
IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 19, NO. 3, JULY 2004 1167
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Abstract—Accurate modeling of power system components for
the purpose of electromagnetic transient calculations requires the
frequency dependence of components to be taken into account. In
the case of linear components, this can be achieved by identification
of a terminal equivalent based on rational functions. This paper
addresses the problem of approximating a frequency dependent
matrix ( ) with rational functions for the purpose of obtaining
a realization in the form of matrices , , , as used in state
equations. It is shown that usage of the Vector Fitting approach
leads to a realization in the form of a sum of partial fractions with
a residue matrix for each pole. This can be directly converted
into a realization in the form , , , in which is sparse
and each pole is repeated times with by being the size
of . The number of repetitions can be strongly reduced and
sometimes completely avoided by reducing the rank of the residue
matrices, thereby producing a compacted realization which is
physically more correct and also permits faster time-domain
simulations. The error resulting from the rank-reduction can be
reduced by subjecting the realization to a nonlinear least-squares
procedure, e.g., Gauss–Newton as was used in this work.

Index Terms—Frequency domain fitting, multivariable system,
rational approximation, state equation, system identification.

I. INTRODUCTION

ONE difficulty in simulating power system transients is the
modeling of components which exhibit frequency depen-

dency in the terminal voltage/current characteristics. Explicit
modeling of such components can be very difficult due to the
complexity of the underlying phenomena. An alternative ap-
proach is black-box modeling, in which a frequency dependent
equivalent for the component is identified from measured or cal-
culated frequency responses at its terminals. This technique has
been used for the modeling of transmission lines [1], [2], power
transformers [3], [4], and for network equivalencing [5]–[7].

The mathematical problem at hand is to identify a terminal
model of a linear system based on a given set of frequency do-
main responses represented by the matrix . This means
to identify a model having a frequency response that agrees as
closely as possible with , which amounts to finding the
matrices , , , used in the corresponding state equations
(state–space model). In addition, the resulting equivalent is re-
quired to have only stable poles and to be passive, in order to
ensure stable time-domain simulations.
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The authors have developed a powerful method for system
identification in the frequency domain by the Vector Fitting ap-
proach (VF) [8], [9], which also permits the enforcement of
stable poles. Passivity can be enforced by a final correction to
the solution [10]. The robustness and public domain availability
of VF has lead to its use in diverse applications, including the
modeling of power transformers [11], high-speed interconnects
[12], and the response of multilayer composite panels to direct
lightning strokes [13].

Application of VF to multiterminal systems results in a real-
ization with repeated poles for the columns of together with
a sparse [7]. This realization is “unusual” because the direct
derivation of state equations for physical systems leads to a real-
ization without pole repetitions and with a full . For instance,
if the zero-sequence magnetizing dynamics of a transformer is
characterized by a single pole, it should appear only once in
a partial fraction expansion but with a 3 3 matrix coefficient
(the residue matrix), as shown in Appendix A. This is in contrast
to the noncompact realization produced by VF which would get
a separate pole for each column of the matrix coefficient. In ad-
dition, the compacted form is computationally more efficient in
time-domain applications, as shown in Section II-F.

This paper examines the relation between these two alter-
natives and presents a procedure for converting the realization
obtained by VF into compact form. This is achieved by a
rank-reduction technique followed by a final optimization
by a Newton-type nonlinear least-squares (NLLS) method.
Calculated results are shown for two different situations: a case
where an exact identification exists, and a case where only an
approximate identification can be obtained. The compacting
step has been incorporated in an existing public domain com-
puter code for identification of multiterminal systems; see [7].

II. SYSTEM IDENTIFICATION

A. State Equations

The most common realization of linear, time-invariant sys-
tems is in the form of matrices , , , as used in state
equations. This realization is obtained by approximating in the
least-squares sense the frequency-dependent matrix

(1)

where can practically without loss of generality be
assumed to be diagonal (via a similarity transformation). The
matrix sizes of an th order realization of an -terminal system
are
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It is noted that (1) is nonlinear due the matrix inversion.
Therefore, (1) represents an NLLS problem. Its general solution
is discussed in the literature, e.g., [14].

B. Residue Matrices

The identification can also be done using residue matrices ,
which leads to a least-squares problem of the form

(2)

This problem is also of type NLLS, due to the pole in the de-
nominator. is of size .

C. Conversion to State Equations

A realization in the form of (2) can be brought to the form (1)
by factorizing each term in (2)

(3)

where is an identity matrix of size . The building of , ,
from each term in (2) can then be done as shown in Fig. 1,

with and .
It is noted that each pole in (2) is repeated times in . Thus,
is diagonal with blocks of size . The matrix sizes are

Thus, the resulting matrices , , are larger than in (1) due
to the repetition of poles in . It is noted that is sparse.

D. Compacting

Unnecessary repetitions of poles can be avoided by consid-
ering the relation between (1) and (2). It is noted that each term
on the diagonal in (1) multiplies a column in and a row in .
It follows that (1) can be directly converted into (2) where each
matrix is obtained by multiplying column of with row

of . Thus, is of rank 1, implying that it has only one
nonzero singular value.

This observation makes it possible to compact the state
equation obtained via (2) by expanding each into rank-1
matrices using the singular value decomposition (SVD)

(4)

where is a diagonal matrix containing the singular values of
in descending order.

If only the first leading singular values of a given are
nonzero, then is of rank- and (4) can be written as a sum
of outer products

(5)

It follows that if, for instance, the rank of a given equals
, then two identical poles are produced on the diagonal of

together with two columns in and two rows in . If is
rank-1 then only a single pole results on the diagonal, together
with a single column in and a single row in . The latter case
is shown in Fig. 2.

Fig. 1. The contribution from themth term in (2).

Fig. 2. Contribution frommth term in (2) when R is rank-1.

Thus, if all -matrices are rank-1, then each -matrix results
in a single element on the diagonal in Fig. 2 and the matrix size
of has been reduced from to .

E. Optimization

In many practical situations, the first singular values are much
larger than the rest, thus permitting the smallest singular values
to be set equal to zero. This implies an approximation of the
residue matrices which produces an error in the compacted re-
alization. This error can, however, be reduced by subjecting
the realization to an error minimization procedure. Relevant
approaches are discussed in [14].

F. Efficiency Considerations

One justification for the compacting procedure—in addition
to leading to the canonical, physically most natural form of state
equation realization (see Appendix A for an example)—is that
it permits more efficient time-domain simulations. Consider an

-terminal system where each column has been fitted with
poles. The computational effort in each time step can be as-
sessed in terms of the number of elementary numerical opera-
tions (addition, multiplication). In EMTP-type programs which
utilize trapezoidal integration, the convolution with a single pole
can be done at the cost of two multiplications and two addi-
tions. In addition, the output from the convolution multiplies
one column in which is added to the output vector . For the
realization with repeated poles the total computational cost per
time step is therefore

(6)

For the compacted realization, the total number of poles is
reduced by a factor of . On the other hand, is now full. This
leads to a computational cost

(7)

When , we see that the compacted realization is more
efficient by a factor of . Thus, for a six-terminal system, a
better than threefold efficiency increase is achieved.
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III. PRACTICAL IMPLEMENTATION

A. Realization With Repeated Poles

VF is a method developed by the authors which solves the
least-squares problem stated in (2) by a pole relocation tech-
nique. This is achieved by stacking all columns of into a
single column (vector) which is then subjected to approxima-
tion with a common set of poles for all matrix elements. The
procedure is explained in detail in [8].

VF solves (2) directly without constraints on the rank of the
-matrices. This implies that each is generally of full rank.

Therefore, if starting poles are used (see [8] about starting
poles) we get a realization with structure as shown in Fig. 1,
where the matrix size of equals .

Note that in our previous work, we have interchanged
columns in , rows in , and rows and columns in to
produce a realization with a different structure, see [7, Sec.
IV]. This alternative structure is shown in Fig. 3. now has a
submatrix of dimension which is repeated on the diagonal

times, and consists of columns of ones. This is what we
referred to as “columnwise realization” because each column
of is in effect represented by a separate block in and in .
This realization is, however, equivalent to the one in Fig. 1.

B. Compacting

After obtaining the realization (2), the -matrices are sub-
jected to rank reduction by inspection of their singular values.
Thus, each is replaced by a rank reduced matrix

(8)

where denotes the last retained singular value satisfying

(9)

A suitable value for can be estimated by considering the
required accuracy of the final approximation. The value of
will need to be adjusted if the desired accuracy is not met.

Finally, a realization in the form of (1) is obtained by forming
the outer products (5).

C. Optimization

The matrices , , , , and can be refined by any suit-
able method for optimization. Appendix B shows details about
an implementation based on the Gauss–Newton method.

IV. CALCULATED RESULTS

A. Exact Identification

In this example we look at a case where the identification can
be done without error. The underlying system is rational and of
finite order and the frequency domain responses are obtained
without measurement noise.

We wish to calculate a compact realization of the type ,
, , with respect to the sending end of a 10-km, 24-kV

overhead line. The line, which is assumed to be balanced, has
a ground fault and is terminated by a resistive load. The line is

Fig. 3. Columnwise realization of (2).

Fig. 4. Distribution overhead line system.

subdivided into five sections where each section is modeled as
a coupled PI-circuit with matrices , calculated at 5 kHz
(see Fig. 4). The network is reduced with respect to the termi-
nals at the sending end, giving a 3 by 3 admittance matrix .
Due to the presence of the ground fault at the receiving end, the
resulting is unbalanced.

Step 1: Realization With Repeated Poles: Fig. 5 shows how
the rms-error of the approximation by (2) decreases as the
number of poles (terms) in (2) is increased. It is seen that the
rms-error decreases abruptly from about 1e-5 to about 1e-17
when increasing the order from 28 poles to 30 poles, which
implies that 30 poles is the required order. When converting
(2) into a realization of the form (1), the total number of poles
increases to 90 because all poles are repeated 3 times ( ).
The elements of and their approximation by (1) is shown in
Fig. 6 (magnitude functions), as well as the magnitude of the
complex deviation.

Step 2: Compacting: In this case (exact identification) all
-matrices automatically become of rank-1. By doing the ex-

pansion into outer products (5) as described in Section II-D, the
total number of poles was reduced from 90 to 30, as the repeti-
tion of poles was avoided. The rms-error now became 5.6e-17,
which is virtually zero. Thus, the total number of poles has been
reduced by a factor of without loss of accuracy!

This is exactly what one could expect by considering that each
PI-circuit can be modeled using six state variables (two state
variables for each of the three modes). It therefore follows that
a state equation should have a total of .

B. Low-Order Approximation

In many practical situations, one wishes to obtain a low-order
approximation of a high-order system. As an example, we
consider the surge admittance matrix of a three-conductor
unbalanced overhead line (phase domain).

Step 1: Realization With Repeated Poles: Fig. 7 shows the
nine elements of as approximated by (2) using eight poles
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Fig. 5. RMS-error of (2).

(terms). Thus, the direct conversion of (2) into the form (1) leads
to a realization with a total of as the eight poles
are repeated three times.

Step 2: Compacting: In order to reduce the order of the real-
ization, we consider removing pole repetitions by compacting.
Table I shows the singular values of the eight -matrices in (2).
It is seen that , , and have a first singular value which is
much larger than the subsequent singular values. Thus, one may
consider to keep only the first singular value of , , and
while keeping all singular values of the remaining -matrices.
The effect would be a removal of six pole repetitions, giving a
realization of .

Instead, we will investigate the effect of retaining: 1) the first
two singular values of all -matrices and 2) only the first sin-
gular value of all -matrices. This will result in a realization in
the form of (1) with a total of 16 and 8 poles, respectively. The
result is shown in Table II. The original full-rank approximation
gives an rms-error of 2.11e-6. Approximation with two and one
singular values makes the rms-error increase by a factor of 18
and 67 to 3.82e-5 and 1.43e-4, respectively.

Step 3: Newton Improvement: In order to reduce the error,
the realization (1) was subjected to a refinement using the
Gauss–Newton approach described in Appendix B. Table III
shows the resulting error of the approximation after 100
iterations. Comparison with Table II shows that the fitting error
is in the case of the rank-2 and rank-1 realizations greatly
reduced, although substantially higher than that of the full rank
realization. It is also seen that in the case of no compacting
( ), application of Gauss–Newton did not reduce the
fitting error.

The importance of a good starting point for the NLLS (Gauss-
Newton) cannot be overemphasized. If one in this example took
as initial poles logarithmically distributed real poles and in VF
only optimized the residues, then the rms-error became 3.88e-5
(instead of 2.11e-6 in Table II). After reduction to rank-1 and
optimization by Gauss–Newton, the error became 6.46e-4 and
6.60e-5, respectively (instead of 1.43e-4 and 2.20e-5). Thus, the
error of the final approximation has increased by a factor of
about 3 (6.60e-5/2.20e-5).

Fig. 6. Approximating Y (s) using 30 poles per column.

Fig. 7. Approximating Y (s) using eight poles per column.

TABLE I
SINGULAR VALUES OF THE R-MATRICES IN (2)

TABLE II
EFFECT OF COMPACTING ON FITTING ERROR

TABLE III
RMSERROR AFTER 100 ITERATIONS



GUSTAVSEN AND SEMLYEN: A ROBUST APPROACH FOR SYSTEM IDENTIFICATION IN THE FREQUENCY DOMAIN 1171

V. THE NEED FOR REPEATED POLES

One may ask whether repeated poles in (1) should ever occur
for physical systems. While single poles is the normal situation,
one can easily find situations where repeated poles will exist.

One important case is when is a balanced matrix, i.e.,
all diagonal elements are equal and all off-diagonal elements are
also equal. This is the situation that results when one assumes a
transmission line to be continuously transposed. It can then be
shown that all -matrices of a finite order system are of rank-2,
which means that all poles in the realization (2) are repeated two
times.

One can also find situations where all poles are repeated
times so that compacting is not possible and all -matrices are
of full rank. Consider, for example, an electrical network with
given nodes and branches between all nodes and between all
nodes and ground. If all branches have the same pole (but pos-
sibly different residues) then the -matrix of the admittance ma-
trix will have full rank. By connecting such branches in parallel,
one can obtain a network where all -matrices of are of full
rank. This is the type of electrical network that resulted when
creating an equivalent electrical network as described in [7].

VI. DISCUSSION

The paper has shown that rational approximation of a matrix
of dimension using VF is equivalent to approximating
by a sum of -matrices, each multiplied by a single-pole

fraction [see (2)]. The solution can be converted into a “stan-
dard” realization , , , , as in (1), in which the poles are
repeated times. By considering the rank of the -matrices,
some or all of the repetitions can be avoided, thus leading to a
more compact realization which is physically more correct. It
was demonstrated that this compacting of the realization does
not involve any errors provided that the fitting is done with zero
error. However, it was shown that when a fitting error exists
(which is the normal situation), the -matrices are in general
of full rank, so that compacting will increase the fitting error.
The error can, however, be reduced by subjecting the obtained
realization ( , , , ) to optimization by any effective NLLS
method. Application of Gauss–Newton was found to strongly
reduce the fitting error. However, we believe that a more care-
fully implemented NLLS might be devised so as to reach the
true minimum. Thus, for instance, it was noted in the example
with that the Jacobian (B.1) was ill-conditioned, which im-
plies an inaccurate search direction. Also, the search may have
become stuck in a local minimum. The final optimization step
could therefore be a worthwhile topic for future research.

It was shown in Section III-C that compacting can be
expected to increase the efficiency by a factor . For the
example with exact identification (Section IV-A), we had

, which means a 50% increase in the efficiency. The
potential speed increase can be of importance in some appli-
cations, e.g., Monte Carlo simulations. For situations with a
low-order approximation (e.g., Section IV-B) one has to take
into account that the compacting increases the fitting error
significantly, which means that one has to increase the order
of approximation to maintain the same error. Again, a more
sophisticated optimization procedure may reduce the error.

VII. CONCLUSIONS

The problem considered is the approximation of a frequency-
dependent matrix of dimension by by a rational
function. This paper has investigated the relation between a
traditional realization of the form , , , with compact
matrices and the realization that is produced by VF. The main
conclusions are as follows.

• VF leads to a realization in the form of a sum of partial
fractions with a residue matrix for each pole. This real-
ization can be directly converted into a realization of the
form , , , by expanding each -matrix into a sum
of rank-1 matrices. The resulting realization has a sparse

and each pole is repeated times where is the size of
.

• The number of repetitions can be reduced or avoided by
considering the rank of the -matrices. In the case that the
approximation is exact (finite-order system and no noise
in ), all -matrices become rank-1 and can thus be ex-
pressed by outer products which define the columns and
rows in and of a compact realization without pole
repetitions. Some repetitions may still be needed in spe-
cial cases, e.g., in the case of a balanced .

• Compacting causes the computational efficiency in the
time domain to be increased by a factor of about ,
where is the number of terminals. This assumes trape-
zoidal integration.

• When the approximation is not exact, the -matrices are
in general of full rank. The number of pole repetitions
can be reduced by rank-reduction of each by discarding
the contribution from the smallest singular values. This
increases the error of the approximation. The error can,
however, be reduced by subjecting the resulting realiza-
tion ( ) to optimization by a general nonlinear
least-squares procedure, e.g., Gauss–Newton. More so-
phisticated optimization is a subject for further research.

• In general, VF can be viewed as an approach for obtaining
a very good initial solution for iterative nonlinear least-
squares methods which aim at finding an optimum com-
pact realization of the form , , , of a given order.

• The compacting step has been incorporated in a public
domain software [7] for identification of multiterminal
systems.

APPENDIX A
EXAMPLE OF COMPACT REALIZATION

Consider a simple low frequency model of a three-phase
transformer represented by a number of discrete windings.
Then the variables are: flux linkages , voltages , and currents
, related via

(A.1)

(A.2)

where . These give

(A.3)

which, together with (A.2), are exactly of the form of compact
linear state equation realization with coefficients , , and .



1172 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 19, NO. 3, JULY 2004

The essential feature of the obtained compact form is that it
arose naturally from physical reasoning and it is formally not
different from the single input and output case. If is a scalar
(and correspondingly , ), then we get the transfer
function

(A.4)

and we see that the residue matrix is of rank one. More gen-
erally, a rank-one residue matrix will result for each eigenvalue
of , repeated ones included. In this latter case, the rank of the
resultant will equal the multiplicity of the eigenvalue.

APPENDIX B
GAUSS–NEWTON IMPROVEMENT

A. Gauss–Newton

The following outlines an implementation of the
Gauss–Newton method [14] for finding an optimized ap-
proximation of a realization in the form , , , . To reduce
the least-squares error, a correction to , , is calculated
via the Jacobian matrix . The columns of correspond to the
elements of , , as follows:

(B.1)

where is the error.
The step calculated by Gauss–Newton is

(B.2)

In situations where the Jacobian is ill-conditioned, we use
instead the “perturbed Newton” [14, p. 151]

(B.3)

where

(B.4)

is the number of elements of , is the identity matrix, and
“macheps” is the machine precision.

If the step causes the error to increase, is replaced
with repeatedly until the error is reduced. This step
reduction is necessary in order to ensure convergence of the
minimization process.

B. Normalization

The Jacobian matrix will in general be singular due to an ar-
bitrariness in the solution, as the scaling of the columns of and
rows of is not uniquely defined. This problem is overcome by
removing from the Jacobian columns which correspond to the
elements of the first column of .

Symmetry

When the transfer matrix is symmetric, the columns of
(in the compact form) become related to the rows of by a

constant

(B.5)

Thus, by rescaling the columns of and the rows of , we
achieve

(B.6)

It now follows that in (B.1), which can be
rewritten into

(B.7)

Normalization is not needed in the symmetrical case.

C. Complex Conjugacy

Complex conjugacy of the poles is ensured by including neg-
ative frequencies in the Newton process

(B.8)
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