Risk based distribution system asset management looking ahead

Kjell Sand, SINTEF Energy Research

kjell.sand@sintef.no

CIGRE Seminario Internacional on Asset Management Regente Palace Hotel Buenos Aires – 23 al 24 de Oct. de 2006

SINTEF Energy Research

Some improvement options

- Transparency in efficiency sharing with customers
- Improved grid state indicators improved condition monitoring
- Improved reliability and power quality management in decision processes
- Increased utility service and customer satisfaction focus
- Additional objectives and key performance indicators in addition to short term profit
- Opens for improved multi criteria risk based grid management
- To utilize all the data that are out there in a more holistic and coordinated way

SINTEF Energy Research

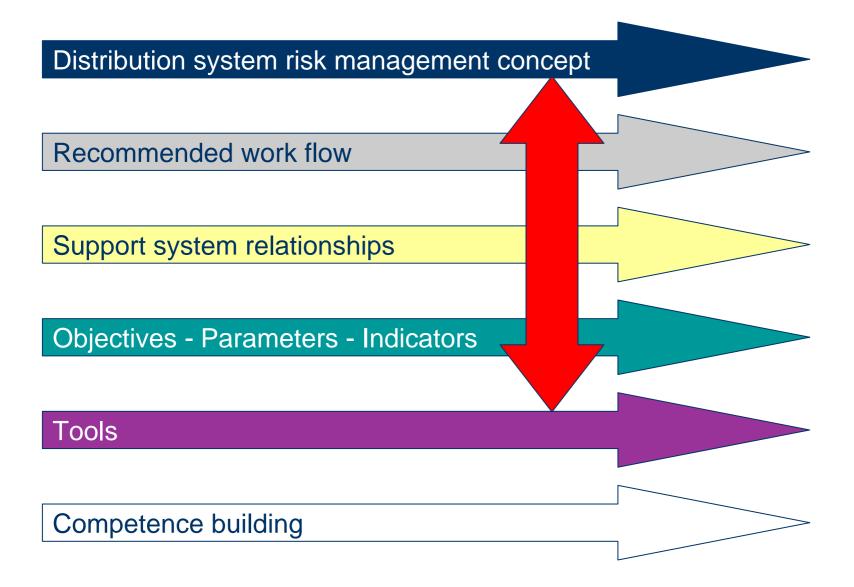
Ongoing work - Looking ahead

The RISK DSAM project

Risk-based <u>Distribution</u> <u>System</u> <u>Asset</u> <u>Management</u>

Project main objective:

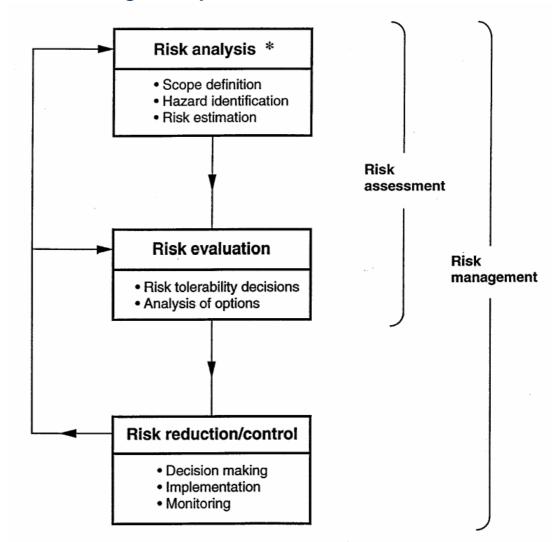
- Improved management of the risk exposure for a distribution company, on planning, operative and physical level as well as on strategy level related to maintenance and reinvestment strategies
- Improved concepts, work flows, methods, tools and competence



Project Research Partners and user Participation

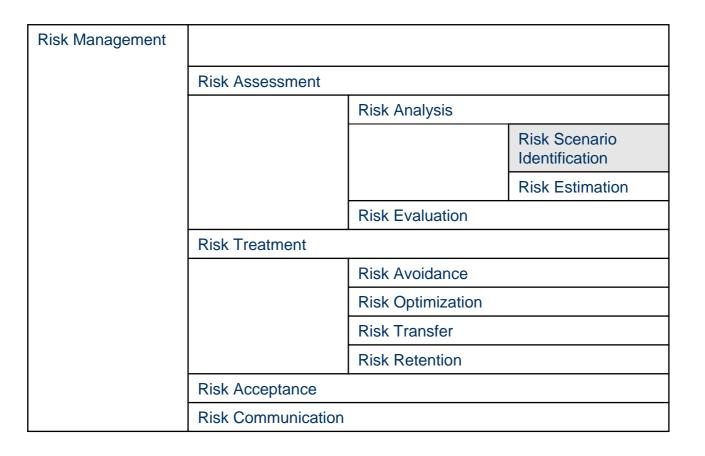
- National Research Partners:
 - SINTEF Industrial Management, Dept. of Safety and Reliability
 - NTNU, Faculty of Information Technology
 - Dept. of Electrical Power Engineering
 - Dept. of Mathematical Sciences
 - SNF Institute of Research in Economics and Administration
- International Research Partners:
 - University of Porto/INESC
 - Lappeenranta University of Technology
 - EdF Electricitè de France R&D
- National User Participation (DNOs):
 - Hafslund Nett AS
 - Lyse Nett AS
 - Fredrikstad Energiverk/Energi 1
 - Statkraftalliansens Nettgruppe (BKK, TEV, Agder, Skagerak og Istad)

Portugal Finland France

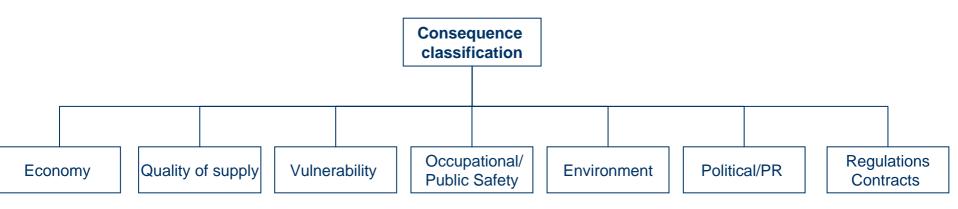

Six RISK DSAM aspects

Concept (IEC)

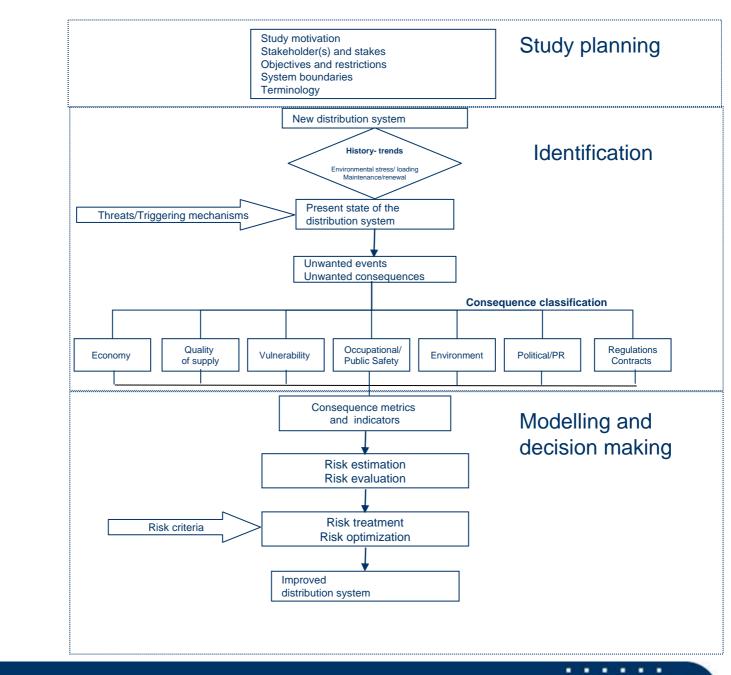
IEC 60300-3-9 Dependability management Part 3 Application guide Section 9 Risk analysis of technological systems



Risk management –


Sub process relationships – ISO/IEC Guide 73 Risk Management

- Vocabulary - Guidelines for use in standards.



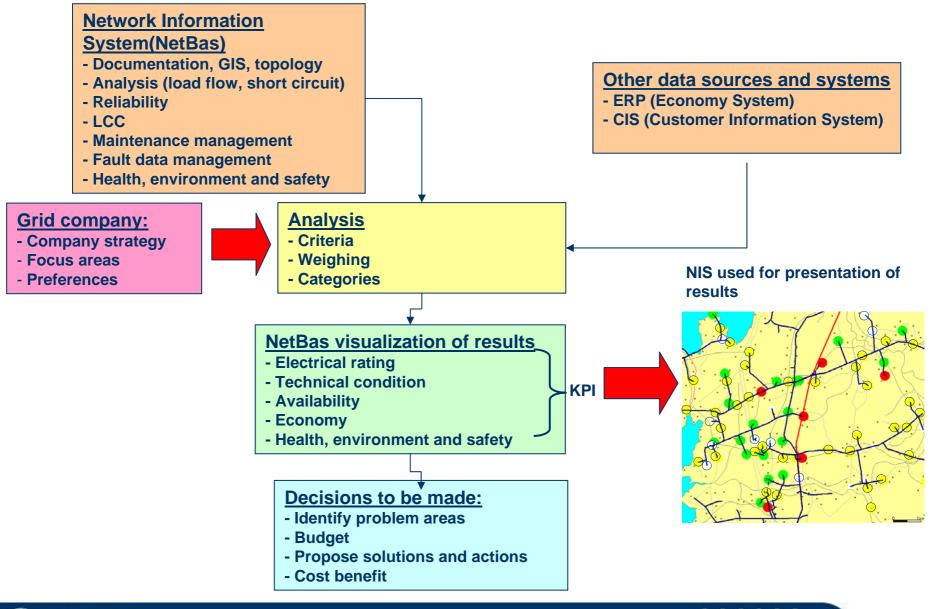
Classifying risk

.

Concept/workflow

SINTEF

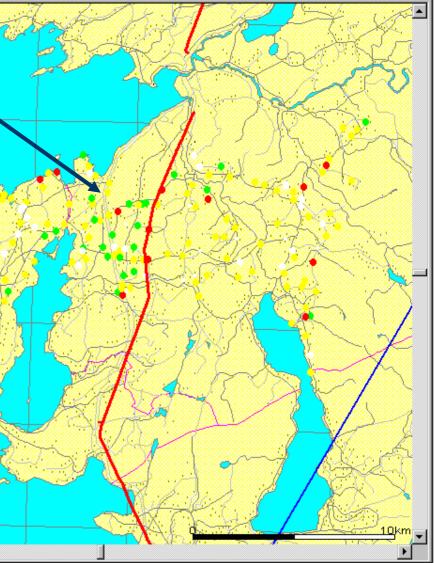
SINTEF Energy Research


-

Ongoing work: Key Performance Indicators

.

Key Performance Indicators give Asset Management Decision Support Example from a Norwegian Utility Prototype



N NetBas Arkiv - [Kart - [Uten_tittel - 1:20000]] El Bediger ⊻is Finn Gruppe Kart Verktøy Moduler Vindu Hjelp NTE P El Q N @ Q Q Q Q A A 9 1:20000 ▼ El ras % ™ III □ ™ % III © ™ № III @ A B III Treviser III □ III

Aggregated grid state indicators per distribution transformer bad medium good missing data

Nettskjema 📆 Kart - [Uten_tittel - 1:20000]

_ 8 ×

_ 8 ×

: 175301

Quantitative and qualitative parameters

Transformation into predefined states by comparing current values with a pre-defined set of criteria

State		Description	Criteria	Weighting	
WHITE	-	Inadequate input data		α_{White}	
GREEN	OK	No actions necessary	U > 218	α _{Green}	
YELLOW	Warning	Fulfills functional requirements,	U < 218	$\alpha_{\rm Yellow}$	
		but actions may be necessary			
RED	Alarm	Does not fulfill functional	U < 207	α_{Red}	
		requirements,			
		actions required			
U – Lowest measured (or calculated) voltage in the low-voltage network [V] (230 V					

Categorization of low-level indicators in one out of 4 possible states

U – Lowest measured (or calculated) voltage in the low-voltage network [V] (230 V system)

Relative weighting of the 4 possible states. Based on an intuitive assumption that "red" indicators are more important than "yellow" and "green", the 4 states have been given different relative weight (white indicators are not included, and have $\alpha_{White} = 0$).

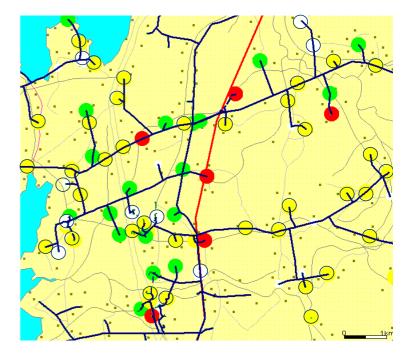
Relative weighing of indicators

Table 2 Examples of low-level indicators for a transformer

Low-level indicator	Value	Red	Yellow	Green	Weight
1. Technical solution	Orient. core	-	Non-ori. core	Orient. core	Will
2. Age	3 0 years	\geq 45 years	\geq 35 years	< 35 years	Wi.2
3. Technical condition	40	≤ 25 %	≤ 50 %	> 50 %	Wi.3
4. Degree of utilization	92	≥ 100 %	\geq 90 %	< 90 %	Wi.4

Relative weighting of the low-level indicators. These different low-level indicators may have different importance (weight) when assessing the actual component. The weighting can be based on a subjective assessment.

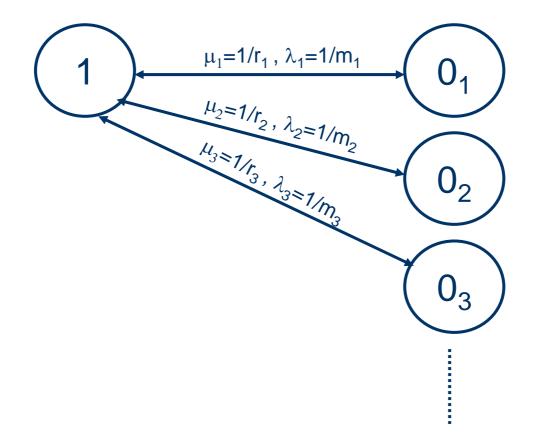
Aggregated component indicator:


$$PI_{Part i} = \frac{\alpha_{Green} \sum_{j, Green} w_{i, j} + \alpha_{Yellow} \sum_{j, Yellow} w_{i, j} + \alpha_{Red} \sum_{j, Red} w_{i, j}}{\sum_{j, Green} w_{i, j} + \sum_{j, Yellow} w_{i, j} + \sum_{j, Red} w_{i, j}}$$

Experience

Choose sensible indicators

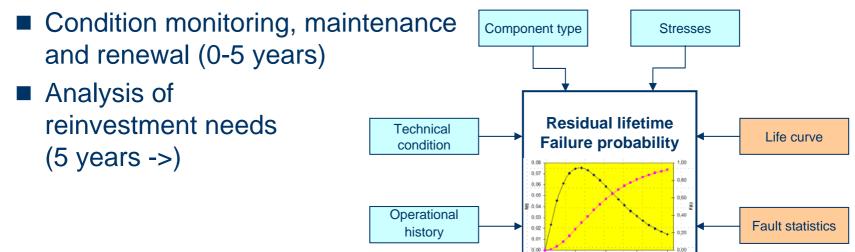
- That reflect important company strategies
- That utilize current information; data quality and data availability will partly be present due to regulatory requirements
- Detailed studies must follow before decisions are made, but network indicators will tell where to put effort



Ongoing work: Life time models - Failure models for network components as a basis for asset management

To better understand fault mechanisms and failure modes are important in a risk based asset management approach,

Multi fault state Markov process

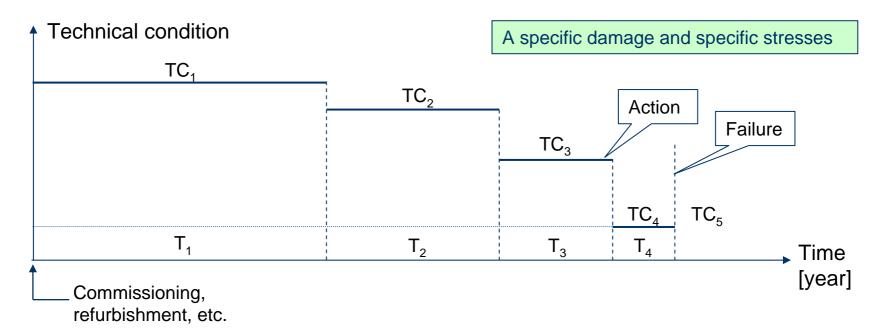


Modelling objective

For a specific component (type) and failure mechanism:

- Estimate residual lifetime
- Estimate the failure probability for each year

Basis for



10

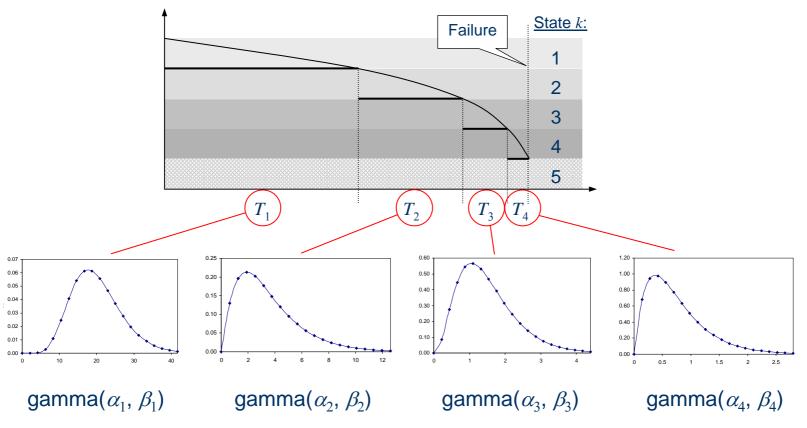
Ticl

15

Life curve (simplified)

State	Description (EBL Handbooks)
1	No indication of deterioration.
2	Some indication of deterioration. The condition is noticeably worse than as new.
3	Serious deterioration. The condition is considerably worse than as new.
4	The condition is critical.
5	Failure.

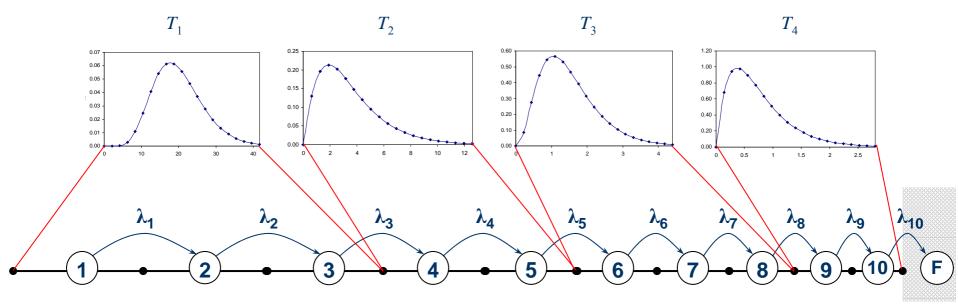
.


.

Main state modeling

Assumption: $T_k \sim \text{gamma}(\alpha_k, \beta_k)$

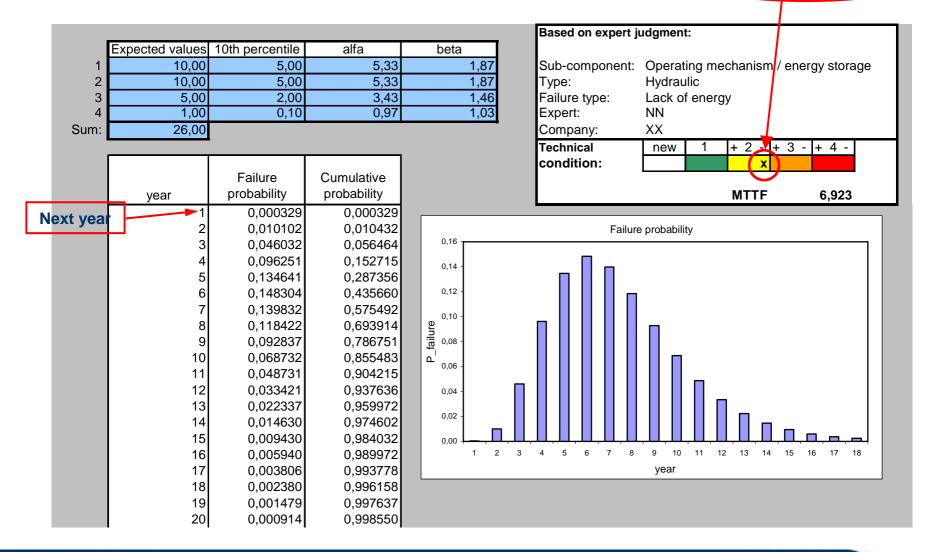
 $f(t) = \frac{1}{\beta^{\alpha_k} \Gamma(\alpha_k)} \cdot t^{\alpha_k - 1} \cdot e^{-\overline{\beta_k}} dt$


Technical condition

Main state model → Markov chain

Gamma distributions are transferred into a chain of exponential distributions.

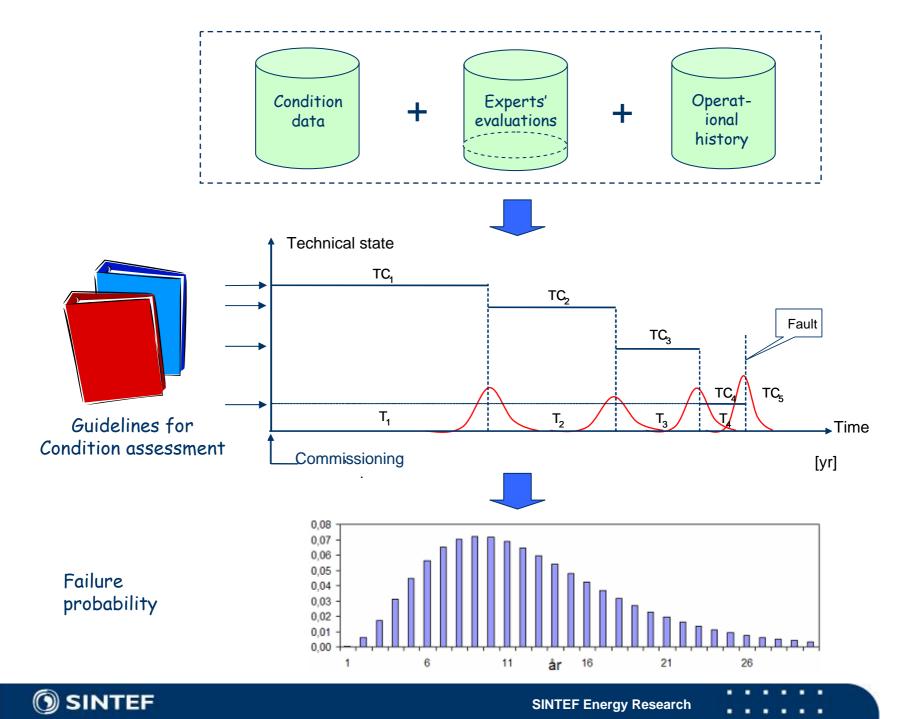
Expert judgement on *Circuit breaker*


1. Component description							
Compon	-	Operating mechanism / energy storage					
T	Type: Hydraulic						
2. Fault description							
Fault mo	ode: Lack of energy						
Causes:		Poor gaskets					
000000		Corrosion					
		Defect pumps					
		etc.					
Fault progr	ess:	Increasing leakage cau	using lack of e	energy and s	tuck breake	r	
3. Normal operational state							
Parameter	arameter Description						
Number of							
couplings							
			f		-		
4. Criteria for assessing the states							
	.						
Main state C	Criteria	l					
		sible corrosion, sweaty gaskets, minor leakages					
	•	ling time or tension time significantly changed					
	Leakage						
		leakage (compressor starts frequently)					
5 II (failure)	nsumc	fficient coupling energy (stuck breaker)					
(failure) 5. Duration of state 1-4							
				T ₁	T ₂	T ₃	T ₄
Typical (expected) duration of state 1-4: time [years]			10	10	5	1	
10 th percentile of the duration of state 1-4: time [years]			5	5	2	0,1	

. . . .

.

Tool for calculation of failure prob. of a specific component of a certain condition



Application of the method

- Answer to the basic question: What is the probability of failure in e.g. the next 5 years?
- Calculate the expected costs of unwanted events
- Calculate economical utilitarian value of maintenance and re-investment projects
- Document a project's effect on various "qualitative" elements (health, environment, safety, PR, etc.)
- Quantify the effect of different maintenance strategies

To protect against acts of God - still a challenge, but...

akkurat nå

the distribution system will be useful for many years....

akkurat nå

