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Macromodeling of Multiport Systems Using a Fast
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Abstract—Broadband macromodeling of large multiport
systems by vector fitting can be time consuming and resource de-
manding when all elements of the system matrix share a common
set of poles. This letter presents a robust approach which removes
the sparsity of the block-structured least-squares equations by a
direct application of the QR decomposition. A 60-port printed cir-
cuit board example illustrates that considerable savings in terms
of computation time and memory requirements are obtained.

Index Terms—Broadband macromodeling, numerical tech-
niques, system identification, vector fitting (VF).

I. INTRODUCTION

OMPACT rational macromodels, based on measurements

or full-wave electromagnetic (EM) simulations, are very
important for efficient time domain and frequency domain simu-
lation of high-frequency/high-speed interconnection structures,
components and systems. The vector fitting (VF) technique is a
robust macromodeling tool that circumvents the ill-conditioning
and unbalanced weighting problems which usually occur in a ra-
tional approximation problem [1], [2].

In the past few years, various enhancements like orthonormal-
ization [3] and relaxation [4] have been proposed to improve the
accuracy and convergence of this technique [5]. Unfortunately,
VF still suffers from computationally inefficiency if the device
under study has a relatively large number of ports, although a
splitting strategy has been considered [6].

This letter introduces a new improvement, which performs
the identification of multiport systems using a common set of
poles in a significantly reduced amount of time. This goal is
achieved by exploiting the sparsity of the least-squares (LS)
equations that are solved during the pole-identification step. The
presented method is based on the QR decomposition, which
does not impose specific restrictions to the data or the modeling
process. Numerical results illustrate that significant savings are
obtained in terms of computation time and memory resources,
while preserving accuracy of the macromodel.
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II. VECTOR FITTING METHODOLOGY

VF is a robust macromodeling algorithm that calculates the
rational function approximation R, (s) of a linear multiport
structure, based on simulated or measured frequency responses
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The objective of the macromodeling technique is to identify the
unknown coefficients ¢, ,, and ¢, of the transfer function such
that the least-squares distance between R, (sj) and the data
samples (s, H,(sk)) corresponding to each matrix element
v = 1,...,V is minimized over some predefined frequency
range of interest [s1, ..., sx|. The basis functions ®,(s, a) are
chosen to be rational functions that are based on a prescribed
set of poles a = {—a3,...,—ap}. These poles are selected
according to a heuristical scheme [1].

A. Parameter Estimation

A direct calculation of the model coefficients in (1) leads to a
non-linear identification problem that can be hard to solve using
standard optimization techniques. It was shown in [1] that accu-
rate approximations can be found by solving a linear approxi-
mation of the problem in an iterative procedure

(cH)y(s) = a(s)Hy(s). )

If the following definitions are introduced (ép = 1):

H:] = [H”(sl)...H“(sK)] (3)
H, = diag ([Re (H.) Sm (H))]) 4)
1 = (2K x 1) column vector of ones 5)

and the matrix X is defined as

D (s1,a) Dp(s1,a)
X' = . . . 6)
(s, a) Pp(sk,a)
| Re(X)
*= |gmx) 7
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then the solution of (2) corresponds to solving the following
overdetermined set of equations

X 0 0 0 —-HX gl Hil
0 X 0 0 -—-HX 2 H,i
| = (8)
0 0 ... 0 .. o =
0 0 0 X —HyX v Hy il

where C,, is a vector that contains the residues c,, ,, of (0. H ), (),
and C is a vector that contains the residues ¢y of o(s). Once the
coefficients are solved, it is clear that (1) can be simplified by
cancelling out the prescribed poles a. Then, the relocated poles
6 = {6,,...,0p} of the transfer function are in fact the zeros
of o(s). These zeros are easily calculated by solving an eigen-
value problem that is based on the minimal state space realiza-

tion (A, By, Cy, D, ) of o(s)
0 = eig (A, — B,D,;'C,). 9)

This procedure is repeated in an iterative fashion (¢ =
0,...,T), by replacing the prescribed poles a by the relocated
poles € until convergence. Once the final poles are found,
the residues of the transfer function can be solved as a linear
problem by setting o(s) in (1) equal to 1. The rational function
approximation (1) can then easily be realized as a state-space

model. Details about this procedure are well documented [1].

B. Relaxation

It is known that the iterative procedure of VF is equivalent
to the Sanathanan-Koerner iteration [7], [8] using an implicit
weighting scheme [5]. This iteration is known to have good
convergence properties if the signal-to-noise ratios are suffi-
ciently high. However, it was shown in [9] that the convergence
may stall or diverge if the data samples are contaminated with
simulation or measurement noise. An efficient solution to this
problem is presented in [4], where the high frequency asymp-
totic constraint on o (s) is removed. This is achieved by making
co a free variable, and adding an additional relaxation condi-
tion to the LS equations. The implementation of relaxation [4]
is completely analogous, and can easily be combined with the
new presented methodology.

III. FAST FITTING

Even if the structure under study has a moderate amount of
ports, the size of the corresponding LS matrix (8) may become
prohibitively large. A closer investigation reveals that a lot of
computational effort is wasted on the calculation of the residues
C,, which are discarded by the VF algorithm. It will be shown
that an application of the QR decomposition to the single-ele-
ment LS equations leads to a simplified set of equations which
depend only on C. These equations are computed for each ma-
trix element sequentially, and considered at once to identify a
common pole set [10].

A. Pole ldentification

First, a QR decomposition is applied to the LS equations,
which correspond to the pole-identification of each single ma-
trix element v
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Fig. 1. Physical layout of the 60-port PCB board.

Combining the factorization for all matrix elements v yields
a reduced set of equations, where the unknowns are only the
shared coefficients C' of o(s)

RE] QTH,1
e [C]l= e (11)
R QLHy 1

It is observed that the LS matrices on the left half side of (10)
and (11) are both significantly smaller than the sparse matrix in
(8), which leads to a significant reduction in terms of memory
storage and computation time. In some cases, e.g., if the fre-
quency response is resolved very densely, the computation time
can be further reduced by applying the QR decomposition to the
normal equations instead [5]. Although the normal equations are
more compact, the conditioning of the problem may degrade and
result in some loss of accuracy.

B. Residue Identification

Once these coefficients C of o(s) are computed, the common
poles of the transfer function are found by solving an eigenvalue
problem (9), and the corresponding residues of the macromodel
can easily be calculated as in [1].

IV. NUMERICAL EXAMPLE: 60 PORT PCB BOARD

This section illustrates the CPU time and the overall memory
requirements that are needed to compute an accurate macro-
model for a 60-port printed circuit board (PCB) board. The
board is simulated with Agilent’s Momentum RF EM simulator
over a frequency range from dc up to 5 GHz, at 101 equidis-
tant frequency samples. The layout of the PCB board is shown
in Fig. 1. In a practical application of the VF algorithm, one
can take advantage of the fact that its scattering matrix is sym-
metric. This can easily be done by considering only the upper
or the lower triangular part of the transfer matrix. Therefore a
total amount of 1830 matrix elements needs to be modeled.

Based on the simulated data samples, a proper rational func-
tion approximation of the transfer matrix is calculated using 10
common poles. All the timing results are computed in a Matlab
environment on a HP Notebook computer with an Intel Centrino
processor (1.73 GHz clock frequency) and 1 GB of RAM. This



DESCHRIJVER et al.: MACROMODELING OF MULTIPORT SYSTEMS

computer has a 32 b architecture, and matrix entries are stored
as double precision floating point values.

A. Vector Fitting

Three implementations of VF are considered.
* A VF implementation which does not exploit the sparsity
of the LS matrices (Standard VF).
* A VF implementation which makes use of sparse matrix
storage/operations in Matlab (Sparse VF).
* A VF implementation which uses the new Fast Fitting ap-
proach as described in this letter (Fast VF).
To improve the accuracy and convergence speed of the results,
relaxation (see Section II-B) has also been enabled.

B. Computational Results

It is found that Standard VF (available on [11]) is unable to
perform the computations because the storage of matrix (8) con-
sumes a lot of memory resources. It can be shown that at least
54 GB of RAM memory is required, which is computationally
infeasible on most desktop computers [12].

Fortunately, the Matlab environment offers some sparse ma-
trix data structures, which represents matrices in an amount of
space that is proportional to the number of non-zero entries.
The Sparse VF implementation (available on [11]) exploits the
sparsity of the LS matrix (8), and is able to reduce the storage
requirements considerably to approximately 88 MB of RAM
memory, which is acceptable. An accurate macromodel can be
calculated in 1 h and 22 min, using three iterations. It turns out
that the maximum absolute error over all 1830 matrix elements
is bounded by —62 dB, which is quite satisfactory.

The fast fitting approach using QR, as described in Section III
of this letter (Fast VF), is able to compute a macromodel with
the same accuracy in only 44 s using the same number of itera-
tions. The amount of memory resources that is required to store
(10) and (11) is at least 32 KB and 1.46 MB of RAM memory,
respectively. Since (11) has a block-triangular structure, it can
be considered as a sparse matrix. Therefore, the storage of this
matrix is further reduced to 805 KB of RAM memory. A similar
accuracy was obtained by solving the normal equations, which
takes only 25 s.

These results indicate that Fast VF is the preferable approach,
as it significantly reduces the overall macromodeling time and
memory consumption, while retaining the accuracy of the re-
sults. Fig. 2 shows a subset of the matrix elements, which con-
firms that an excellent agreement is observed between the 101
frequency samples (marked with dots), and the response of the
macromodel (solid line).

V. CONCLUSION

Rational fitting of broadband frequency-domain responses
using VF becomes computationally expensive and resource
demanding if a multiport system is identified using a common
set of transfer function poles. A very efficient implementation
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Fig. 2. Subset of scattering parameters : model (solid line), data (dots).

of the VF technique is presented which exploits the sparsity
of the corresponding LS equations using a QR decomposition.
This approach significantly reduces the overall computation
time and memory consumption.

REFERENCES

[1] B. Gustavsen and A. Semlyen, “Rational approximation of frequency
domain responses by vector fitting,” IEEE Trans. Power Delivery, vol.
14, no. 3, pp. 1052-1061, Aug. 1999.
[2] R. Gao, Y. S. Mekonnen, W. T. Beyene, and J. E. Schutt-Ainé,
“Black-box modeling of passive systems by rational function approxi-
mation,” IEEE Trans. Adv. Packag., vol. 28, no. 2, pp. 209-215, May
2005.
D. Deschrijver, B. Haegeman, and T. Dhaene, “Orthonormal vector fit-
ting: A robust macromodeling tool for rational approximation of fre-
quency domain responses,” IEEE Trans. Adv. Packag., vol. 30, no. 2,
pp. 216-225, May 2007.
[4] B. Gustavsen, “Improving the pole relocating properties of vector fit-
ting,” IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1587-1592, Aug.
2006.
D. Deschrijver, B. Gustavsen, and T. Dhaene, “Advancements in it-
erative methods for rational approximation in the frequency domain,”
IEEE Trans. Power Delivery, vol. 22, no. 3, pp. 1633-1642, Aug. 2007.
S. Grivet Talocia and A. Ubollu, “On the generation of large passive
macromodels for complex interconnect structures,” IEEE Trans. Adv.
Packag., vol. 29, no. 1, pp. 39-54, Feb. 2006.
[7]1 C. K. Sanathanan and J. Koerner, “Transfer function synthesis as a
ratio of two complex polynomials,” IEEE Trans. Automatic Control,
vol. AC-8, no. 1, pp. 56-58, Jan. 1963.
W. Hendrickx, D. Deschrijver, and T. Dhaene, “Some remarks on the
vector fitting iteration,” in Proc. Progress Ind. Math. Ind. (ECMI’04),
2006, vol. 8, pp. 134-138.
S. Grivet-Talocia and M. Bandinu, “Improving the convergence of
vector fitting for equivalent circuit extraction from noisy frequency
responses,” [EEE Trans. Electromagn. Compat., vol. 48, no. 1, pp.
104-120, Feb. 2006.
D. Traina, G. Macchiarella, and T. K. Sarkar, “Robust formulations of
the cauchy method suitable for microwave duplexer modeling,” IEEE
Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 974-982, May 2007.
[11] Vector Fitting [Online]. Available: http://www.energy.sintef.no/Pro-
dukt/VECTFIT/index.asp
[12] The Mathworks, “Avoiding Out of Memory Errors,” Tech.
Note 1107 [Online]. Available: http://www.mathworks.com/sup-
port/tech-notes/1100/1107.html

[3

[t}

[5

=

[6

=

[8

[t}

[9

—

[10



