers faults 1700 that occurred in the period 1983-95.

- No correlation between fault rate and age or voltage level or rating
- No correlation between age and repair time

Fault XLPE cable (crosslinked polyethylene) – of a spesific type

Year of construction

Spesific outage costs long outages (>3min)

Consumer	Non notified (1,3 hours) NOK/kWh	Notified (2,85 hours) NOK/kWh
Industry	66,4	46,0
Trade & Services	98,8	68,4
Agriculture	14,8	10,3
Household	8,4	7,4
Public offices	12,8	9,7
Wood processing & heavy industry	13,3	10,6

1 € - 8 NOK

.

Short interruptions and voltage dip

Consumer	Voltage dip (50% depth – 1 sec.)	Short interruption	
	[NOK/kW]	[NOK/kW]	
Households	-	-	
Industry	30,45	38,40	
Trade & services	22,07	34,64	
Agriculture	13,55	4,53	
Public offices	1,60	1,41	
Wood processing and heavy industry	5,64	8,23	

1 € - 8 NOK

National Power Quality Costs (per year)

Long interruptions (> 3min)	100 mill €
Short interruptions (< 3min)	75 mill €
Voltage dips	20-40 mill €
Total	195 – 215 mill €

-

Voltage quality - State of the art 142 analyzed customer complaints - all voltage levels

The DNO forces

.

Stakeholders - objectives

Stakeholder	Objectives	
DNO - TSO	Good performance - good service - good reputation - fair/high income	
Owner	Rate of return on assets - new spin-off business areas - regional industrial development. Good reputation	
Economical regulator	Maximum efficiency - incentives for quality of supply	
Safety regulator	Maximum safety - limit environmental impact	
Customer	Low tariffs - 100% reliability. (Voltage quality not commonly understood) - safe installations	
Producers of electrical equipment	100% reliability - Perfect voltage quality - Reasonable high emission limits (EMC)	
Electricity generators	No congestion, low in-feed tariffs, high reliability	

National and international Regulation - have great impact

on the asset management agenda

THIRD BENCHMARKING REPORT ON QUALITY OF ELECTRICITY SUPPLY 2005

Trends - Norway

- Political decisions regulation
 - National regulation uncertainty (Safety regulation, incentive regulation)
 - Harmonisation of the regulatory framework with the Nordic Countries and EU
 - Distributed Generation promoted and supported increased influx of DG (small hydro)
- More demanding and professional DNO ownership
 - risk seeking owners
 - more budget constraints
 - increased documentation requirements (decision base, cost-benefit...)
 - utilizing grid infrastructure to develop new business areas
 - Outsourcing new organizations
- Environmental consciousness increases
 - Transformer oil
 - \blacksquare SF₆
 - Wood poles creosote, chromated copper arsenate..)
 - Electric and magnetic fields (EMF)
 - Scenery etc.
- Increased electricity prices
 - Increased influx of heat pumps
 - reducing electrical winter load
 - increasing electrical summer load
 - Increased use of bioenergy sources for space heating and hot water generation
 - reducing electrical load
 - Micro CHP

Trends - Norway (cont.)

- Increased use of district heating and district cooling in urban area
 - reducing winter and summer load
- Increased metering requirements
 - AMR hourly metering two-way communication increased data management challenges
- Increased quality of supply requirements
 - more measurements and documentation
 - increased financial risks when quality of supply limits or contracts not are met
 - increased customer expectations requirements with a possibility of jeopardizing corporate brand if quality of supply performance decrease
- Aging people, aging work force
 - Technology expertise retired
- Aging assets (in general)
 - Increased fault rates for main components and protection
 - Asset life prolongation a big issue
 - Increased use of condition monitoring and diagnostics
 - Reduced safety
 - Spares difficult to obtain
- Risk elements climatic change: storms, floods, snowfall
- Lack of data poor data quality in ICT systems and data bases

By and large - at lot at risk

.

State of the art - asset management - risk management

SINTEF Energy Research

.

Risk = Probability x Consequence

Probability → Frequency of occurrence of Events

Probability category	Description
Unlikely	Less than 1 per 100 year
Infrequent	1 per 100 year or more
Occasional	1 per 10 year or more
Probable	1 per year or more
Frequent	10 per year or more

Consequence classification

Consequence category		
Minor		
Moderate		
Major		
Critical		
Catastrophic		

Events:

- High price scenarios
- Blackout scenarios

Vulnerability of the Nordic Power System, report no A5962

Risk Graph is commonly used

Results blackouts 2005

Vulnerability of the Nordic Power System, report no A5962

Risk Influencing Factors

Life-cycle-cost management is used by some utilities. Known as a philosophy by most DNOs, but not implemented by all

LCC Problem formulation: Cost of measures at some stages during the period of analysis k_0 k_1 'n n 1 Time (yr) Annual expected costs : Electrical losses, outages, maintenance, repairs...

Ω

Analysis - data sources

Data source	Analysis	Output parameters
Inspections, Monitoring, Electrical simulations	Evaluation	Tasks for priority Fault rate implication Component state indicator
Component state indicators Asset cost catalogues	Estimation Aggregation	Subsystem indicators
Fault statistics	Evaluation/ component statistics	Distribution system weak points to be considered in reinforcement planning
Maintenance management history	Evaluation, statistics	Distribution system maintenance intensive points to be considered in reinforcement planning
Asset planning system – Maintenance system	Plan revision Task revision	Revised plans incl. costs Revised tasks incl. costs
Asset database Scada	Load flow Reliability analysis	Cost of electrical losses Asset loading Asset criticality (importance) Asset outage contribution Asset outage cost contribution
Asset database Plan database Cost catalogues	LCC analysis	Decision support: Ranking of plans and tasks Optimal timing

. .

Utility Decision Support Platform(UDSP) **NetBas** used by most utilities in Norway

- also used in other Nordic countries and outside

Annual NIS benefits -

BKK: Annual revenue Annual investments NIS estimated benefits 70 mill euro/yr10 mill euro/yr5.4 mill euro/yr

 Create project.
 Maintenance tasks Inspections/controls

 Manual work
 NetBas Maske, Fasit, Levsik, LCC

 Netbas Design
 Netbas Archive

 Netbas Maintenance
 Agresso (ERP)

Reliability analysis in NetBas used for criticality evaluation.

Three equal transformers 132/22 kV carry the same load

Supply different customer categories

Difference in substation layout (Case A and Case B)

Example Tools: Reliability analysis

67

Case A

SINTEF Energy Research

.

Case B

Criticality measured by outage costs evaluation using a NIS reliability tool

	Penalty and repair costs due to T ₁ [1000 NOK/yr]	Penalty and repair costs due to T ₂ [1000 NOK/yr]	Penalty and repair costs due to T ₃ [1000 NOK/yr]	Penalty and repair costs due to remaining power system [1000 NOK/yr]	
	Average transformer conditions i.e. average fault statistics				
Case A	4111	-	-	768	
Case B	-	594	1981	1037	
Aged transformer conditions i.e. 10 times increased probability of winding fault compared to average statistics					
Case A	7451	-	-	768	
Case B	-	849	2548	1037	

LCC in practice

LCC results - period of analysis 20 year

Conclusions

- Regulation heavily influences asset management
- Benchmarking a great challenge still
- Regulatory requirements improve documentation for asset management
- Quality of supply regulation an important issue-developing
- More short term focus a challenge
- Risk based tools more used detailed fault statistics a challenge
- The utilities are improving, but slowly -disturbed by new business areas

Condition monitoring and diagnosis to be utilized better in the asset management chain

SINTEF Energy Research

The Norwegian distribution system anno 2030?

SINTEF Energy Research

