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Abstract — This paper introduces a fast and robust method for rational
fitting of frequency domain responses, well suited for both scafar and
vector transfer functions. Application of the new method results in
increased computational efficiency for transmission line models using
modal decomposition with frequency dependent transformation
matrices. This is due to the fact that the method allows the fitted
elements of each eigenvector to share the same set of poles, and that
accurate fitting can be achieved with a relatively low number of poles.

1 INTRODUCTION

Accurate calculation of electromagnetic transients in power
systems requires the frequency dependent effects of transmission
lines to be taken into account. Frequency dependent line models
can in principle easily be formulated in the time domain via
numerical convolutions [1], but the resulting model is
computationally inefficient. The efficiency is greatly improved if
the impulse responses for the line are fitted using rational
functions in the frequency domain [2-3], z-domain [4-5], or
approximated directly in the time domain [6-7], as this leads to a
recursive formulation of the time domain convolution integrals.
Further savings can be achieved by introducing modal
decomposition [8], as the transformation matrix is almost constant
for many overhead lines of practical interest. In such cases, the
number of scalar convolutions to be carried out is reduced from
4n? to 4n, where n is the number of conductors. However, in
case of cable systems, multi-circuit overhead lines and strongly
asymmetric overhead lines, the transformation matrix may be
strongly frequency dependent. Taking this frequency dependence
into account requires the handling of a frequency dependent
transformation matrix [9]. This increases the number of
convolutions to 4n2+4n , making the modal domain approach
slightly more time consuming than the phase domain approach.

The propagation function H may in some cases of cable
systems contain widely different time delays for the individual
modes. In such cases it is very difficult to fit H with rational
functions directly in the phase domain, as a very high order fit may
be needed. However, this problem is easily overcome with the
modal domain models, because there is only a single time delay
associated with each mode of propagation. The modal time delays
can therefore readily be eliminated from the modal components of
H [10], yielding smooth functions which can be fitted with low
order rational polynomials.

In this paper we briefly review the methodology of modal
decomposition applied to transmission line modeling. We then
introduce a new powerful fitting technique which allows us to fit
the transformation matrix column-by-column. This strategy is
shown to result in substantial savings in computational time for
the time step loop, as compared to traditional element-by-element
fitting. The method is also used to fit the responses for modal
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propagation and modal characteristic admittance. Unlike
traditional Marti-fitting [3], the resulting rational function
approximation is not restricted to real poles and zeros, which is
shown to be advantageous when fitting the transformation matrix
and the modal characteristic admittance.

2 MODAL DECOMPOSITION
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Fig. 1 Traveling waves at transmission line end

The frequency domain solution of the traveling wave equation
can at each end of a transmission line be expressed [7] by the well
known matrix-vector expression

Y, v-i=2i;=2Hig, 1)

where the propagation function H and the characteristic
admittance Y, are given by

H=exp(~YZI) )
y,=2"'JzY 3)

Z and Y are the series impedance and shunt admittance per unit
length of the transmission line. For an n-conductor system these
are nxn matrices.

Equation (1) represents n coupled scalar equations, but may
be replaced by n uncoupled equations by introducing modal
quantities :

i=T; i™

v=T,v"

“
(%)
Here, 7, and T, are the right eigenvector matrices of Y Z and
ZY respectively. Superscript m denotes modal quantities.
Substituting (4) and (5) in (1) gives

Yrymim 2™, 6)

The diagonal matrices H™ and Y are related to their phase
domain counterparts by :

H=T,H"T;! Q)
Y=, 7T ®)

where we have used [8] the relation :
T, =177 &)

In practical calculations the modal domain transmission line
model is linked to the phase domain host program by the relations

vi=T;lv=T] v (10)
i=Tyi™ (11)

Thus, the modal calculations have been manipulated to involve
only the matrices 7y , T , Y™, and H™.
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3 VECTORFITTING BY OPTIMAL SCALING

In this chapter we show that substantial savings in the time
step loop can be obtained if the elements of each eigenvector are
fitted using the same set of poles. This is achieved by the
introduction of a new fitting methodology—vector fitting by
optimal scaling.

3.1 _State equation realization

A linear system can in general be represented by the state equation
realization (SER)

i=Ax+Bu (12)
y=Cx+Du (13)
In transient calculations we need SERs for Ty, 17, , and

H"™ . Note that in the calculations we need only access to the
van'ables for input u and output y, whereas the state variables
x are used as "internal" variables only. This allows us to use a
diagonal A-matrix, since this corresponds to choosing a particular
set of state variables (via a similarity transformation). The
selection of a diagonal A-matrix reduces the computatlonal burden
of the time domain calculations. -

Let G(s) be a matrix transfer function of dimension nxn. G
is related to its SER by the expression

G(s)=C(sI-A)"' B+D (14)

The elements of the diagonal A-matrix are seen to be the poles of
G .Inthe case of Ty, ¥ and H™ , the transfer matrices have an
infinite number of poles. Hence, our task is to find a finite order
approximation.

Assume that we fit the transformation matrix T;(s) element-
by-element by a SER of order N . This implies that each element
is represented by a SER of dimension N . For an n-conductor
system the total number of poles for each column of 7; equals

Niot=nN (13)

" We can, however, do beiter than this. By suitable frequency
dependent normalization the elements of 7; become smooth
functions of frequency. This makes it possible to choose the same
poles for all elements of a column of 7. (See Appendix A for
additional justification). Thus, the total number of poles for a
single column then becomes equal to

Nige=N (16)

A detailed analysis (Appendix B) shows that this will increase the
computational efficiency for T, in the time step loop by
approximately a factor of 3. It should be noted that an additional
requirement of all eigenvectors sharing the same poles would not
lead to further savings. This is due to the fact that the SER for
each vector has to be implemented separately. Similarly, nothing
is achieved by requiring the elements of ¥ and H” (diagonal)
to have the same poles.

3.2 Optimal scaling

In this section we introduce a new, general fitting methodology
which allows the columns of a matrix to be fitted with the same
set of poles. The method is explained for the transformation
matrix 7} , but will also be used for fitting the diagonal elements
of ¥ and H™

As in [9] we ‘normalize the elgenvectors by fixing one element
to unity, giving a transformation matrix TP 7 - Artificial eigenvector
switchovers are avoided by means of a switching-back procedure,
similarly as described in [11].

In the following we introduce an intermediate scaling
(smoothing) of each column ¢? with the purpose of obtaining
poles suitable for the fitting of the original (unscaled) vector t?

- ‘We use for smoothing a scalar (complex) scaling function o(s) so
that the scaled column f;=c¢) can be fitted with a set of

prescribed stable poles given in the diagonal matrix 4. In
addition, we append a unity to the original vector :

c[tfo ]:5(51-2 Y'b+d a”n

In order to prevent ambiguity of the solution we impose the
condition
i{r}’@;w)]

which implies that o approaches unity at high frequencies. The
elements of the column vector b are arbitrarily set to unity.
Equation (17) is manipulated into an overdetermined set of linear
equations, one equation for each frequency point. This yields the
sparse system

(18)

Fr=g (19)

where the solution vector x contains the elements of C as well -
as of o(s) . Equation (17) is split into its real and imaginary part
when assembling (19), thereby ensuring C to have real elements
only.

Our experience is that specnfymg the poles in 4 to be real
and logarithmically distributed gives a very accurate fit for ¢, .
This chioice is somewhat arbitrary and is based on the requirement
of adequate covering of the whole frequency range considered (see
Appendix A).

In order to get a SER for the original vector 7 we partition
the SER in (17) into two parts , # and h;, where A is the last
element in the SER ~

I RO
G[ { }—C(SI A) b+d —’:hl(s)jl
It is seen from (20) that h; represents a SER for o . Because the
poles of h; are identical to those of # , it follows that the poles of
¢} become equal to the zeros of h1 The zeros of Ay are
calculated directly from its SER, as shown in Appendix C.
We next calculate the SER of tI by means of (21), with the
zeros of h; used as elements (poles) for A :

1) =C(sI-A) b+d 1)

As in (17), d=t?(s=w), and b is a column vector of ones.
Equation (21) is manipulated into an overdetermined linear set of
equations, similarly to (19). However, the solution vector x now
contains only the elements of C as no scaling is involved:

It should be noted that the new poles used in (21) are both real
poles and complex conjugate pairs. This is also the case for the
zeros for the transfer matrix corresponding to the SER of 2.

The fitting technique by optimal scaling is equally well suited
for fitting scalar functions as vectors. In (17) the vector t? is then
replaced by the scalar function. We use this technique for finding
the rational function approximation for the elements of the
diagonal matnces H™ and ¥

In case of T} , the SER is calculated from the SER of T;
usmg formulae shown in APFendlx D,

3.3 Stability

(20)

- Because the "new" poles used in (21) are zeros that were

calculated without any restrictions, they may in principle turn out
to be unstable. Our experience is that when the function to be
fitted represents a stable system, then the technique by optimal
scaling also results in a stable fit. The reason for this is simply
that if the rational function approximation contained an unstable
pole, then the resulting fit would be poor. An exception is when
the unstable pole is canceled by an unstable zero. This problem is,
however, easily overcome by deleting the unstable poles in (21)
prior to determination of C .

’



3.4 Removal of time delays from the modal propagqation functions

Many years experience with Marti-fitting has shown that the
scalar transfer function H}' can be accurately approximated by a
minimum phase shift function plus a time delay :

Hy' (@) hyin (@ )exp(- jot) (22)

In the case of Marti-fitting, only the magnitude function was
considered in the fitting process. This allowed the time delay to be
calculated by comparing the phase angle of the propagation
function with that of the rational approximation. However, in case
of fitting by optimal scaling, both the real and imaginary part of
HY are used in the fitting process. This makes it necessary to
remove the time delay before the fitting is carried out, which is
done by multiplying H;" with the factor exp(jot). As shown in
Appendix E, the time delay for each mode can be calculated by the
expression

_ L (@)

v(Q) Q

where Q is the highest frequency point of interest, v is the
modal velocity and [ the length of the transmission line. Because
accurate representation of the "toe portion" of H(t) would
require a very high order fitting, we choose Q to be the frequency
point where |H (®)|=01, as illustrated in figure 2. This gives an
accurate fit for ® <Q, and a reasonable representation for @ >Q .
We ensure that the rational approximation approaches zero as
®—w by specifying the D-matrix of the SER to be zero when
doing the fitting.

(23)

A

|HE' (@)
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Fig. 2 Upper frequency limit Q
Zh;, (Q) in (23) is calculated by a formula derived by Bode
[14], which relates the phase angle for a minimum phase shift

function to its magnitude function, The formula is shown in (24),
in a slightly rewritten form :

, d(Inh(
zhoml)%(T“('hf’;“’))ﬂ +A) @4)
where O=6,
_ 17 (|dandagio)|_|danghio)) 2
Aw)=— :[0 [I e In(cothZhdu  (25)
and ®
u=ln-2 (26)
@)

The first term alone gives a good estimate for the phase angle.
However, an improved result is achieved by including the second
term A(u). We limit the integration in (25) to the interval
©€[01Q,10Q]. This can be done since the shape of the
magnitude function more than one decade of frequency away has
only a very small effect on the phase angle at ©=Q. The
‘derivatives in (24){(26) are evaluated by simple numerical
differentiation, as is alov the vave for the integration. We typically
use 10 frequency points in the integration, which results in the
evaluation of Zh; (Q2) to be very fast.
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4 TIME DOMAIN IMPLEMENTATION

The transmission line model as defined by the traveling wave
equation (1) and (6) is transformed from the frequency domain
into the time domain by application of the convolution theorem.
We start by noting that a convolution between an arbitrary matrix
G and an input vector # may be expressed :

y=G*u=Gyu+h @27

where * denotes the convolution operator. Gyu is an
instantaneous term and h a history term. Considering one end of
the line, the modal domain traveling wave equation (6) becomes in
the time domain

Y™ —i" =2H i, (28)
Applying (27) to (28) gives
FBv"™ +h)-i"=2h, 29)

(H{ is equal to 0 due to the time delay between the line ends.)
The modal domain currents and voltages in (29) are transformed
into the phase domain using (10), (11), and (27) :

vm=T11(‘)'V+h3 > I=T10im+h4 (30)

Substituting (30) in (29) and premultiplying with T3, gives the
final result ; '
(Tro X5 Tfo w=i=Tro[2hy ~hy ~YShs1~hy  (31)
which is conveniently expressed by the Norton equivalent in
figure. 3. This representation is similar to the one used in [9].
'y . i

| +

h=Tyo[2h, —h ~Yo5hs1-hy Yo =T;oX2TH

Fig. 3 Network representation of line end

The history terms h;, h,, h;, h,y and the instantaneous terms
Y2, Ty, and Tf, are calculated from the respective SERs
assuming trapezoidal integration.

§ CALCULATED RESULTS FOR CABLE SYSTEM

In the following we show results for the 66 kV cable system in
figure 4. The cable series impedance Z 1is calculated using
simplified formulae given in [12].

r1=1950-107%[m] %
ry=377510"2{m] Im

73=3797-10"2[m]
© ©@'©
<>

74=4250-10"2[m]

p,=336510"8[Q.m] 0.3m
PeITIBIOTIAM o010
g
a €05 =285
e €y g =251

Fig. 4 Cable system data

5.1 Rational function approximation

The elements of 7;, ¥ and H™ were fitted using the optimal
scaling technique in the frequency range 0.1Hz-1MHz, with 5
frequency points per decade of frequency. The cable length was
10km.
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Figure 5 shows the magnitude of the six elements of the third
column of T} , and the magnitude of the complex deviation
(fitting error). The fit is seen to be very accurate.

g . , i}
(3.3)
— 4.,3) Accurate
= A e Fitted
RS-
g 3).(5.3
E 05 (1.3).03.3)
=
g (2,3),(6.3)
=
0 deviation
10° 10 10* 10°
Frequency [Hz]

Fig. 5. Elements of third column of T} (5th order approximation)

As ‘starting" poles i (17) we wused 5 real poles,
logarithmically distributed between 0.1Hz and 1MHz. The
calculated "new" set of poles used in (21) is shown in table 1. It is
seen that the fitting technique resulted in a complex conjugate
pair, in addition to three real poles.

Table 1 Poles of rational function approximation
-1.7714E6 -2.6904E3 -944.964j473.82 -2.0957

Figure 6 shows the phase angles corresponding to the
magnitudes in figure 5. The angles of the rational function
approximation are seen to be in close agreement with the original
angles. We also note that the phase angles of elements (2,3), (6,3)
and (4,3) have a net phase shift of -180°, whereas the
corresponding magnitude functions (figure 5) are constant at both
very low and very high frequencies. This implies that these
elements contain a zero in the right half plane. This shows that in
case of cable systems, one cannot assume all the zeros to lie in the
left half plane, as is traditionally done in Marti-fitting [3].

200 -

§ —— Accurate

% Fitted

E

o

[10]

n

2 “4.3)

o
1,3),(5,3)

-200 D ’ ' ]
10° - 10 10" 10

Frequeney [HZ]

Fig. 6 Phase angle of elements of third column of T

Figure 7 shows the fitted elements of the modal characteristic
admittance matrix, ¥,” . Each element was fitted separately, using
7 real poles as "starting" poles. These were logarithmically
distributed between 0.1Hz and 1MHz. Also is shown the
magnitude of the complex deviation. Again, the fit is ‘very
accurate.

0.04¢

Accurate

0.02

Magnitude [S]

0 Z deviation #4
10° 10° 10* 10°
Frequency [Hz]

Fig. 7 Modal characteristic admittance (7th order approximation)

-Figure 8 shows the fitted elements of the modal propagation,
H™, after removing time delays by (23). The elements were fitted
separately, using 8 real poles as "starting poles", logarithmically
distributed between 0.1Hz and 1MHz. The fit is seen to be quite
good, perhaps with the exception of the toe portion of element #6.

==
‘ Z_ Accurate
> | - Fitted
:'é 05¢
=
3
=
o ) deviation B
10° 10° 10* 10°
Frequency [Hz]

‘Fig. 8 Modal propagation.(8th order approximation)
5.2 Time domain simulation

The accurate representation of the frequency dependence of the
transformation matrix is particularly important when calculating
induced currents [13] and induced voltages [7] in cable sheaths. In
what follows we show calculated rtesults for the cable system of
figure 4, (cable length=10km). The responses were fitted in the
interval 1Hz-1MHz using 5-6 poles for each column of T;, 7
poles for each element of ¥" and 8 poles for-each element of
H™ . The SER for T{ was calculated directly from the SER of
T, , as previously mentioned.

3.2.1 Short circuit response

In this test a 1 p.u. step voltage was applied to the core of the
leftmost cable (sencﬁns encl)J while. the other vorew and sheatho
were grounded at this end. At the opposite end (receiving end) all
cores and sheaths were grounded.

Figure 9 shows the calculated current flowing in the core and
sheath of the energized cable at the sending end (solid line). In the
same figure are-also shown the exact values as calculated by a
Fourier transform (dotted. line). The currents by the simulation
model are seen to be on top of those by the Fourier method,
implying both that the rational function approximation is very
good, and that the model has been correctly implemented in the
time step loop.
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Fig. 9 Short circuit current in core and sheath of energized
cable (step response)

3.2.2 Open circuit response

In this test a 1 p.u. step voltage was applied to the core of the
leftmost cable (sending end), while the other cores and sheaths
were grounded at this end. At the opposite end (receiving end), all
cores and sheaths were open circuited. Figure 10 shows the
calculated receiving end sheath voltage of the energized cable. The
calculated voltage is seen to be in good agreement with the
theoretically accurate solution by the Fourier method.

———— Simulation

_ 0020 . Fourier method
=
£ 001t
14
&
g 0
>

-0.01¢

-0.02 : - ,
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Fig. 10 Open circuit voltage on sheath of energized cable
(step response)

6.3 Application to other cable geometries

In this study we have only considered systems of single core
coaxial cables. It appears that in these cases the transformation
matrix and the modal quantities for characteristic admittance and
propagation are in general smooth functions that can easily be
fitted with rational functions. An interesting observation is that in
the case of cables with low system voltage (e.g. 12, 24 kV), there
may appear "peaks" in the transformation matrix and in particular
in the modal characteristic admittance. This appears to be a resuit
of that the thickness of the sheath-ground insulation is no longer
much smaller than that of the main insulation, so that the
capacitances of these two insulations become comparable.

As an example, consider the- single core coaxial cable in
figure 11, which has a thickness of 2.2 mm for the sheath-ground
insulation.

609

P =100{C2m]

©

Diameter, core conductor :  21.3 mm
Thickness, sheath conductor: 0.35 mm

P Bes Thickness, outer insulation: 2.2 mm
p,=4179E-8[Q)-m}
80g ps=1724E-8[Q-m]

8o =€y =23

Fig. 11 Single core coaxial cable.

The characteristic admittance for the coaxial mode is shown in
figure 12 as the thickness of the main isulation is varied between
3 mm and 7 mm. We note that a sharp peak occurs as we decrease
the insulation thickness. It should be noted that such peaks are
accurately reproduced using our fitting method, as complex
poles/zeros are automatically introduced.

0.04

Magnitude [S]
o
[
o

0 X .
10° 10° 10° 10°
Frequency [Hz]

Fig. 12 Influence of insulation thickness on Y. (coaxial mode)
6 APPLICATION TO OVERHEAD LINES

The modal domain approach described in the paper has also been
applied to a number of different overhead lines, including both
single and multi-circuit lines. It turned out that the success
obtained with cables could not be automatically achieved with
overhead lines. Our fitting technique has no difficulties in fitting
the transformation matrix and the modal quantities, but the
resulting fit will in general give unstable poles in 7; and Y.
This problem is due to the fact that unstable poles are needed in
order to achieve an accurate fit.

As an example, consider the 132kV untransposed single
circuit line in figure 13.

11lm

Uil . »-100 am

Fig. 13 Single circuit overhead line

Figure 14 shows the column of the transformation matrix
corresponding to the ground mode (magnitude functions). Two of
the elements are equal to unity, but one element (2,1) is frequency
dependent, particularly between 1Hz and 100Hz.
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Fig. 14 First colimn of T} (magnitude functions)

The -phase angle for element (2,1) is shown separately in
figure 15. Also is shown the phase angle that results when fitting
this element to magnitude only with stable poles and zeros. We
note that in this frequency interval the fitted response has a
negative phase shift whereas the original response has a positive
phase shift. In this case it is not possible to obtain an accurate fit
using stable poles only.

10 — ; T
— Accurate
n
()
=
K}
[ AN //
© N/
T N S .
\ / Fitted to magnitude
“ with stable poles
-10 " G - -
10 10° 10° 10* 10°
Frequency [Hz]

Fig. 15 Phase angle of element 2,1) of T

In principle, we can easily remove the unstable poles from 7';
since all elements in each eigenvector have been forced to share
the same poles. If p,,., is an unstable pole, then multiplication
by the scalar function (s-p,,,,,) Will give a new eigenvector with
only stable poles. However, it follows from (8) that this scaling
results in the corresponding modal characteristic admittance being
scaled by the factor 1/(s- pum,)z. Forcing T} to be stable by
scaling would therefore move the instabilities over to ¥".

The underlying problem is that the characteristic admittance
matrix, which is intrinsically stable in the phase domain, may
have an unstable modal decomposition. This decomposition may
be expressed as :

m n m n
L= X7 =)t Xith =Zk:1Yck (32)

where Y[ is element (k%) of ¥”. When the sum in (32) is
taken to form a phase domain element, the poles of that element
becomes equal to the poles of the contributing terms. The resulting
zeros of the phase domain element will, however, be different
from the zeros of the contributing terms. This permits unstable
poles in Y to be canceled by unstable zeros. Thus, some Y
could be unstable while the resultant ¥, is stable. In case of
overhead lines this problem appears to frequently take place as
non-perfect cancellations between unstable poles and unstable
zeros. This makes it generally impossible to obtain a perfectly
accurate fit for the modal components using stable poles only.

Figures 16 and 17 show the magnitude functions and phase
angles for the contributions Y, to element (1,1) of ¥,. The
fitting technique was modified so as to fit to magnitude only with
stable poles and zeros. We note that although the magnitude
functions have been accurately fitted, the phase angles are in error
for contributions #1 and #3. However, when all three elements
were added together to form the phase domain element Y (11),
the resulting element could be accurately fitted with stable poles.

x 107
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T
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————— Fitted to magnitude
with stable poles
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#1
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Fig. 16 Magnitude of modal contributions ¥ (1,1) to ¥, (1,1) .
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Fig. 17 Phase angle of modal contributions ¥ (11) to ¥ (1,1)
7. OVERVIEW OF RESULTS

The frequency dependence of the modal transformation matrix
encountered in transmission line transient calculations can be
handled by a modal domain approach involving an additional
convolution for the transformation matrix. For an n-conductor
system this gives a total number of convolutions equal to
4n®+4n | as compared to 4n ,when a constant transformation
matrix is used. A significant computational burden obviously lies
in the 4n° convolutions for the transformation matrix.

In this paper we reduce the computational burden for these
convolutions fo approximately one third by using vector fitting for
the transformation matrix. Vector fitting means that all elements
in a vector share the same set of poles. This has been possible by
the introduction of a new fitting technique—vrational fitting by
optimal scaling. The method produces a state equation realization
(SER) for the emntire vector by solving a well-conditioned
overdetermined set of linear equations. The fitting routine takes as
input the vector as function of frequency plus a set of starting
poles. The key idea of the method is to multiply the vector by an
"optimal scalar”, o(®), so that the starting poles give a good fit
for the vector. By appending a unity to the original vector, the
zeros for o(m) are then readily obtained. These zeros are now
used as new starting poles, and the original vector is in the end
fitted by solving an overdetermined set of linear equations. One
strength of the method lies in that the accuracy of the resulting fit



is only slightly dependent on the location of the starting poles. Our
experience is that the starting poles can be assumed to be real and
logarithmically distributed. The fitting routine produces a SER
with both real and complex poles.

In the paper we implemented in time domain a modal domain
model with frequency-dependent transformation matrix, similarly
as in the L. Marti model [9]. The new fitting methodology was
used to find SERs for the transformation matrix, the modal
characteristic admittance matrix and the modal propagation
matrix. Application to a 66kV single core cable system showed
that highly accurate results could be achieved with a relatively
low number of poles : 5-6 for each column of the transformation
matrix and 7-8 for each element of the modal characteristic and
propagation matrix. Of particular interest was the observation that
zeros in the right half plane are intrinsically necessary for some
clements of the transformation matrix, while traditional Marti-
fitting [3] assumes all zeros to lie in the left half plane.
Application of the new fitting method, however, automatically
produces a SER which has the correct zeros. Another observation
was that in case of cables where the outer insulation is not much
thinner than that of the main insulation (low system voltage), the
transformation matrix and in particular the characteristic
admittance matrix may have strong peaks. These can, however, be
easily fitted using optimal scaling, as the needed complex poles
will automatically be introduced.

In case of overhead lines the method of modal decomposition
with a frequency dependent T seems to be less successful than for
cables. Application to a single circuit line showed that T could
not be fitted accurately with stable poles only. It was concluded
that in case of the characteristic admittance, we may get an
unstable modal decomposition. Similar results have also been
obtained for other line geometries,” including multi-circuit lines.
This fact suggests that a direct phase domain approach may be the
right choice for such cases.

The method of optimal fitting has been implemented as a
subroutine where the number of poles is given in the input. This
allows the vector and scalar functions to be repeatedly fitted with
an increasing number of poles, until an error criterion is met.
Consequently, in the case of overhead lines, columns which turn
out to be frequency independent are fitted with a constant vector
(order 0). Thus, in the case of a constant transformation matrix,
the proposed simulation model becomes similar to the J. Marti
model [3].

8 CONCLUSIONS

A new method has been introduced which allows vectors and
scalars to be fitted with rational functions containing complex
poles and zeros, in addition to real ones. The fitting process is
very robust and there is no problem in specifying a very high order
for the fitting if needed.

The new fitting method has been applied with success to cable
systems using modal decomposition and frequency dependent
transformation matrices. In this model, we need to fit the
transformation matrix and the diagonal matrices for propagation
and characteristic admittance. The resulting cable model is
computationally efficient for the following reasons :

e Accurate fitting can be achieved with a relatively low number
of poles. An order of 5-10 is usually sufficient.

e The new fitting method allows each vector of the
transformation matrix to be fitted with the same set of poles.
This gives approximately a 3-fold increase in computational
efficiency in the time step loop for all convolutions involving
the transformation matrix.

In the case of overhead lines it is not always possible to obtain an
accurate fit with stable poles when relying on modal
decomposition with a frequency dependent transformation matrix.
A stable model will in such cases be an approximation.
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11 APPENDICES
A - Fitting With Simple Fractions

Simple fractions

£(@)=— (A
JO-p;

with real poles p; constitute a basis in the function space for

fitting smooth functions h(w) . Indeed such functions are smooth,

as illustrated in figure A.1 for p;=-25,-5,~75,-10.

However, the functions g;(®) do not span the whole
function space and therefore they are useful only for relatively
smooth functions. We can see this if we represent
gi(®y), 0, =01,0,,.0, , as vectors forming the columns of a
matrix G . Figure A.2 shows the singular values obtained by
Singular Value Decomposition (SVD) of a 100x100 G- matrix
(for 100 points for p; and ® uniformly distributed from 0 to
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10). It is seen that only a fraction of the singular values are not
very small. Therefore, identifying simple fractions (A.1) for
fitting leads to a poorly conditioned problem, especially when the
number of simple fractions is hlgh (Only the orthogonal
U - matrix of the SVD (G=USVT) provides a well-conditioned
basis.) Conversely, a larger set of simple fractions (A.1) that
covers the whole frequency range of interest can be chosen with
great flexibility when fitting any number of smooth functions
h(w).
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B - Computational Efficiency of State Equation Realization Based
on Vector Fitting

Consider the scalar-input / vector-output convolution .
y=hxu ®B.1
whose finite State Equation Realization has been found :
x=Ax+bu
y=Cx+du
Trapezoidal integration of (A.2) gives :

(B.2)
(B.3)

x X, +x,

5 (B.4)

where At is the time step length used in the simulation. Further
manipulation gives :

n " %Xp1 =4 bun+u

x,=Px, 3 +qlu,+u, ;]
Yn=Cx,+du,

®B.5)
(B.6)
In the following we analyze the time needed in the time step loop
for an eigenvector when its elements have been fitted separately,
and when they have been. forced to share the same set of poles
(vector fitting). It is assumed that N poles.are used in both cases,
and that the system has n conductors.

Let %, and k,, be the computational time for one addition and
one multiplication, respectively. When vector fitting is used, the
SER has one input and » outputs, thus

P: (NxN) (diagonal) g¢:
C: (nxN) (ful) d:

(N x1) (full)
(nx1) (full)

* matrix 4'=A-bd] ¢

The computational time inferred from (B.5) - (B.6) is then found
to be about equal to :

K~(nN+n+2N)(k,+k,)~nN(k,+k,,) ®B.7

If each element is fitted separately, each element gives a SER with
one input and one output. Since there are »n elements we get:

Kan(N+142N )k, +k, )~3nN (k, +k,,) (B.8)
By comparing (B.7) with (B.8) we see that time domain evaluation

of a SER based on vector fitting gives about 3 times faster
evaluation than that of a SER based on element-by-element fitting.

C — Calculating New Set of Poles by Optimal Scaling

The new set of poles produced by the optimal scaling is equal to

the zeros of the particular element /; of the scaled vector. These
zeros are calculated as follows : ,
The SER of the scaled vector is given by (20). The SER of 4; has
the same A and b as that of the entire vector, and a row vector ¢7
and scalar d; equal to the corresponding row of C and 4 for the
vector. From (12) and (13) we get the SER of %, in the frequency
domain :

sx=Ax+bu , y=c x+du (1

Interchanging input and output gives the SER of the inverse of hy:
se=(A-bd; M yx+bdly | u=—dl T x+d y (C2)
The zeros of h; are then calculated as the eigenvalues of the

T Note that di" always exists because &,
approaches unity at high frequencies.

D - State Equation Realization for 7,

LetA,B,CandD reprcsent the SER for 7;. By transposmg
(15), we find a SER for TI given by A'=4, B'=CT, C'=BT
D'=p7

E — Time Delays For Modal propagation

Each element of the modal propagatlon matrix H™ (diagonal)
can be written as :
~(o(@ )} j— )
™ (0)=¢ V<€°> E.D)
where o, v, and ! denote attenuation, velocity and line length,
respectively. It is well known [3] that 2™ (@) can be fitted by a
minimum phase shift function ;. (») plus a time delay, 1

R™(0 )by (0 )e ™7 (E2)

From (E.1) and (E.2) it follows that © must be chosen so as to
satisfy the relation

o)
In our implementation, (E.3) is evaluated at a single frequency
point, Q2. Thus, the time delay becomes :
_ 1 (@
v(2) Q
The phase angle Zh,; (@), which is uniquely defined by the

magnitude function |h,,;, (@)l, is calculated by equations (24)-
(26).

®3)

(E4)
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Discussion

Brandio Faria, Senior Member, IEEE (CETME, Instituto Superior
Técnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal):

This paper, together with a companion one [1], presents an impor-
tant and lasting value contribution to the field of transmission line
transients computation. The authors are, thus, to be commended by

the excellent work they have done. The few comments and ques-

tions that next follow have the sole purpose of permitting the clarifi-
cation of some minor details.

1) On stating that H™ and Y7 are diagonal matrices, egs. (8-9), the
authors are tacitly assuming that the product matrix ZY (or YZ) is
always diagonalizable. However, unfortunately, that assumption is a
false one [2-4]. What kind of strategy should one then adopt in or-
der to keep using the method proposed by the authors if a non-
diagonalizable situation is faced at some frequencies?

2) In Section 3.2 it is referred an eigenvector normalization proce-
dure consisting in fixing one element to unity. It is well known that,
for bilaterally symmetric transmission line configurations, certain
propagation modes may have some elements null in the eigenvector
columns. Therefore, some caution must be exercised in the process
of fixing elements to unity.

3) The accuracy of the vector fitting technique developed by the
authors is shown in a series of illustrations throughout the paper.
However, the illustrations refer to the use of different orders of ap-
proximation (i.e. different number of poles). It is not clear which
criterion should one adhere to in deciding on the minimum number
of poles sufficient for achieving a "good" fitting. This question may
be decisive for the application of the proposed technique to new
computation cases where the "accurate" solution is not known ab
initio, that is, when a reference is not available for comparison.

4) In Section 6 the authors technique is applied to overhead line
configurations with much less success than the one they have got
with cable configurations in Section 5. The mathematical reason for
this relative failure (explained in the paper) lies on the presence of
unstable poles. Can a simple explanation for this be provided based
on physical grounds?

The authors reply to these comments will be highly appreciated.
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Taku Noda and Akihiro Ametani (Doshisha University,
Kyoto, Japan): We would like to congratulate the authors for
developing the new fitting approach - vector fitting - for
modal-domain modeling of a transmission line.

The proposed line model is based on the modal decompo-
sition approach. The modal decomposition at a single
frequency is always possible and is a perfect theory as shown
in [8]. But is it guaranteed that a modal-transformation
matrix T, represents a physically realizable system? If a
system is not physically realizable, its numerical implemen-
tation would be impossible. For example, a non-causal
system cannot be implemented in computer code, because
future input and output cannot be obtained.

The authors have concluded that the present line model is
suitable for cable modeling but not always for overhead line
modeling. But it should be noted that the frequency charac-
teristics of a modal-transformation matrix highly depend on
impedance formulas used in the calculations. Impedance
formulas used for modeling the single-circuit overhead line
of Fig. 13 should be clarified.

The comments of the authors would be highly appreciated.

Manuscript received March 3, 1997,

Bjern Gustavsen and Adam Semlyen: We wish to
thank the discussers for their valuable comments and
useful contributions. The following are itemized answers
to the problems raised.

Professor Brandio Faria :

Ad 1 Non-diagonalizable matrices ZY (or YZ) are
extremely rare and we never encountered one. Even if at
certain values of the parameters, notably at some
particular frequency, such a situation would occur, a
small disturbance of the frequency will lead to a regular
matrix. In the integration process implicit in the
transition from frequency to time domain, any isolated
irregular point would be filtered out. Therefore, we
believe that, apart from special, contrived or
pathological situations, there should be no concern for
non-diagonalizability.

Ad 2 We agree with the cautionary note of the discusser
regarding the selection of an clement of the vector to be
normalized to unity. In our implementation, the elements
of T were scanned as function of frequency. The element
with the largest minimum value was normalized to unity.
We wish to add that only in the case of transformation
matrices is an element equal to unity obtainable by
normalization. In most other applications of vector
Jitting an element equal to unity is appended to the given
vector. This permits a transitional scaling and smoothing
of the vector, an important step in the state equation
approximation process.
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- Ad 3 Vector fitting is used to find a rational function
approximation of a given function. In deciding the
minimum number of poles needed for a given accuracy,
a trial and error approach will have to be used.

Ad4 We cannot explain the unstable modal
decomposition encountered  for overhead lines on
physical grounds. We can only point to the fact that
several eigenvalues for overhead lines lie very close over
a wide range of frequencies, while this is usually not the
case for underground cables. It is interesting to note that
in figure 12 the increasing “peak” in the characteristic
admittance, observed with decreasing thickness for the
inper insulation, is due to the two eigenvalues getting
close. Eventually we arrived at a situation where the
transformation matrix could no longer be fitted with
stable poles only.

The robustness, accuracy, and efficiency of vector fitting
makes it attractive for many other applications in
addition to the one presented in the paper. In a more
general setting, the transfer functions are in general not
strictly proper but could be just proper or even improper
(order or numerator équal or greater than that of the
denominator). It turned out to be a simple matter to
generalize the vector fitting program to be applicable to
all these cases. These would often occur in the
identification of transformers or of external system
equivalents over a wide band of frequencies.

Dr. Taku Noda and Professor Akihiro Ametani ;

The discussers raise the interesting question whether it is
guaranteed that a modal transformation matrix 7 will
represent a physically realizable system. All we can say
is that the successful state equation realizations obtained
for T indicate physical realizability. In addition, there is
a plausibility argument to support this: since both the
phase and modal domain input-output relations (transfer
functions) are causal, the link 7 between them should
have the same property. The only pertinent difficulty we
have experienced is that the realization may result
unstable in the case of overhead lines. This instability
cannot be removed by scaling.

For modeling the single circuit overhead line we used
the complex depth method [A] for the ground return
impedance and approximate formulae [11,B] for the
internal conductor impedance.

We would finally take advantage of this opportunity. to
present a more efficient implementation of the time

domain integration than the ome in the paper. The -

- approach, suggested by Dr. Thor Henriksen (EFI), can
be summarized as follows :

We start with equations (B.5) and (B.6) :
X = Px;_ 1+ ‘](ﬁi + %) (@
Yy =Cx; +dy; (b)

Replacing in (a) and (b) the state vector x, with the
modified vector

X=X —qu ’ ©

gives »
x; = Px/_+(Pqg+q)u;_,. (@
Vi =Cx +(Cqg+dy (®

Equation (d) can be evaluated more efficiently by using a
similarity transformation via the matrix

- S=diag(Pgtq) ®
Since P is diagonal, the final result takes the form

Xi'= Px{_y +eu (&
% =Ry’ Gy )
where e is a vector of ones and
R=CS ()
G=Cqg+d G)

We next look at the computational effort for updating the
past bistory source Rx/’ in the time step loop. Let
kyand k, denote the computational effort for one
addition and multiplication, respectively. Assume that
we have fitted a column of 7 elements using N poles.

If (g) and (h) are evaluated separately for each element,
we find the total computational cost to be:

K=2nN(k,+k,) (k)

If (g) and (h) are evaluated taking advantage of all
elements having the same state vector we get:

K = (n+ )N (kg + k) nN (b + k) 0

Comparing (k) with (1) shows that the columnwise
realization gives a two-fold increase in computational
efficiency as compared to element-by-element
realization.
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